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Abstract

We consider the problem of assessing the reliability and the Birnbaum importance measure of complex networks under the shared
link risk group (SRLG) failure scenario. With a view to the fact that SRLG failures can cause a global system breakdown, the
reliability and the importance measure analysis is of fundamental importance to the study of critical infrastructures such as sensor
and cross-layer networks, supply chains, and other complex systems that support the essential functioning of our society and
economy. The mathematical complexity of the reliability and the importance measure calculation implies that one has to rely on
approximation techniques, since no analytical method for solving this problem in reasonable computation time is known to exist.
This study will build upon the Permutation Monte Carlo paradigm. The major advantage of the proposed solution is that it allows
us to obtain reliable estimates of both the network reliability and the Birnbaum importance measure using the same algorithmic
machinery. We show that the suggested algorithm is easy to implement and that the method is scalable to meet real-life network
sizes.
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1. Introduction

We investigate the problem of reliability and importance measure (IM) analysis of complex networks where users
communicate with each other via end-to-end paths, under the shared risk link group (SRLG) failure scenario [1].
In this setting, an assemblage of network links can share a specific vulnerability, that is, these links belong to a
single SRLG. As a consequence, a certain failure event can cause a simultaneous downfall of several network edges
at the same time. Shared risk problems are common in transportation and communication network studies. For
example, the Howard Street Tunnel fire which occurred in Baltimore on July 18, 2001, had a severe impact on many
essential services. Among these are streets closure, rerouting of bus lines, suspension of train services, and power
outages [2]. When dealing with complex fiber and optical networks, the AT&T’s study showed that a network link may
belong to over 100 SRLGs and that every SRLG can associate together many network links [3]. As a consequence,
a failure in one or several SRLGs, can result in a global failure that will cause a disconnection of network peers,
and thus compromise the integrity of the corresponding critical infrastructure. Due to the problem importance, the
task of designing reliable networks, namely, networks that are resilient to failure events, was extensively considered
in previous studies. However, to the best of our knowledge, the combined analysis of network reliability and IM,
which we call the SRLG-RI, was not examined previously. This study addresses the gap by utilizing a Monte Carlo
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based machinery, which is suitable for the analysis of both the network’s reliability and the IM. While the reliability
assessment allows us to analyze the system resilience to failures, the corresponding IM analysis provides a way to rank
SRLG components according to their importance [4, 5]. In this study, component importance is proportional to its
contribution to the overall network reliability. Therefore, the IM analysis allows to optimally rectify potential hazards
and increase the overall system reliability in the most effective and economical (financial) fashion, by allocating
available resources to the set of most important components.

The SRLG setting, in which a single failure event can affect several links, was first introduced by Koch et. al. [1].
An illustrative example of a fiber network is depicted in Figure 1 (a); here fibers are aggregated into cables that are
usually placed in ducts and berried under the ground. A duct can be damaged due to some breakdown event such as
construction work or an earthquake. In this case, all fibers in this duct fail and we say that these fibers are associated
with (at least) one risk group, that is, they share a particular risk factor. In real life, there are numerous reasons that
can cause SRLG failures. For example, it is common for several optical channels to use a single fiber. In addition,
fibers (that can even be associated with different network providers), can use the same conduit. Moreover, fibers
usually share a communication infrastructure (repeaters). Finally, modern networks are often multilayered, that is, it
is common to observe virtual private networks on top of a fiber network. Namely, there can be shared links at any
level.
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Figure 1: A small fiber link network with five vertices and four cables. The set of vertices can represent data centers, local networks, virtual
machines, switches, routers, points of presence, etc..

Figure 1(a) and Figure 1(b), show the physical layout and the corresponding SRLG topology of a fiber network, re-
spectively. There are five data-centers (v1, v2, v3, v4, v5) and four cables denoted by R1, R2, R3, and R4. Each cable may
contain several fibers, while a given fiber may belong to several cables, as shown in Figure 1(a). There are four SRLGs
in this example, namely, R1 = {(v1, v2), (v1, v4), (v1, v3)}, R2 = {(v2, v3), (v2, v5)}, R3 = {(v2, v5), (v1, v4), (v3, v4)}, and
R4 = {(v3, v4), (v3, v5)}. For instance, a failure of R1 will lead to the failure of links (v1, v2), (v1, v3), and (v1, v4), simul-
taneously. In addition, by noting that the (v2, v5) link belongs to both the R2 and the R3, we conclude that a failure of
either R2 or R3 (or both), will interrupt the connection between v2 and v5.

Due to the importance of the SRLG problem in communication networks, it attracted a significant amount of
research [6, 7, 8, 9, 10, 11, 12]. The load control optimization under the SRLG setting and the enumeration of regional
failures in links that are caused by disasters, were considered by Liu et. al. [7], and by Tapolcai et. al. [8], respectively.
Special attention was drawn to the (diverse) routing problems [11], where the corresponding optimization task is
computationally hard since it was shown to be NP-complete [9, 10]. As a result of the NP computational complexity,
previous research focused mainly on heuristic procedures, evolutionary algorithms, and integer programming methods
[11, 12]. The concept of IM is fundamental in the reliability theory. Therefore, the extent of the available literature
that deals with various types of IMs is truly colossal. For example, Zheng et. al. consider IM analysis in smart
electric power grid systems [13]. Zheng et. al. evaluate the availability of smarts grids and show how one can
find the system’s vulnerabilities. A data-driven framework which can be used for identifying critical components
in complex technical infrastructures was proposed by Lu et. al. [14], where the authors combine IM analysis with
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modern machine learning methods. Lisnianski et. al. consider both the availability and the performability analysis in
large-scale multi-state systems [15, 16]. Specifically, the authors consider a Markov multi-state model for large-scale
highly responsive distributed systems and develop the corresponding measure and an LZ-transform based algorithm.
For additional recent studies, we refer to Dui et. al. [17], Do et. al. [18], and Shi et. al. [19]. In these works, Dui
et. al. provide an analysis of IMs while also considering the system lifetime, Do et. al. study a conditional-based
importance measure, which takes into account economic aspects such as maintenance costs, and Shi et. al. introduce
a maintenance optimization and the corresponding algorithm which uses IM for optimal maintenance grouping in
multi-component systems. Finally, Bistouni et. al. [20], examine the analysis of reliability and IM for Ethernet
ring mesh networks, and Chang et. al. [21], consider the reliability estimation and sensitivity analysis of multi-state
manufacturing network with joint buffers using simulation. Nevertheless, despite the problem’s importance and the
extensive amount of previous work, to the best of our knowledge, the task of the simultaneous analysis of both the
reliability and the IM for general graphs, namely, the SRLG-RI problem, was not previously addressed.

In this study, we focus on the SRLG-RI problem which can be stated as follows. Given a network and a set of
SRLGs, where each SRLG failure occurs with some predefined probability, find the probability that the network is
fully connected. That is, find the probability that all network peers are able to communicate with each other. This
question corresponds to the classic network reliability problem [22, 23]. In addition, the IM problem concerns with
finding an importance ranking of SRLG components. From the practical perspective, the IM analysis allows us to
determine the set of specific SRLGs, whose reliability should be intensified with a view to increasing the overall
network resilience in the most effective and economical fashion.

Similar to routing optimization tasks that belong to the NP complexity class, SRLG-RI is also computationally
hard. However, SRLG-RI is not an optimization, but it is rather a counting problem. In particular, SRLG-RI belongs
to the #P complexity class [24, 25], since one can show that SRLG-RI is a generalization of the k-terminal reliability
problem [25]; the complexity of SRLG-RI will be further discussed in Section 2. For some #P complete problems,
there exist good approximation schemes [26, 27]. In addition, when dealing with network reliability, there are several
methods that can handle small-sized graphs and a few specific graph topologies such as series-parallel and directed
acyclic networks [28, 29]. However, there is no known efficient approximation scheme for the general network
reliability problem [27]. Since SRLG-RI generalizes the k-terminal network reliability problem, no analytical method
for solving SRLG-RI in reasonable computation time is known to exist and as a consequence, one has to rely on
approximation techniques.

Our objective is to handle real-life networks, and therefore, we would like to apply a method that is fast from
the computational point of view. In order to satisfy this requirement, we propose to analyze a network invariant
called the spectra [30, 31, 32], since the latter allows us to obtain both the network reliability and to perform the
corresponding IM analysis using the same algorithmic machinery. While the analytical calculation of spectra is
computationally hard, we propose to estimate it using the Permutation Monte Carlo (PMC) approach [22]. As we
show in Section 3, the PMC algorithm can be used for both the reliability and the IM analysis. In particular, as
soon as the spectra object is available, one can estimate the reliability of the network for any failure probability of
SRLG components in polynomial time in the number of SRLGs, and obtain the network’s components IM via the
so-called Birnbaum Measure of Component Importance [33, 34]. Since this measure corresponds to the importance
ranking of SRLGs, a network designer who wishes to increase the overall network reliability, can perform a smart and
economical decision making by determining the set of components of maximum importance (these components will
have the largest Birnbaum measure values).

The major contribution of this study is as follows.

1. Our first contribution is that we address the gap of analyzing complex network reliability and IM under SRLG
failure scenario. The IM analysis allows to rank SRLG components according to their importance and thus the
network administrator can increase the reliability of the set of the most important components, while introducing
a maximal improvement to the overall network reliability and utilizing the least possible economical effort.

