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Abstract—Network reliability is an important problem from
both theoretical and practical points of view. One of the most
powerful approaches for handling this problem is by using a
so-called D-spectra method. We describe the D-spectra for two-
state networks with binary and ternary components and give an
overview of its principal combinatorial properties. In particular,
we establish an important connection between the D-spectra and
the number of network’s failure sets of a given size.
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I. BINARY SYSTEMS WITH BINARY COMPONENTS AND

THEIR D-SPECTRA

We will consider monotone binary systems which have two

states, UP and DOWN. Their components which are subject

to failure also have two states, up and down. Practically,

without loss of generality, we can assume that our systems

are networks. In further, our principal network model will be

a triple N = (V,E, T ), where V is the vertex or node set,

|V | = m, E is the edge or link set, |E| = n, T is a set of

special nodes called terminals, |T | = h, T ⊆ V . Components

of the network subject to failures are the links or the nodes,

except the terminal nodes. Link failure (down) means that the

link is erased. Node failure means that all edges adjacent to

it are erased, and a failed node is therefore isolated.

We say that the network is T -connected if there is a path of

non failed links between each pair of terminals. Typically, we

will define network UP state if it is T -connected and DOWN ,

otherwise.

Before we proceed, we need to introduce some notation.

System (network) state we denote by a n-component binary

vector

x = (x1, x2, ..., xn), where xi = 1 or 0 if component

number i is up or down, respectively. System state is defined

by a binary function ϕ(x) which equals 1 or 0 if the system

is UP or DOWN, respectively. If ϕ(x∗) = 0, then we call x∗
failure vector or failure set.

Now we will define the D-spectrum or signature for our

system (network). Let us consider a random permutation π of

component numbers

π = (i1, i2, i3, ..., in). (1)

Suppose that all these components are up and we move

along the permutation from left to right and turn each com-

ponent from up to down. Suppose also that network state is

controlled after each step of this destruction process.

Definition 1. The ordinal number in the permutation π of

the component whose turning down causes network to change

its state from UP to DOWN is called the anchor of the

permutation.#

Assume that the permutation π is taken randomly and

equiprobable from the set of all n! permutations. Then the

anchor becomes a discrete random variable with the support

[1, 2, ..., n].

Definition 2. The distribution f = (f1, f2, ..., fn of the

anchor is called D-spectrum or signature. ”D” stands for

destruction process of anchor discovery. #

Remark 1. Historically, signature was first introduced by

Samaniego in [1] in a form equivalent do Definition 2 .

Independently, it was introduced six years later in [2] under

the term ID (Internal Distribution). The authors of [3], [4] used

the term D-spectra. The book [3] introduced multidimensional

signatures for networks with many states.#

Definition 3. The cumulative distribution function F (k) =∑k
i=1 fi of the anchor is called the cumulative D-spectrum#.

For systems having more than , say n = 10 components,

calculation of the D-spectra is made via its unbiased estimation

obtained by using Monte Carlo.This works as follows.

1) Generate M random permutations.

2) For each permutation, carry out the ”destruction” pro-

cess and locate the anchor

3) Count the number of permutations Mr for having the

anchor equal r, r = 1, 2, ..., n.

4) Take Mr/M = f̂r as an estimate for fr and
∑k

r=1 f̂r
as an estimate for F (k). #

Essential acceleration of this process can be obtained using

the binary search for the anchor position.

A. Principal combinatorial property of F (k)

Denote by C(k), k = 1, ..., n, the number of failure sets

(failure vectors) having k components down and the remaining

n − k components in state up. C(k) is an important combi-

natorial invariant of the system because it allows to compute
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system DOWN probability if we know the probabilities p
and q = 1− p that a component is up or down, respectively.

Indeed,

P (DOWN) =

n∑
k=1

C(k)qkp(n−k). (2)

An important fact is that knowing the cumulative D-

spectrum it is immediately possible to obtain the number of

failure sets.

Theorem 1.

C(k) = F (k)
n!

k!(n− k)!
.# (3)

There are several ways to prove this theorem. The first is

purely combinatorial, see [3]. Historically, the first one uses

the assumption that the system components have i.i.d. lifetimes

with c.d.f. G(t). This proof can be found in [1], [5].

Note also that if we replace in (2) p by p(t), the probability

that system component is up at the time instant t, (1) becomes

the probability that the system is DOWN at time t and therefore

the probability that system lifetime τsys does not exceed t
equals

P (τsys ≤ t) =

n∑
k=1

C(k)[q(t)]k[p(t)](n−k).

Remark 2. There is a way to describe network destruction

in time without any assumption regarding component lifetime.