2. Our second contribution is that we show that one can apply a well-established technique (PMC), that is simple
to implement and that can handle real-life networks. It is important to note that the proposed procedure does
not require any parameter tuning, except for the sample size. According to the AT&T study, the computational
aspect is especially important for communication fiber and optical networks that can have hundreds of SRLGs.
In addition, we note that the same algorithmic method is used for both the reliability and the IM analysis. The
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simplicity of the proposed method allows to introduce a rigorous efficiency analysis (please see Theorem 1 in
Section 3.2).

3. A very important aspect of the proposed method is that as soon as the spectra calculation is completed, one
can readily use the spectra object for the analysis of both the reliability and the IM for any SRLG’s failure
probability (provided that every SRLG fails with the same probability). In particular, the network reliability can
be obtained in polynomial time in the number of SRLGs, and the IM analysis can be completed using a simple
statistical procedure. The latter will be detailed in Section 3 and Section 4.

4. Finally, we provide a research software package that can handle real-life SRLG-RI problems, and is capable of
achieving good solutions while using reasonable computation time. To the best of our knowledge, there exists
no other freely available or non-proprietary software that can operate under the SRLG-RI setting.

To summarize, this study proposes an efficient method for analyzing reliability and IM of complex networks under
the SRLG failure scenario. Specifically, we present a general technique for the estimation of reliability and IM of
networks with shared link risk groups. Our procedure also allows us to identify the set of risks of major importance.
Having in mind that each SRLG incorporates the dependence between its corresponding links, our methodology
assumes independence between SRLGs. While the method is designed with a view to handling real-life networks, it
has one major and one minor limitation that are going to be detailed in forthcoming sections. The major limitation
is that our method is designed for the scenario, in which every SRLG component has the same failure probability.
However, this assumption is reasonable when working with communication networks, since we can expect to deal
with comparable reliability characteristics of electrical components. In addition, this assumption allows us to design a
simple and computationally efficient algorithm for both the reliability and the IM analysis. The minor limitation is that
the method is not suitable for an adequate estimation of spectra that involves very small (spectra) components. While,
the latter can be resolved by utilizing techniques that are similar to the ones discussed in Vaisman et. al. [25, 35], the
resulting algorithmic complexity will force the user to compromise on the corresponding computational efficiency.

The rest of the paper is organized as follows. In Section 2 we formally define the SRLG-RI problem setting.
The proposed solution procedure is described in Section 3. In particular, we give a rigorous description of the PMC
algorithm and explain how it can be used for the estimation of both the reliability and the IM of complex networks
under the SRLG failure scenario. In Section 4 we present an extensive experimental study that demonstrates the
performance of the proposed methods when applied to several synthetic graphs and one real-life network. Finally,
Section 5 summarizes our findings and outlines limitations and possible directions for future research.

2. Problem definition

In this section, we formally define the SRLG-RI problem. To start with, consider a (complex) network, which can
be represented using a finite undirected graph G = (V, E), where V and E are the vertex and the edge sets, respectively.
When working with communication networks, vertices can exemplify data centers, local networks, virtual machines,
switches, routers, points of presence, etc.. For example, in Figure 1, we have the vertex set V = {v1, v2, v3, v4, v5},
and the edge set E = {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v5), (v3, v4), (v3, v5)}. An SRLG R ⊆ E is a collection
of links that share the same vulnerability. The set of all SRLGs is denoted by R. In the example from Figure 1,
R = {R1,R2,R3,R4}.

An important ingredient of the reliability analysis is the structure function ψ : {0, 1}n → {0, 1} [22, 30, 36], where
|R| = n. The function’s input is a binary vector of length n, namely x = (x1, . . . , xn), where xi ∈ {0, 1} is an indicator
variable that signifies that the ith SRLG component (Ri) for i ∈ {1, . . . , n} is operational (xi = 1), or failed (xi = 0).
Alternatively, we say that a component is operational or failed if it is in the up or in the down state, respectively. The
structure function outputs ψ(x) = 1 if the network is operational (the network is in the up state), or, ψ(x) = 0 if the
network is not operational (the network is in the down state).

In this study we work with the following failure regime; if an edge e ∈ E belongs to two or more different SRLGs,
an edge will be in the down state if at least one SRLG is in the down state. A failure regime is determined by the
definition of the corresponding structure function. Under our setting, the structure function is defined as follows. Let
R′ ⊆ R be a set of SRLGs, and define G(R′) = (V, E′) to be a subgraph of G = (V, E), where

E′ =
{
e ∈ E : ∃R′′ ∈ R′ such that e ∈ Z′, and ∀R′′′ ∈ R \ R′, e < R′′′

}
. (1)
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In other words, G(R′) is a subgraph that contains all vertices of the V set, and all edges from the E set that are not in
the down state. Then, the structure function is defined via

ψ(x1, . . . , xn) =

1 if R′ = {Ri ∈ R : xi = 1} and G(R′) is fully connected,
0 otherwise.

(2)

Remark 1 (Failure regime). In practice, it can be beneficial to consider different failure regimes. For example, one
can define an edge e ∈ E to be in the up state, if it belongs to at least one SRLG that is in the up state. In addition,
we might want to modify the network’s up state criteria. For instance, we can declare that the network is in the up
state if 80% of vertices are connected. Moreover, one might be interested in a congestion scenario, which is of major
importance when dealing with communication networks. The latter can be achieved by fixing all physical links (that
belong to a virtual link), to share the same SRLG. Of course, a change of a failure regime will require a redefinition of
the structure function in (2). However, it is important to note that all methods developed in this paper can be applied to
various failure regimes, provided that the structure function is properly defined; some examples are given in Section 4.

Next, we define q = (q1, . . . , qn), to be a vector of failure probabilities, where qi ∈ [0, 1] for 1 ≤ i ≤ n. Here,
qi stands for the failure probability of the ith SRLG component Ri ∈ R, or, in other words, qi is the probability of
the ith SRLG to be in the down state. For convenience, we also define the corresponding (success) probability vector
p = (p1, . . . , pn), where p def

= 1 − q = (1 − q1, . . . , 1 − qn). Consequently, for 1 ≤ i ≤ n, pi is the probability of Ri to
be in the up state. The network reliability and the unreliability is denoted by Ψ(p1, . . . , pn) def

= r(G,R,p) def
= r(G,R,q)

and by Ψ(p1, . . . , pn) def
= r(G,R,p) def

= r(G,R,q), respectively.

Table 1 The nomenclature.

Notation Meaning
V vertex set
E edge set
e = (u, v); u, v ∈ V edge between two vertices (u and v)
G = (V, E) undirected graph that represents a complex network
x = (x1, . . . , xn) system state vector, xi ∈ {0, 1} for all 1 ≤ i ≤ n;

xi = 1 and xi = 0 signify the up and the down state of component i, respectively
R ⊆ E shared risk link group
R set of all shared risk link groups; |R| = n
ψ : {0, 1}n → {0, 1} structure function
q = (q1, . . . , qn) vector of failure probabilities
p = (p1, . . . , pn) vector of success probabilities
qi = 1 − pi ∈ [0, 1] failure probability of the SRLG Ri ∈ R

r(G,R,p) def
= r(G,R,q) network reliability (the probability that the network is in the up state)

Ψ(p1, . . . , pn) def
= r(G,R,p) network reliability

r(G,R, p) def
= r(G,R, q) network reliability where p = p1 = p2 = · · · = pn

r(G,R,p) def
= r(G,R,q) network unreliability

Ψ(p1, . . . , pn) def
= r(G,R,p) network unreliability

r(G,R, p) def
= r(G,R, q) network unreliability where p = p1 = p2 = · · · = pn

BIMi Birnbaum measure of component importance of Ri for 1 ≤ i ≤ n
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In this work, we are interested in a special case for which qi = q j = q for all 1 ≤ i, j ≤ n. Under this setting,
the reliability and the unreliability notation is simplified to r(G,R, p) and r(G,R, q), and to r(G,R, p) and r(G,R, q),
respectively. For the rest of this paper, we use p and q, p and q, and, pi and qi interchangeably. Finally, for each
SRLG Ri ∈ R, we define the corresponding Birnbaum Measure of Component Importance (BIM) via BIMi for all
1 ≤ i ≤ n. These BIMs are constructed in such a way that a decrease in the failure rate of the most important
component, namely, of the component that has the largest BIM value, will cause the largest increase of the overall
network reliability. Formally, the BIM of component i is defined via [33]

BIMi =
∂Ψ(p1, . . . , pn)

∂pi
= Ψ(p1, . . . , pi−1, 1, pi+1, . . . , pn) − Ψ(p1, . . . , pi−1, 0, pi+1, . . . , pn). (3)

Determining the importance of SRLGs constitutes the network IM analysis. The above notation is compactly de-
scribed in Table 1, and we can proceed with the formal definition of the SRLG-RI problem.

Definition 1 (The SRLG-RI problem). Given an undirected graph G = (V, E), a set of SRLGs R = (R1, . . . ,Rn), and
an SRLG failure probability q ∈ [0, 1], such that, P({ Ri is in failed state}) = q for all 1 ≤ i ≤ n, the solution of the
SRLG-RI problem instance (G,R, p), is composed from answers to the following questions.

1. The system reliability (or unreliability) calculation. Namely, calculating

r(G,R, p) = P(ψ(X1, . . . , Xn) = 1), (or r(G,R, p) = P(ψ(X1, . . . , Xn) = 0)),

where Xi is a Bernoulli random variable, that is, Xi ∼ Bernoulli(p) for 1 ≤ i ≤ n.
2. The system IM calculation. Namely, calculating {BIMi}

n
i=1 for {Ri}

n
i=1.

We next proceed with an instructive illustration of reliability and IM analysis when applied to a small network
instance.

Example 1 (The bridge network). Consider the bridge network in Figure 2(a). The network consists of four vertices
and five edges. In addition, there are three SRLGs. SpecificallyR = {R1,R2,R3}, where R1 = {(v1, v2), (v1, v3), (v3, v4)},
R2 = {(v1, v2), (v2, v4)}, and R3 = {(v2, v3)}. In this example, there are three possible failure events that correspond to
each SRLG. Suppose that all SRLGs are operational (Figure 2 (a)). We can see that if say the R2 group fails, then,
the (v1, v2) and the (v2, v4) edges fail (Figure 2 (b)). Note that the network is still connected in the sense that all graph
vertices form a single connected component. Suppose now that the SRLG R3 fails, that is, we have two SRLGs in the
down state, specifically, the R2 and the R3. In this case, edges (v2, v3) and (v3, v4) fail, and the corresponding network
becomes disconnected (Figure 2 (c)). Namely, after the failure of R2 and R3, the networks enters the down state.
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(a) R1,R2 and R3 are in the up state
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(c) R1 is in the up state, and R2 and R3 are in
the down state

Figure 2: A bridge network with four vertices and five edges.

Next, let us assume that the probability of SRLGs R1,R2 and R3 to be in the up state, is equal to p1, p2, and p3,
respectively. The bridge network in Figure 2 is very small and therefore it is also instructive in the sense that we
can provide a complete characterization of the structure function ψ(x1, x2, x3). The bridge network reliability can be
derived from Table 2; specifically, the network reliability is equal to

r(G,R, (p1, p2, p3)) def
= P(ψ(X1, X2, X3) = 1) = p1 q2 p3 + p1 p2 q3 + p1 p2 p3. (4)
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Table 2 The bridge’s network structure function.

x1 x2 x3 ψ Ψ(p1, p2, p3) def
= P(X1 = x1, X2 = x2, X3 = x3)

0 0 0 0 q1 q2 q3
0 0 1 0 q1 q2 p3
0 1 0 0 q1 p2 q3
0 1 1 0 q1 p2 p3
1 0 0 0 p1 q2 q3
1 0 1 1 p1 q2 p3
1 1 0 1 p1 p2 q3
1 1 1 1 p1 p2 p3

Since we are concerned with the special case for which p1 = p2 = p3 = p, (4) simplifies to

r(G,R, q) = 2p2q + p3. (5)

Next, we proceed with the IM analysis of the bridge network. From (3) and (4), we arrive at

BIM1 = q2 p3 + p2q3 + p2 p3 =︸︷︷︸
p1=p2=p3=p

p2 + 2pq, (6)

BIM2 = −p1 p3 + p1q3 + p1 p3 =︸︷︷︸
p1=p2=p3=p

pq,

BIM3 = p1q2 − p1 p2 + p1 p2 =︸︷︷︸
p1=p2=p3=p

pq.

Since it holds that BIM1 ≥ BIM2 and BIM1 ≥ BIM3, we conclude that the first SRLG, namely (R1), is of major
importance. In other words, if we would like to increase the overall network reliability but can only intensify the
reliability of one SRLG, the R1 SRLG will be the best candidate. At this stage, it is instructive to see the motivation
for computing BIMs. Suppose that the SRLG component Ri (1 ≤ i ≤ n), which fails with probability qi = 1 − pi, is
replaced with a more reliable one. Specifically, assume that the new component’s reliability is pi + ∆, where ∆ > 0.
Then, the new overall system reliability will be increased by BIMi × ∆ factor [22]. This means that the component
with maximum BIM value has the largest contribution to the system reliability. In the bridge network example, by
increasing p1 by ∆, and combining this with (4), we arrive at

r(G,R, (p1 + ∆, p2, p3)) = (p1 + ∆) q2 p3 + (p1 + ∆) p2 q3 + (p1 + ∆) p2 p3

= p1 q2 p3 + p1 p2 q3 + p1 p2 p3 + ∆(q2 p3 + p2 q3 + p2 p3)

=︸︷︷︸
p1=p2=p3=p

r(G,R, q) + ∆(p2 + 2pq︸    ︷︷    ︸
BIM1

).

Unfortunately, for larger real-life problems, the full enumeration of all system states and the exact calculation of
the corresponding structure function as detailed in Table 2, is not computationally feasible and one has to rely on
approximation methods. In fact, the SRLG-RI problem is in #P [24].

Remark 2 (The complexity of the SRLG-RI problem). The SRLG-RI problem belongs to the #P complexity class
[24], since this problem is a generalization of k-terminal reliability problem. To see this, assign a unique SRLG to
each link. The problem is then simplified to the well-known k-terminal reliability problem, which is in #P [25, 27].

In order to understand the merit of the PMC approach that will be discussed in Section 3, it is instructive to
consider a Crude Monte Carlo solution to the SRLG-RI problem.
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2.1. The Crude Monte Carlo solution

We proceed with the design of a crude Monte Carlo (CMC) algorithm for the SRLG-RI problem. Let (G,R, p)
be an SRLG-RI instance and let Xi ∼ Bernoulli(p) be a set of random variables that stand for the state of Ri for
1 ≤ i ≤ n. Then, the calculation of the value of the structure function ψ(X1, . . . , Xn) can be computed in polynomial
time in n, |V |, and |E|. The latter can be performed by constructing G(R′) = (V, E′), a subgraph of G = (V, E), where
R′ = {Ri ∈ R : Xi = 1} and E′ is defined via (1). Finally, the output of the structure function can be calculated by
utilizing an algorithm that verifies the resulting subgraph connectivity, for example, using BFS or DFS [37]. Since
ψ(X1, . . . , Xn) is an indicator function, the system reliability can be written as an expected value via

r(G,R, p) def
= P(ψ(X1, . . . , Xn) = 1) = E[ψ(X1, . . . , Xn)].

This implies the corresponding CMC procedure, which is summarized in Algorithm 1.

Algorithm 1: The CMC algorithm for the estimation of r(G,R, p)
Input: G = (V, E), R = (R1, . . . ,Rn), p ∈ [0, 1], and a sample size N ∈ N
Output: ˆ̀CMC — unbiased estimator of r(G,R, p)

1 ˆ̀CMC ← 0
2 for t ← 1 to N do
3 Generate X(t)

i ∼ Bernoulli(p) for 1 ≤ i ≤ n.
4 Xt ←

(
X(t)

1 , . . . , X
(t)
n

)
5 end
6 return ̂̀CMC ←

1
N

∑N
t=1 ψ(Xt)

An estimator for BIMi for 1 ≤ i ≤ n can be obtained in a similar fashion via a CMC procedure. Specifically, we
can use CMC to estimate E[ψ(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)] and E[ψ(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)] and combine these
with (3).

Unfortunately, Algorithm 1 can be very inefficient when dealing with the following scenarios.

1. Suppose that we would like to solve the SRLG-RI problem for m different values of p. In this case, one would
require to run m CMC algorithms; for large m, this will be computationally prohibitive.

2. The second problem is concerned with highly reliable networks. In particular, suppose that 1 − p = q � 1. In
this case, ψ(X1, . . . , Xn) is equal to 1 with high probability, and one cannot estimate the system unreliability in
a satisfactory fashion. More formally, note that {Yt = 1 − ψ(Xt)}Nt=1 is a set of independent Bernoulli random
variable such that Yt ∼ Bernoulli(`), where ` = r(G,R, p) is the true system unreliability. Then, Var

(
ˆ̀CMC

)
=

`(1−`)
N holds, and the relative error (RE) [38] of the estimator ̂̀CMC is

RE
(
ˆ̀CMC

)
=

√
Var

(
ˆ̀CMC

)
E

(
ˆ̀CMC

) =

√
`(1 − `)/N

`
≈︸︷︷︸
`�1

1/
√

N`. (7)

The RE in (7) imposes a serious challenge. To see this, consider the rare-event probability ` ≈ 10−15, and
suppose that we are interested in a (very) modest 20% RE. It is possible to verify from (7), that the required
sample size N is about 2.5 × 1016.

In order to resolve both problems, we propose to apply the spectra approach, which is detailed in Section 3. We
next show that when the failure probability of each SRLG is identical, one can overcome the rare-event problem by
using the spectra approach [30]. In addition, under the same failure probability setting, we show that the spectra
machinery allows us to identify important BIMs [34], and thus resolve the problem of network IM analysis, too.

8
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3. Methods

To start with, consider an SRLG-RI problem instance (G,R, p), and let Ai = {R′ ⊆ R : |R′| = i} be the set of all
subsets of risk groups of cardinality i for 1 ≤ i ≤ n. In addition, define

Bi =
{
R′ ⊆ R : |R′| = i and G(R′) is fully connected

}
,

to be a subset ofAi. Then, it holds that

r(G,R, p) =

n∑
i=1

|Bi| pi qn−i, (8)

where p and q = 1 − p are the probabilities of an SRLG R ∈ R to be in the up and the down state, respectively. Next,
we define an important combinatorial object called the spectra [23, 30, 39, 40].