This can be done by introducing an external shock process
which consists of a discrete system of events (shocks) devel-

oping in time, for example, according to an arbitrary renewal

process. Each shock destroys one and only one system com-

ponent chosen randomly among from the set of components

which are alive at the moment of shock appearance. It can be

shown (see for example [3], page 24) that system lifetime θ
has the following distribution function:

P (θ ≤ t) =

∞∑
x=1

ρxF (x),

where ρx is the probability to have exactly x shocks on the

interval [0, t]. (We set F (x) = 1 for x > n. #

II. BINARY SYSTEMS WITH TERNARY COMPONENTS AND

THEIR D-SPECTRA

We consider a system containing n components numbered

from 1 to n. Each component i can be in three states: up, mid,
down. These states will be denoted by numbers: 2 for up, 1

for mid and 0 for down. The state of system’s components is

described by a ternary vector

v = (v1, v2, ..., vn),

where vi = 2, 1 or 0, according to the component state. For

example, v = (2, 0, 1, 1, 2) means that components 1 and 5

are in state up, components 3,4 - in mid, and component 2 is

down.

The system has only two states, i.e. is binary: UP and

DOWN (denoted by 1/0, respectively). The system state is

determined by a binary structure function

ϕ = ϕ(v).

Our principal network model for ternary components will be

a four-tuple N = (V,E, T1, T2), where V is the vertex or node
set, |V | = m, E is the edge or link set, |E| = n, T1 and T2

are two nonintersecting sets of special nodes called terminals,

, T1+T2 ⊆ V . Components of the network subject to failures

are the links or nodes. We say that two nodes are strongly
connected if there is a path of up links connecting these nodes.

Similarly, we say that two nodes are weekly connected if there

is a path between these nodes consisting of up or mid links.

Se say that the network is UP if the nodes of T1 are strongly

connected and the nodes of T2 are weakly connected.

We make the following standard assumptions regarding the

dependence of system state on component states:

(i) ϕ(2, 2, ..., 2) = 1; ϕ(0, 0, 0, ..., 0) = 0.

(ii) if v > y, then ϕ(v) ≥ ϕ(y). (v > y means that vi ≥ yi
for all i but there is at least one j such that vj > yj). (ii)
means that the system is monotone.

Definition 4: random permutation of r-th type, r =
0, 1, ..., n− 1.

A random permutation of component numbers {1, 2, ..., n}
in which all components are in state mid is called a random

permutation of zero-type.

A random permutation πr is called a permutation of r-

th type, r > 0, if the components i1, ..., ir on the first r
positions are in state up, and the components ir+1, ..., in on

the remaining (n− r) positions are in state mid.

Probability of obtaining a particular ordering of component

numbers (i1, i2, ..., in) in the r-th type permutation is 1/n!#

Definition 5: failure (cut) set and (r;x)-failure set.
Failure set is a vector v = (v1, v2, ..., vn) of component

states such that

ϕ(v) = ϕ(v1, v2, ..., vn) = 0.

Here vi = 2, 1 or 0 means that vector v component i is in

state up,mid or down, respectively.

A failure set which has r components in up, x components

in down, and (n − r − x) components in mid is termed a

(r;x)-failure set.#

A. Destruction process

The destruction process has several stages denoted

0, 1, ..., n− 1. Stage r of destruction process consists of:

(a) generating a random permutation of r-th type;

(b) an initial check of system state, and

(c) sequential destruction of its mid components (i.e. turning

them from mid to down) by moving from left to right.

In (a), according to Definition 1, we generate a random

permutation of components numbers, assign to the first r of

them state up and to the remaining - state mid. For permutation

of zero-type all components are in state mid.
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(b) means checking system state when the r first compo-

nents in the permutation are up and all remaining components

are in mid. If for a particular r-permutation πr the check

reveals that the system is already DOWN, we say that this

permutation has anchor equal zero.

Stage (c) is carried out only if the anchor is not zero. It

consists of turning the components from mid to down by

moving from left to right, and checking the system state after

each component destruction.

Definition 6: anchor of an r-type permutation.

The anchor of a permutation πr of r-th type denoted δ(πr)
is the number of components which have been turned down
when the system was for the first time discovered in state

DOWN.#

If in an r-type permutation, the system is already DOWN
when no component has been turned from mid to down, then

this permutation has anchor equal zero.

Remark 3. There might exist such r for which the permu-

tation has no anchor. It means that after destruction of all n−r
mid components the system remains in UP. If this happens for

a particular r�, then by monotonicity property of the system,

there will be no anchor for all r > r�.

It is important to note that by the same monotone property

of the system, for any permutation there might be at most a

single transition UP → DOWN , i.e. at most a single anchor.

This property is very important for designing an fast search

procedure for locating the anchor.#

Let fr(y) be the probability that the anchor of r-th type

permutation equals y, y = 0, 1, 2, ..., n− r:

fr(y) = P (In πr, the anchor δ(πr) = y).

Since the total number of permutations for each r is n!, and

all permutations are equally probable,

fr(y) =
number of r-permutations with δ(πr) = y

n!
, (4)

for y = 0, 1, . . . , n− r.

Definition 7: cumulative r-spectrum.