Definition 2 (SRLG spectra). Given an instance of SRLG-RI problem (G,R, p), where |R| = n, the SRLG spectra is
defined by

s(G,R) = (s1, . . . , sn) ,

where si = |Bi|/|Ai| for 1 ≤ i ≤ n.

Using the fact that |Ai| =
(

n
i

)
for 1 ≤ i ≤ n, we can rewrite (8) via

r(G,R, p) =

n∑
i=1

(
n
i

)
si pi qn−i. (9)

Moreover, from Definition 2, we conclude that |Ai| and |Bi| are independent of the SRLG component failure proba-
bility q for 1 ≤ i ≤ n. Therefore, s(G,R) is a system invariant, and thus, provided that s(G,R) is available, one can
calculate the r(G,R, p) via (9), in O(n) time for any p ∈ [0, 1]. In practice, reliability engineers are more concerned
with network’s unreliability. With this in mind, it is important to note that the spectra can be used for calculating the
network unreliability using 1 − s(G,R) = (1 − s1, . . . , 1 − sn), since the following holds

r(G,R, p) = 1 − r(G,R, p) =

n∑
i=0

(
n
i

)
piqn−i

︸         ︷︷         ︸
binomial theorem→(p+q)n=1

−

n∑
i=1

(
n
i

)
si piqn−i = qn +

n∑
i=1

(
n
i

)
(1 − si) piqn−i.

Example 2 (The bridge network reliability via spectra). Consider the bridge network from Example 1 and note
that it is possible to verify that B1 = {∅}, B2 = {{R1,R2}, {R1,R3}}, and B3 = {{R1,R2,R3}}. In addition, since
|A1| =

(
3
1

)
= 3, |A2| =

(
3
2

)
= 3, |A3| =

(
3
3

)
= 1, the spectra is equal to

s(G,R) =

(
|B1|

|A1|
,
|B2|

|A2|
,
|B3|

|A3|

)
=

(
0,

2
3
, 1

)
. (10)

By combining (9) and (10), we immediately arrive at the exact network reliability, which is given by

r(G,R, p) =

3∑
i=1

(
n
i

)
si pi qn−i =

(
3
1

)
0 p q2 +

(
3
2

)
2
3

p2q +

(
3
3

)
1 p3 = 2p2q + p3,

and one can verify that this result is equal to the direct reliability calculation from (5).

If we take a careful look at the spectra components in (10), it becomes apparent that estimating the spectra is much
easier than estimating the network reliability directly via Algorithm 1, because, these components do not have very
small non-zero numbers. In particular, as soon as we obtain a reliable estimator of the spectra, the system reliability
or unreliability can be calculated 1) for any value of p and 2) regardless of the condition q � 1; both 1) and 2) were

9
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discussed at the end of Section 2. That is, the spectra approach helps to void the need to repeat the CMC algorithm
for each p, and addresses the rare-event issue.

The spectra object can be used for calculating the BIM components, too. Let B( j)
i be a subset of Bi, such that the

SRLG R j is in the up state in Bi, namely, define

B
( j)
i =

{
R′ ⊆ R : R j ∈ R

′, |R′| = i and G(R′) is fully connected
}
.

Similar to the SRLG spectra from Definition 2, we define the BIM spectra as follows.

Definition 3 (SRLG BIM spectra of component j for 1 ≤ j ≤ n). Given an instance of SRLG-RI problem (G,R, p),
where |R| = n, the SRLG-BIM spectra for component j is defined by

s(bim j)(G,R) =
(
s(bim j)

1 , . . . , s(bim j)
n

)
,

where s(bim j)
i = |B

( j)
i |/|Ai| for 1 ≤ i ≤ n.

Combining the SRLG spectra and the SRLG BIM spectra from Definition 2 and Definition 3, one can obtain the
set of BIM components. The corresponding result is summarized in Lemma 1 [22].

Lemma 1 (BIM calculation using spectra [22]). Let s(G,R) = (s1, . . . , sn) and s(bim j)(G,R) =
(
s(bim j)

1 , . . . , s(bim j)
n

)
be

the SRLG spectra and the SRLG BIM spectra of component j for 1 ≤ j ≤ n. Then, it holds that

BIM j =

n∑
i=1

(
n
i

)
s(bim j)

i pi−1qn−i −

(
n
i

)
(si − s(bim j)

i )piqn−i−1. (11)

Proof. First, note that

Ψ(p1, . . . , p j−1, 1, p j+1, . . . , pn) =

n∑
i=1

|B
( j)
i | p

i−1 qn−i, (12)

where we have pi−1 instead of pi, since the jth component is always in the up state. LetB(¬ j)
i be a subset ofBi, such that

the SRLG R j is in the down state in Bi, namely, B(¬ j)
i =

{
R′ ⊆ R : R j < R

′, |R′| = i and G(R′) is fully connected
}
.

Then, it holds that

Ψ(p1, . . . , p j−1, 0, p j+1, . . . , pn) =

n∑
i=1

|B
(¬ j)
i | pi qn−i−1, (13)

where we have qn−i−1 instead of qn−i, since the jth component is always in the down state. Finally, since B( j)
i and B(¬ j)

i

is a partition of Bi, we have that
∣∣∣∣B(¬ j)

i

∣∣∣∣ = |Bi| −

∣∣∣∣B( j)
i

∣∣∣∣, and by combining (12) and (13) with the definition of BIM j in
(3), we arrive at

BIM j
def
= Ψ(p1, . . . , p j−1, 1, p j+1, . . . , pn) − Ψ(p1, . . . , p j−1, 0, p j+1, . . . , pn)

=

n∑
i=1

|B
( j)
i | p

i−1 qn−i −

n∑
i=1

|B
(¬ j)
i | pi qn−i−1 =

n∑
i=1

|B
( j)
i | p

i−1 qn−i − (|Bi| − |B
( j)
i |)piqn−i−1

=

n∑
i=1

(
n
i

)
s(bim j)

i pi−1qn−i −

(
n
i

)
(si − s(bim j)

i )piqn−i−1,

and thus, (11) follows.

Example 3 (The bridge network BIMs calculation with spectra). For the bridge example, one can verify that∣∣∣B(1)
1

∣∣∣ = 0,
∣∣∣B(1)

2

∣∣∣ = 2,
∣∣∣B(1)

3

∣∣∣ = 1,
10
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and that ∣∣∣B(2)
1

∣∣∣ =
∣∣∣B(3)

1

∣∣∣ = 0,
∣∣∣B(2)

2

∣∣∣ =
∣∣∣B(3)

2

∣∣∣ = 1,
∣∣∣B(2)

3

∣∣∣ =
∣∣∣B(3)

3

∣∣∣ = 1.

We can now calculate all BIM components via (11) as follows

BIM1 =

3∑
i=1

∣∣∣B(1)
i

∣∣∣ pi−1qn−i − (|Bi| −
∣∣∣B(1)

i

∣∣∣)piqn−i−1 = 2pq − 0︸   ︷︷   ︸
i=2

+ p2 − 0︸ ︷︷ ︸
i=3

= 2pq + p2,

BIM2 = BIM3 =

3∑
i=1

∣∣∣B(2)
i

∣∣∣ pi−1qn−i − (|Bi| −
∣∣∣B(2)

i

∣∣∣)piqn−i−1 = pq − p2︸  ︷︷  ︸
i=2

+ p2 − 0︸ ︷︷ ︸
i=3

= pq.

As expected, the above BIM calculation via spectra, agrees with the direct calculation in (6).

Unfortunately, for a general network, and in particular for larger networks, the spectra cannot be obtained analyt-
ically. Therefore, for the rest of this section we show how one can estimate the spectra components, namely, how to
estimate both the s(G,R) and the s(bim j)(G,R) for 1 ≤ j ≤ n.

Remark 3 (Estimating spectra via CMC). It is possible to design a simple CMC algorithm for estimating both spectra
objects. Specifically, an estimator for the si and for the s(bim j)

i for some fixed i, j ∈ {1, . . . , n}, can be obtained by
defining the uniform distribution over theAi set, and estimating the expected values of the random variables

1{A′∈Ai and G(A′) is fully connected} and 1{A′∈Ai and G(A′) is fully connected and R j∈A
′},

since it holds that

E
[
1{A′∈Ai and G(A′) is fully connected}

]
=
|Bi|

|Ai|

def
= si, and E

[
1{A′∈Ai and G(A′) is fully connected and R j∈A

′}

]
=

∣∣∣∣B( j)
i

∣∣∣∣
|Ai|

def
= s(bim j)

i .

However, the cost of such CMC algorithm can be computationally prohibitive, since the CMC approach will re-
quire an execution of n CMC algorithms for estimating the SRLG spectra. Moreover, if we wish to estimate s(bim j)

i
separately for all i, j ∈ {1, . . . , n}, we will additionally require n2 CMC algorithm executions. Instead, similar to Gerts-
bakh et. al. [30], we propose to apply the PMC approach, which will considerably reduce the required computational
effort and consequently open a way to handle real-sized networks.

3.1. The PMC method

The PMC method, which is summarized in Algorithm 2, has the advantage that both spectra objects are estimated
in one run, and in contrast to the CMC approach, there is no rejection sampling involved. We start with defining the
uniform distribution on the set of all permutations of the {1, . . . , n} set. LetΠ = (Π1, . . . ,Πn) be a random permutation,
and define S i and S ( j)

i to be indicator random variables for 1 ≤ i, j ≤ n such as

S i =

1 if G({RΠ1 , . . . ,RΠi }) is fully connected,
0 otherwise,

and

S ( j)
i =

1 if G({RΠ1 , . . . ,RΠi }) is fully connected, and j ∈ {Π1, . . . ,Πi},

0 otherwise.

Noting that for every connected subgraph G′ ∈ Bi, there exist i!(n − i)! corresponding SRLG permutations, and
combining this with the fact that there are n! possible permutations over the {1, . . . , n} set, we arrive at

E[S i] =
∑
π

S iP(π) =
1
n!

∑
π

S i =
1
n!
|Bi|i!(n − i)! = |Bi|

(
n
i

)−1

=
|Bi|

|Ai|

def
= si, (14)

11
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and

E
[
S ( j)

i

]
=

∑
π

S ( j)
i P(π) =

1
n!

∑
π

S ( j)
i =

1
n!

∣∣∣∣B( j)
i

∣∣∣∣ i!(n − i)! =
∣∣∣∣B( j)

i

∣∣∣∣ (ni
)−1

=

∣∣∣∣B( j)
i

∣∣∣∣
|Ai|

def
= s(bim j)

i . (15)

The basic idea of the PMC algorithm is a straightforward generalization of the procedure from Gertsbakh et. al. [23].
The SRLG PMC method is summarized in Algorithm 2, and the resulting spectra objects unbiasedness follows from
(14) and (15).

Algorithm 2: The PMC algorithm for the estimation of s(G,R) and of s(bim j)(G,R) for all 1 ≤ j ≤ n
Input: G = (V, E), R = (R1, . . . ,Rn), and a sample size N ∈ N
Output: ŝ(G,R) =

(̂
s1, . . . , ŝn

)
— unbiased estimator of the spectra object s(G,R), and

ŝ(bim j)(G,R) =
(̂
s(bim j)

1 , . . . , ŝ(bim j)
n

)
— unbiased estimator of the BIM spectra object for all 1 ≤ j ≤ n

/* initialization */

1 for i← 1 to n do
2 ŝi ← 0
3 for j← 1 to n do
4 ŝ(bim j)

i ← 0
5 end
6 end
/* The PMC main loop */

7 for t ← 1 to N do
8 Generate a permutation Π = (Π1, . . . ,Πn) uniformly at random.
9 R′ ← ∅

10 for i← 1 to n do
11 R′ ← R′ ∪ RΠi

12 if G(R′) is fully connected then
13 ŝi ← ŝi + 1
14 for j← 1 to i do
15 ŝ

(bimΠ j )
i ← ŝ

(bimΠ j )
i + 1

16 end
17 end
18 end
19 end
20 ŝ(G,R)← 1

N
(̂
s1, . . . , ŝn

)
21 for j← 1 to n do
22 ŝ(bim j)(G,R)← 1

N

(̂
s(bim j)

1 , . . . , ŝ(bim j)
n

)
23 end
24 return ŝ(G,R), and ŝ(bim j)(G,R) for all 1 ≤ j ≤ n

Algorithm 2 requires O(n2) space to maintain the spectra objects. The initialization step in lines 1-6 takes O(n2)
time, (but can be performed in O(1) time by allocating a memory block initialized with zeros via the calloc instruc-
tion). Similarly, line 20 and lines 21-23 can be performed in O(n) and O(n2) time, respectively. We next proceed with
the main PMC loop. If we ignore the connectivity verification in line 12, the loop in lines 10-18 runs in O(n2) time;
to see this, note that each ŝ(bim j)

i for 1 ≤ i, j ≤ n is updated at most once during the execution of lines 10-18.
In order to check the connectivity in line 12, we use the disjoint-set data structure which allows us to track the

number of connected components in a graph while adding its links. In each iteration of the main PMC loop, we will
need to spend O(|V | + |E|α(|E|, |V |)) time to make |E| disjoint set operations; here, α(·, ·) is the inverse Ackermann
function [41, 42]. Under our failure regime setting, for each edge, we are also required to track the number of SRLGs

12



R. Vaisman and Y. Sun / 00 (2021) 1–31 13

that enter the up state. This means that when line 11 (R′ ← R′ ∪ RΠi ), is executed, we traverse over all edges in RΠi

and check if these edges can be added to the subgraph. Therefore, the overall complexity of the loop in lines 10-18
is O(n2) + O(

∑n
i=1 |Ri|) + O(|V | + |E|α(|E|, |V |)) = O(n2 + n|E| + |V | + |E|α(|E|, |V |)). This also governs the algorithm

execution runtime and thus the overall runtime complexity is O(N × (n2 + |V | + |E|(n + α(|E|, |V |)))).
As soon as the ŝ(G,R), and the ŝ(bim j)(G,R) for all 1 ≤ j ≤ n objects are available, we can use (9) and (11) to

obtain the following estimators of the system reliability and IM.

1. The reliability estimator

r̂(G,R, p) =

n∑
i=1

(
n
i

)̂
si pi qn−i. (16)

2. The BIM estimators for 1 ≤ j ≤ n

B̂IM j =

n∑
i=1

(
n
i

)̂
s(bim j)

i pi−1qn−i −

(
n
i

)
(̂si − ŝ(bim j)

i )piqn−i−1. (17)

Example 4 (PMC algorithm for the bridge network). Table 3 summarizes all possible permutations over the bridge
network SRLGs. Ones and zeros stand for the corresponding subgraph’s connectivity and disconnectedness, respec-
tively. For example, consider the S 1 entry which is always zero; this means that a failure of two SRLGs will always
lead to network disconnection. Careful consideration of all SRLG permutations in the table shows that there is a
possibility to connect the network using two groups R1 and R2 or R1 and R3. However, the pair of groups R2 and R3
in the up state, is not sufficient for the network connectivity.

Table 3 Permutations of SRLGs of the bridge network.

π S 1 S 2 S 3 S (1)
1 S (1)

2 S (1)
3 S (2)

1 S (2)
2 S (2)

3 S (3)
1 S (3)

2 S (3)
3

π = (1, 2, 3) 0 1 1 0 1 1 0 1 1 0 0 1
π = (1, 3, 2) 0 1 1 0 1 1 0 0 1 0 1 1
π = (2, 1, 3) 0 1 1 0 1 1 0 1 1 0 0 1
π = (2, 3, 1) 0 0 1 0 0 1 0 0 1 0 0 1
π = (3, 1, 2) 0 1 1 0 1 1 0 0 1 0 1 1
π = (3, 2, 1) 0 0 1 0 0 1 0 0 1 0 0 1

Because there are only 6 possible permutations, it is possible to (exactly) derive the spectra objects from Table 3.
In particular, we have that s(G,R) = (0/6, 4/6, 6/6) = (0, 2/3, 1), (note that s(G,R) is equal to the spectra object in
(10)), s(bim1)(G,R) = (0, 4/6, 6/6) = (0, 2/3, 1), and s(bim2)(G,R) = s(bim3)(G,R) = (0, 2/6, 6/6) = (0, 1/3, 1). Using
the fact that si = |Bi|/|Ai| and that s(bim j)

i = |B
( j)
i |/|Ai|, we arrive at

|B1| =

(
3
1

)
s1 = 0, |B2| =

(
3
2

)
s2 = 2, |B2| =

(
3
3

)
s3 = 1,

∣∣∣B(1)
1

∣∣∣ =

(
3
1

)
s(bim1)

1 = 0,
∣∣∣B(1)

2

∣∣∣ =

(
3
2

)
s(bim1)

2 = 2,

∣∣∣B(1)
3

∣∣∣ =

(
3
3

)
s(bim1)

3 = 1,
∣∣∣B(2)

1

∣∣∣ =
∣∣∣B(3)

1

∣∣∣ =

(
3
1

)
s(bim2)

1 = 0,
∣∣∣B(2)

2

∣∣∣ =
∣∣∣B(3)

2

∣∣∣ =

(
3
2

)
s(bim2)

2 = 1,
∣∣∣B(2)

3

∣∣∣ =
∣∣∣B(3)

3

∣∣∣ =

(
3
3

)
s(bim2)

3 = 1.

By comparing the cardinalities of
∣∣∣∣B( j)

i

∣∣∣∣ for 1 ≤ i, j ≤ 3 with the cardinalities in Example 3, one can verify that the
PMC approach provides the same results.

When applying the PMC algorithm in practice, one should take into account two technical issues, that are discussed
next.

13
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3.2. Reliability estimation in practice
While we saw that Algorithm 2 provides unbiased estimators for reliability and IM, we should also discuss the

limitation of this method. Intuitively, Algorithm 2 will be very accurate provided that the spectra components (si

for 1 ≤ i ≤ n), are not very small. In this case, Algorithm 2 can estimate these efficiently. Otherwise, one should
resort to different approximation techniques such as importance sampling or multilevel splitting [38]. More formally,
the efficiency of Algorithm 2 for the estimation of the s(G,R) object and the corresponding reliability calculation, is
discussed in Theorem 1. In particular, Theorem 1 establishes the required conditions for the PMC Algorithm 2 to be
a fully polynomial randomized approximation scheme (FPRAS) for the reliability problem. Obtaining such a result is
very desirable for any #P problem. One can prove that a randomized algorithm is an FPRAS, if its output’s coefficient
of variation (CV) is bounded by a polynomial in the algorithm input size [43].