Fr(x) =

x∑
y=0

fr(y), x = 0, 1, 2, ..., n− r,

is called cumulative r-spectrum. Obviously, Fr(x) ≤ 1.#

Remark 4. Let us assume that all r-type permutations have

anchor equal zero. It means that the numerator of fr(0) in

(2) will be equal n! and therefore fr(0) = 1, fr(j) = 0 for

j = 1, ..., n− r and Fr(0) = 1 = Fr(j), j = 1, ..., n− r.

Definition 8: ternary D-spectrum.

The collection of all cumulative r-spectra T sp = {Fr(x)}
for 0 ≤ r < n is called ternary D-spectrum.#

B. Principal combinatorial property of ternary D-spectrum

Denote by C(r;x) the number of all (r;x) - failure sets

in the system. (Let us remind that an (r;x) -failure set has

r components up, x components down and the remaining

components in mid.)

Theorem 2

C(r;x) = Fr(x) ·
n!

r!x!(n− r − x)!
.# (5)

For combinatorial proof of this theorem see [4].

Theorem 1 opens way to compute system DOWN proba-

bility for the case that all components are independent and

have identical probabilities (p2, p1, p0) for up, mid and down
states, respectively. In that case each (r;x) - failure set has

probability pr2p
(n−r−x)
1 px0 and therefore the probability weight

of all such sets equals

C(r;x) · pr2p
(n−r−x)
1 px0 . (6)

Theorem 3

P (DOWN) = (7)

=
∑

{x≥0,r≥0:0≤r+x≤n}
C(r;x) · pr2p

(n−r−x)
1 px0 .#

This formula can be rewritten in an equivalent ”dynamic”

form to include the time factor. Suppose we have n in-

dependent and identically distributed stochastic processes

{χi(t), t > 0, i = 1, ..., n}. Each χi(t) is a decreasing, left

continuous process with three states: 2, 1 and 0. State 0 is

absorbing. Each trajectory of χi(t) starts at t = 0 in state 2,

jumps into state 1 and later gets absorbed in state 0. At any

time instant t > 0, χi(t) is in one of its three states with

probabilities p2(t), p1(t) and p0(t), respectively. Obviously

p0(t) + p1(t) + p2(t) = 1, t > 0.

Let τ2(i) be the sojourn time of χi(t) in state 2. Then

P (τ2(i) ≤ t) = 1 − p2(t). Let τ1(i) be the sojourn time of

χi(t) in state 1. Then the event {τ2(i)+τ1(i) ≤ t} means that

at time t + 0, χi(t) has already left state 1, and is therefore

in state 0, i.e.

P (τ2(i) + τ1(i) ≤ t) = p0(t).

Note that if at time instant t the system is DOWN, then its

failure-free operation time τUP does not exceed t. Then we

can write that

P (τUP ≤ t) = (8)

=
∑

{x≥0,r≥0:0≤r+x≤n}
C(r;x)[p2(t)]

r[p0(t)]
x ·

· [1− p0(t)− p2(t)]
(n−r−x).#

218219



III. CONCLUDING REMARKS: UNSOLVED PROBLEMS

1) When dealing with networks having binary components,

it is quite natural to introduce networks with many states

[4]. For example, the network initially is fully connected.

When nodes of this network start failing, the maximal

component of this network is decreasing. Initial state of

the network is defined as UP. When maximal component

becomes less or equal 0.7 of all nodes, we say that

network went into state DOWN1. When the maximal

component becomes less or equal 0.5 of all nodes, we

say that the network entered state DOWN2. Finally,

when the maximal component is less or equal 0.25 of

all nodes, we say that the network is in state DOWN0,

(in ”total failure” state).

(Here we must made an agreement that network state is

determined by its lowest state. Suppose, network initially

has 100 nodes, Suppose, the maximal component now

has 30 nodes. So, formally the network is in state

DOWN1,and also in DOWN2 but not in DOWN0. So,

to the network with 30 nodes is declared to be in state

DOWN2.)

Introducing network with many states for binary com-

ponents was done via determining an ordered sequence

of anchors for each random permutation of component

numbers. When we start the destruction process, we fix

the ordinal numbers of the components when the tran-

sitions UP → DOWN1 → DOWN2 → DOWN0
took place.

It is an open problem how a similar process can be

defined for ternary components. The main complica-

tion arises from the ”multidimensional” structure of the

ternary D-spectrum.

2) For networks with binary components, we defined a

shock process, which allows to introduce ”shock time”

for determining network lifetime. This was done without

having any information about component lifetimes,their

dependence or independence. All we needed to postulate

the existence of an external sequence of events (shocks)

and a agreement that each shock ”kills” randomly one

of network components which is alive at the instant of

shock appearance.

Can anything similar be done for a network with ternary

components? How to distinguish which shock kills a

component completely or just causes its transition from

up to mid?

We hope that that in future it will become possible to

find answers to these questions.
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