Theorem 1 (PMC efficiency). Let (G,R, p) be an SRLG-RI instance where |R| = n and let ŝ(G,R) =
(̂
s1, . . . , ŝn

)
be

the spectra estimator of s(G,R) = (s1, . . . , sn) obtained via PMC Algorithm 2. Finally, let r̂(G,R, p) be the reliability
estimator that was calculated using (16), for any p ∈ [0, 1]. Then, provided that the minimal non-zero component of
s(G,R) is at least equal to 1/P(n), where P(n) is a polynomial in n, it holds that

CV def
=

E
[̂
r(G,R, p)2

]
E

[̂
r(G,R, p)

]2 ≤ nP(n)2.

Proof. The proof is by bounding of the first and the second moment of the random variable r̂(G,R, p). In particular,
by combining (14) and (16), we arrive at

E
[̂
r(G,R, p)

]
= E

 n∑
i=1

(
n
i

)
S i pi qn−i

 =

n∑
i=1

(
n
i

)
E[S i] pi qn−i =

(14)

n∑
i=1

(
n
i

)
si pi qn−i = r(G,R, p). (18)

Next, we consider an upper bound for the second moment of r̂(G,R, p). Specifically, recall that S i ∼ Bernoulli(si), so
E

[
S 2

i

]
= si ≤ 1 for 1 ≤ i ≤ n. Then, it holds that

E
[̂
r(G,R, p)2

]
= E


 n∑

i=1

(
n
i

)
S i pi qn−i

2 ≤
(Jensen inequality [43])

E
n n∑

i=1

(
n
i

)2

S 2
i p2i q2(n−i)

 (19)

= n
n∑

i=1

(
n
i

)2

E
[
S 2

i

]
p2i q2(n−i) ≤

(E[S 2
i ]≤1)

n
n∑

i=1

(
n
i

)2

1 p2i · q2(n−i) = n

 n∑
i=1

(
n
i

)2

p2i q2(n−i)

 ,
Finally, let s be the minimal non zero component of s(G,R), and combine (18) and (19) to obtain

CV =
E

[̂
r(G,R, p)2

]
E

[̂
r(G,R, p)

]2 ≤

n
(∑n

i=1

(
n
i

)2
p2i q2(n−i)

)
(∑n

i=1

(
n
i

)
si pi qn−i

)2 ≤

n
(∑n

i=1

(
n
i

)2
p2i q2(n−i)

)
(∑n

i=1

(
n
i

)
s pi qn−i

)2 ≤

n
(∑n

i=1

(
n
i

)2
p2i q2(n−i)

)
s2

(∑n
i=1

(
n
i

)
pi qn−i

)2

≤

n
(∑n

i=1

(
n
i

)2
p2i q2(n−i)

)
s2

(∑n
i=1

(
n
i

)2
p2i q2(n−i)

) ≤ n
s2 ≤

(s≥1/P(n))
nP(n)2,

and thus, to complete the proof.

From the practical point of view, the rare-event issue can be resolved either by increasing the sample size N
in Algorithm 2 (which is not generally practical), or by applying more advanced variance minimization techniques.
Please see Vaisman et. al. [35] for details.

3.3. BIM estimation in practice
Our numerical evaluation in Section 4 implies that the reliability estimator (16), is very useful in practice and that

its RE shows good stability. However, we found that the BIM estimator (17) can be very unstable in the sense of
14
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its RE, and therefore, it is not advisable to apply it directly. Instead, we propose to exploit the following important
property of the BIM spectra [22], which is summarized in Theorem 2. While this result is due to Gertsbakh [22], we
failed to find a formal proof to the second part of Theorem 2, so we provide the full proof next.

Theorem 2 (Gertsbakh [22]). Let s(bim j)(G,R) =
(
s(bim j)

1 , . . . , s(bim j)
n

)
be a BIM spectra. Then, for some fixed j1 and j2

such that 1 ≤ j1 , j2 ≤ n, the following holds.

1. If for all 1 ≤ i ≤ n, s
(bim j1 )
i ≥ s

(bim j2 )
i , then we have that BIM j1 ≥ BIM j2 .

2. Suppose that 1. does not hold, and let 1 ≤ k ≤ n, be the maximal index such that s
(bim j1 )
k , s

(bim j2 )
k . Without loss

of generality, suppose that s
(bim j1 )
k > s

(bim j2 )
k holds. Then, there exists p0 ∈ [0, 1], such that BIM j1 > BIM j2 for

all p > p0.

Proof. In order to prove the first part, note that

BIM j1 − BIM j2 =

n∑
i=1

(
n
i

)
s

(bim j1 )
i pi−1qn−i −

(
n
i

) (
si − s

(bim j1 )
i

)
piqn−i−1

−

n∑
i=1

(
n
i

)
s

(bim j2 )
i pi−1qn−i −

(
n
i

) (
si − s

(bim j2 )
i

)
piqn−i−1

=

n∑
i=1

(
n
i

) (
s

(bim j1 )
i − s

(bim j2 )
i

)
pi−1qn−i −

(
n
i

) (
s

(bim j2 )
i − s

(bim j1 )
i

)
piqn−i−1

=

n∑
i=1

(
n
i

) (
qs

(bim j1 )
i − qs

(bim j2 )
i

)
pi−1qn−i−1 −

(
n
i

) (
ps

(bim j2 )
i − ps

(bim j1 )
i

)
pi−1qn−i−1

=

n∑
i=1

(
n
i

) (
s

(bim j1 )
i − s

(bim j2 )
i

)
pi−1qn−i−1,

holds. Therefore, provided that s
(bim j1 )
i ≥ s

(bim j2 )
i for all 1 ≤ i ≤ n, we arrive at

n∑
i=1

(
n
i

) s
(bim j1 )
i − s

(bim j2 )
i︸             ︷︷             ︸

≥0

 pi−1qn−i−1 = BIM j1 − BIM j2 ≥ 0⇒ BIM j1 ≥ BIM j2 .

For the second part, assume that there exists 1 ≤ k ≤ n−1, where k is the maximal index such that s
(bim j1 )
k > s

(bim j2 )
k .

Let ∆ = s
(bim j1 )
k − s

(bim j2 )
k (note that ∆ > 0), and consider the expression BIM j1 − BIM j2 . Then, it holds that

BIM j1 − BIM j2 =

k∑
i=1

(
n
i

) (
s

(bim j1 )
i − s

(bim j2 )
i

)
pi−1qn−i−1 +

n∑
i=k+1

(
n
i

) (
s

(bim j1 )
i − s

(bim j2 )
i

)
pi−1qn−i−1

︸                                          ︷︷                                          ︸
=0

=

k−1∑
i=1

(
n
i

) (
s

(bim j1 )
i − s

(bim j2 )
i

)
pi−1qn−i−1 +

(
n
k

)
∆pk−1qn−k−1

≥︸︷︷︸
s

(bim j1
)

i −s
(bim j2

)

i ≥−1

(
n
k

)
∆pk−1qn−k−1 −

k−1∑
i=1

(
n
i

)
pi−1qn−i−1 ≥ ∆pk−1qn−k−1 −

k−1∑
i=0

(
n
i

)
pi−1qn−i−1

≥ ∆pk−1qn−k−1 − nn
k−1∑
i=0

(
k − 1

i

)
pi−1qn−i−1 = ∆pk−1qn−k−1 −

nnqn−k

p

k−1∑
i=0

(
k − 1

i

)
piqk−1−i

︸                 ︷︷                 ︸
=1

= ∆pk−1qn−k−1 −
nnqn−k

p
.
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Therefore, in order to show that there exists p0, such that for any p > p0, BIM j1 > BIM j2 , it is sufficient to see that
there exists p0, such that for any p > p0, ∆pk−1qn−k−1 −

nnqn−k

p > 0. Now, it holds that

∆pk−1qn−k−1 −
nnqn−k

p
> 0 ⇐⇒

∆pkqn−k

q
> nnqn−k ⇐⇒

pk

q
>

nn

∆
⇐⇒

pk

1 − p
>

nn

∆
.

By noting that nn and ∆ are constants, and combining this with the fact that limp→1−
pk

1−p = ∞, the theorem follows.

It is important to note that Theorem 2 is not directly applicable, since we only have access to estimators of BIM
spectra components. However, Corollary 1 can be utilized to deliver statistically significant results regarding the
importance of BIM components.

Corollary 1. Suppose that s
(bim j1 )
n−1 > s

(bim j2 )
n−1 holds. Then, there exists p0 ∈ [0, 1], such that BIM j1 > BIM j2 for all

p > p0.

Proof. This corollary is an immediate consequence of part 2 of Theorem 2, since s(bim j)
n = 1 for all 1 ≤ j ≤ n.

Statistically significant results regarding the importance of BIM components can be achieved for example, by
obtaining confidence intervals on ŝ(bim j)

n−1 for all 1 ≤ j ≤ n. In addition, ANOVA-like testing machinery is available
to compare these ŝ(bim j)

n−1 s. This technique allows us to avoid the stability problems in (17), and our numerical results
show that this approach is both accurate and useful.

4. Experimental study

In this section, we focus on the performance evaluation of the proposed PMC method. For each model under
consideration, we apply the PMC algorithm and estimate both the network reliability and the IM for a range of SRLG
failure probabilities. Our experimental study shows that the PMC paradigm is very effective as compared to CMC,
and that it is scalable in practice in the sense that the algorithm is capable of dealing with real-sized network instances.
Specifically, we consider the following experiments.

1. Our first case study is the bridge network from Section 2. The availability of the corresponding analytical
solution, allows us to benchmark the accuracy of the PMC algorithm. In addition, we show the necessity of
applying Corollary 1 for an efficient estimation of important BIM components.

2. For the second case study, we consider a very structured network called the wheel graph. For this particular
topology, one can construct different sized networks and benchmark the algorithmic performance using the
available analytical solution. In order to test the performance of the proposed method when applied to larger
real-life instances, we explore wheel graphs with several hundreds of vertices, edges, and SRLGs.

3. In the third case study, we demonstrate the performance of Algorithm 2 when applied to a simulated internet
graph [44]. While analytical results are no longer available, we construct the set of SRLGs in such a way, that
highest valued BIM components will be known in advance. In addition, the purpose of this case study is to
show that the proposed method is capable of dealing with different failure regimes as discussed in Remark 1.

4. The forth case study shows that the proposed method is suitable for handling a large real-life instance. In
particular, we test the method performance on the 20 US-based service providers network. This data was
collected as part of the Internet Atlas Project [45, 46].

5. Finally, we consider the PMC algorithm performance when applied to the 20 US-based service providers net-
work while using a different network failure regime. This case study reveals a possible limitation of the PMC
algorithm, by demonstrating a scenario for which the method can fail.

The experimental setup: We implemented the PMC algorithm in C++ package called SrlgRI. The software is freely
available on the author’s website under https://people.smp.uq.edu.au/RadislavVaisman/#software. The
package was compiled using GNU g++ with full optimization for speed (utilizing the -O3 flag). We instrumented the
timing measure directly into the code and the provided research software is single-threaded. However, parallelization
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of Algorithm 2 would be relatively easy to include. All tests were executed on Intel Core i7-6920HQ CPU 2.90GHz
processor with 32GB of RAM running 64 bit Ubuntu 20.04 LTS. The PMC algorithm requires a single input pa-
rameter N — the sample size. The sample size ranges from N = 103 to N = 106 and depends on the number of
SRLG components under consideration. In addition, for each case study, we perform Nsim independent experiments
(independent runs of Algorithm 2), in order to report the corresponding estimated RE, and confidence intervals when
applicable. With a view to ensuring reproducibility, each test case was executed using a sequence of fixed seeds:
(1001, 1002, . . . , 1000 + Nsim).

Having in mind that the output of Algorithm 2 is random, we use standard accuracy measures for a simulated
experiment that outputs a random variable W. Specifically, let W be a random variable which stands for the output of
a stochastic experiment and let W1, . . . ,WNsim be independent realizations of W. Let us consider the sample mean ̂̀
such that ̂̀= N−1

sim
∑Nsim

t=1 Wt, and the sample variance σ̂2, which is given by σ̂2 = (Nsim − 1)−1 ∑Nsim
t=1 (Wt − ̂̀)2. Then,

we use the following accuracy measures.

1. When the analytical solution is available, we report the absolute error. For the estimator ̂̀of the true quantity
`, the absolute error is defined via

δabs
def
=

∣∣∣∣̂` − `∣∣∣∣
`

.

2. When we are not aware of analytical solution, we report the estimated RE, which is given by

R̂E =
σ̂/
√

Nsim̂̀ .

3. When applicable, specifically, when we would like to report the accuracy of individual spectra components, we
also report the 95% relative confidence interval (CI) of a random variable ̂̀[47]. The CI is defined via(̂

` ×

(
1 ± 2 z1−α/2

σ̂/
√

Nsim̂̀
))
,

where 1 − α/2 = 0.95, and z1−α/2 is the (1 − α/2) quantile of the standard normal distribution.

4.1. The bridge network

While the bridge network is a toy example, we include it with a view to highlighting several major ideas used in
this section. Namely, we show the importance of the stability of the R̂E, and introduce the statistical methodology
which is used to report the BIM results. For the bridge network, we set N = 1, 000 and Nsim = 100. The 95% relative
CIs for the spectra objects are as follows

ŝ(G,R) =

(
(0.0, 0.0), (0.6602, 0.6705), (1.0, 1.0)

)
, (20)

̂s
(bim1)(G,R)

ŝ(bim2)(G,R)
ŝ(bim3)(G,R)

 =

(0.0, 0.0), (0.6601, 0.6705), (1.0, 1.0)
(0.0, 0.0), (0.3277, 0.3374), (1.0, 1.0)
(0.0, 0.0), (0.3275, 0.3381), (1.0, 1.0)

 . (21)

Table 4 presents the point estimator of the bridge network unreliability r̂(G,R, q), the R̂E, and the absolute error
δabs, for various values of SRLG unreliability q. Table 4 is instructive in the sense that one can observe that the R̂E is
very stable. In particular, the R̂E does not grow when q (and r̂(G,R, q)), become very small. We would also like to
remind that it will be computationally prohibitive to estimate the network unreliability via CMC for very small values
of q (such as q = 1 × 10−20). In addition, the absolute error (which is available for this small case study), is also very
small and stable. The stability of the R̂E and the absolute error is not very surprising, since the spectra components in
(20) are very close to the analytical values obtained in Example 2.
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Table 4 The bridge network: the average unreliability estimators and the corresponding R̂Es and δabss for various values of SRLG failure
probability q using the N = 1, 000 sample size and Nsim = 100. The average CPU time for a single PMC run is 5 × 10−4 seconds.

q r̂(G,R, q) R̂E δabs

5 × 10−2 5.256 × 10−2 3.378 × 10−3 3.455 × 10−3

1 × 10−2 1.014 × 10−2 3.804 × 10−3 3.892 × 10−3

5 × 10−4 5.023 × 10−4 3.913 × 10−3 4.004 × 10−3

1 × 10−4 1.004 × 10−4 3.918 × 10−3 4.009 × 10−3

5 × 10−6 5.020 × 10−6 3.919 × 10−3 4.010 × 10−3

1 × 10−6 1.004 × 10−6 3.919 × 10−3 4.010 × 10−3

5 × 10−8 5.020 × 10−8 3.919 × 10−3 4.010 × 10−3

1 × 10−8 1.004 × 10−8 3.919 × 10−3 4.010 × 10−3

5 × 10−10 5.020 × 10−10 3.919 × 10−3 4.010 × 10−3

1 × 10−10 1.004 × 10−10 3.919 × 10−3 4.010 × 10−3

5 × 10−12 5.020 × 10−12 3.919 × 10−3 4.010 × 10−3

1 × 10−12 1.004 × 10−12 3.919 × 10−3 4.010 × 10−3

5 × 10−14 5.020 × 10−14 3.919 × 10−3 4.010 × 10−3

1 × 10−14 1.004 × 10−14 3.919 × 10−3 4.010 × 10−3

5 × 10−16 5.020 × 10−16 3.919 × 10−3 4.010 × 10−3

1 × 10−16 1.004 × 10−16 3.919 × 10−3 4.010 × 10−3

5 × 10−18 5.020 × 10−18 3.919 × 10−3 4.010 × 10−3

1 × 10−18 1.004 × 10−18 3.919 × 10−3 4.010 × 10−3

5 × 10−20 5.020 × 10−20 3.919 × 10−3 4.010 × 10−3

1 × 10−20 1.004 × 10−20 3.919 × 10−3 4.010 × 10−3

However, when we try to exploit the fact that the BIM spectra in (21) is also close to the analytical values (see
Example 4), the estimator (17) is very unstable. Table 5 shows that both the R̂E and the δabs escalate rapidly, and the
obtained BIM estimator become improper for any adequate IM analysis.

Table 5 The bridge network: average BIM estimators
(
B̂IM1, B̂IM2, and B̂IM3

)
obtained via (17), and the corresponding R̂Es and δabss for

various values of SRLG failure probability q using the N = 1, 000 sample size and Nsim = 100.

BIM1 BIM2 BIM3

q B̂IM1 R̂E δabs B̂IM2 R̂E δabs B̂IM3 R̂E δabs

5 × 10−2 0.997 1.870 × 10−4 1.900 × 10−4 0.049 0.076 2.800 × 10−2 0.050 0.069 4.420 × 10−2

1 × 10−2 0.999 3.900 × 10−5 4.000 × 10−5 0.011 0.346 1.560 × 10−1 0.012 0.298 2.370 × 10−1

5 × 10−4 1 1.970 × 10−6 1.750 × 10−6 0.002 1.917 0.320 × 101 0.003 1.271 0.482 × 101

1 × 10−4 1 3.930 × 10−7 1.000 × 10−8 0.002 2.367 1.600 × 101 0.003 1.473 2.410 × 101

5 × 10−6 1 1.970 × 10−8 2.500 × 10−11 0.002 2.507 3.200 × 102 0.002 1.531 4.820 × 102

1 × 10−6 1 3.930 × 10−9 1.000 × 10−12 0.002 2.513 1.600 × 103 0.002 1.534 2.410 × 103

5 × 10−8 1 1.970 × 10−10 0 0.002 2.515 3.200 × 104 0.002 1.534 4.820 × 104

1 × 10−8 1 3.930 × 10−11 0 0.002 2.515 1.600 × 105 0.002 1.534 2.410 × 105

5 × 10−10 1 1.970 × 10−12 0 0.002 2.515 3.200 × 106 0.002 1.534 4.820 × 106

1 × 10−10 1 3.930 × 10−13 0 0.002 2.515 1.600 × 107 0.002 1.534 2.410 × 107

5 × 10−12 1 1.970 × 10−14 0 0.002 2.515 3.200 × 108 0.002 1.534 4.820 × 108

1 × 10−12 1 3.930 × 10−15 0 0.002 2.515 1.600 × 109 0.002 1.534 2.410 × 109

5 × 10−14 1 1.970 × 10−16 0 0.002 2.515 3.200 × 1010 0.002 1.534 4.820 × 1010

1 × 10−14 1 3.930 × 10−17 0 0.002 2.515 1.600 × 1011 0.002 1.534 2.410 × 1011

5 × 10−16 1 1.920 × 10−18 0 0.002 2.515 3.200 × 1012 0.002 1.534 4.820 × 1012

1 × 10−16 1 0 0 0.002 2.515 1.600 × 1013 0.002 1.534 2.410 × 1013

5 × 10−18 1 0 0 0.002 2.515 3.200 × 1014 0.002 1.534 4.820 × 1014

1 × 10−18 1 0 0 0.002 2.515 1.600 × 1015 0.002 1.534 2.410 × 1015

5 × 10−20 1 0 0 0.002 2.515 3.200 × 1016 0.002 1.534 4.820 × 1016

1 × 10−20 1 0 0 0.002 2.515 1.600 × 1017 0.002 1.534 2.410 × 1017
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Due to the negative result in Table 5, we proceed with the application of Corollary 1. Note that a comparison of the
second column in (21) shows that ŝ(bim1)(G,R) is larger than ŝ(bim2)(G,R) and ŝ(bim3)(G,R). According to Corollary 1,
this means that R1 is the most important component. The importance of R1 is statistically significant. The latter
is formally verified by the execution of the Kruskal–Wallis one-way analysis of variance test [48]. The obtained
p− value is 1.348 × 10−43, so the null hypothesis (the medians of all groups are equal), is rejected. Figure 3 shows the
corresponding BIM results, specifically, the values of ŝ(bim j)

2 for j = 1, 2, 3.

R1 R2 R3

0.3

0.4

0.5

0.6

0.7
ŝ(

b
im

j
)

2

Figure 3: The bridge network: BIM results obtained using the N = 1, 000 sample size and Nsim = 100.

Remark 4 (Statistical significance). Though this section, we use the Kruskal–Wallis test. However, it is worth noting
that one could choose to use CIs (as in (21)), that are readily available, too.

4.2. The wheel graph

In order to benchmark the PMC algorithm performance on larger instances, and in particular to verify the accuracy
of the reliability estimation, and the applicability of Corollary 1, we consider a very structured wheel graphW(m).
The W(m) network has m vertices and 2(m − 1) edges. The central vertex v1 is connected to a ring of size m − 1.
In our case study, all edges from the central vertex belong to R1 and each edge in the ring is associated with its own
SRLG, namely, with R2, . . . ,Rm. TheW(5) graph is depicted in Figure 4.

v1

v2

v3

v4

v5

R5R2

R3 R4

R1

R1

R1

R1

Figure 4: TheW(5) wheel graph with five vertices, eight edges, and 5 SRLGs.

For a wheel graph, the network unreliability is equal to P(R1 is in the down state) = q. The latter allows bench-
marking the absolute error of the network unreliability estimator. Moreover, R1 is the most important component
regardless of the wheel size, since this is the only component whose removal will cause the network disconnection.
Next, we consider two wheel instances, the W(100) and the W(300), and execute the PMC algorithm with the
N = 1, 000 and the N = 10, 000 sample sizes. As for the bridge network example, we set the number of independent
runs to be Nsim = 100.
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4.2.1. TheW(100) graph
Table 6 summarizes the unreliability results for theW(100) graph. In particular, the table shows the stability of

both the R̂Es and the δabss. Figure 5 depicts the corresponding BIM results for the first ten components with the largest
ŝ(bim j)

99 values. There is clear evidence of the importance of R1. As expected, by increasing the sample size N from
N = 1, 000 to N = 10, 000, we can obtain a decrease in the R̂E, in the δabs (Table 6), and in the p−value (Figure 5(b)).

Table 6 TheW(100) graph: average unreliability estimators and the corresponding R̂Es and δabss for various values of SRLG failure probability
q. The average CPU time (Nsim = 100) for a single PMC run with N = 1, 000 and N = 10, 000 sample size is 0.0622 and 0.5994 seconds,
respectively.

N = 1, 000 N = 10, 000
q r̂(G,R, q) R̂E δabs r̂(G,R, q) R̂E δabs

5 × 10−2 4.932 × 10−2 1.183 × 10−2 1.357 × 10−2 5.003 × 10−2 3.744 × 10−3 5.236 × 10−4

1 × 10−2 9.704 × 10−3 2.212 × 10−2 2.961 × 10−2 1.001 × 10−2 6.451 × 10−3 1.462 × 10−3

5 × 10−4 4.799 × 10−4 3.190 × 10−2 4.024 × 10−2 4.996 × 10−4 9.865 × 10−3 8.673 × 10−4

1 × 10−4 9.592 × 10−5 3.255 × 10−2 4.085 × 10−2 9.989 × 10−5 1.009 × 10−2 1.052 × 10−3

5 × 10−6 4.795 × 10−6 3.270 × 10−2 4.099 × 10−2 4.995 × 10−6 1.014 × 10−2 1.098 × 10−3

1 × 10−6 9.590 × 10−7 3.271 × 10−2 4.100 × 10−2 9.989 × 10−7 1.014 × 10−2 1.100 × 10−3

5 × 10−8 4.795 × 10−8 3.271 × 10−2 4.100 × 10−2 4.995 × 10−8 1.014 × 10−2 1.100 × 10−3

1 × 10−8 9.590 × 10−9 3.271 × 10−2 4.100 × 10−2 9.989 × 10−9 1.014 × 10−2 1.100 × 10−3

5 × 10−10 4.795 × 10−10 3.271 × 10−2 4.100 × 10−2 4.995 × 10−10 1.014 × 10−2 1.100 × 10−3

1 × 10−10 9.590 × 10−11 3.271 × 10−2 4.100 × 10−2 9.989 × 10−11 1.014 × 10−2 1.100 × 10−3

5 × 10−12 4.795 × 10−12 3.271 × 10−2 4.100 × 10−2 4.995 × 10−12 1.014 × 10−2 1.100 × 10−3

1 × 10−12 9.590 × 10−13 3.271 × 10−2 4.100 × 10−2 9.989 × 10−13 1.014 × 10−2 1.100 × 10−3

5 × 10−14 4.795 × 10−14 3.271 × 10−2 4.100 × 10−2 4.995 × 10−14 1.014 × 10−2 1.100 × 10−3

1 × 10−14 9.590 × 10−15 3.271 × 10−2 4.100 × 10−2 9.989 × 10−15 1.014 × 10−2 1.100 × 10−3

5 × 10−16 4.795 × 10−16 3.271 × 10−2 4.100 × 10−2 4.995 × 10−16 1.014 × 10−2 1.100 × 10−3

1 × 10−16 9.590 × 10−17 3.271 × 10−2 4.100 × 10−2 9.989 × 10−17 1.014 × 10−2 1.100 × 10−3

5 × 10−18 4.795 × 10−18 3.271 × 10−2 4.100 × 10−2 4.995 × 10−18 1.014 × 10−2 1.100 × 10−3

1 × 10−18 9.590 × 10−19 3.271 × 10−2 4.100 × 10−2 9.989 × 10−19 1.014 × 10−2 1.100 × 10−3

5 × 10−20 4.795 × 10−20 3.271 × 10−2 4.100 × 10−2 4.995 × 10−20 1.014 × 10−2 1.100 × 10−3

1 × 10−20 9.590 × 10−21 3.271 × 10−2 4.100 × 10−2 9.989 × 10−21 1.014 × 10−2 1.100 × 10−3
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(a) TheW(100) graph BIM results using N = 1, 000 sample size.
The s(bim1)

99 appears to be larger than s
(bim j)
99 for 2 ≤ j ≤ 100.

The result is statistically significant, that is, the null hypothesis of
the Kruskal–Wallis test is rejected; the corresponding p − value is
6.147 × 10−24.
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(b) The W(100) graph BIM results using N = 10, 000 sample
size. The s(bim1)

99 appears to be larger than s
(bim j)
99 for 2 ≤ j ≤ 100.

The result is statistically significant, that is, the null hypothesis of
the Kruskal–Wallis test is rejected; the corresponding p − value is
8.876 × 10−29.

Figure 5: TheW(100) graph: BIM results obtained using the N = 1, 000 and the N = 10, 000 sample sizes, and Nsim = 100.

4.2.2. TheW(300) graph
Similar to theW(100) case, we proceed with theW(300) instance. Table 7 summarizes the unreliability results

for theW(300) graph. As for theW(100) network, we can see that R̂Es and δabss show stability. Figure 6 depicts the
corresponding BIM results for the first ten components with the largest ŝ(bim j)

299 values. This example is instructive in
the sense that we had to increase the sample size N from 1,000 to 10,000, in order to achieve a statistically significant
result with respect to the importance of R1. We conjecture that bigger sample size is required because of the increased
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number of SRLG components that have to be estimated, namely, 300 in theW(300) graph as compared to 100 in the
W(100) graph.

Table 7 TheW(300) graph: average unreliability estimators and the corresponding R̂Es and δabss for various values of SRLG failure probability
q. The average CPU time (Nsim = 100) for a single PMC run with N = 1, 000 and N = 10, 000 sample size is 0.3273 and 3.2976 seconds,
respectively.

N = 1, 000 N = 10, 000
q r̂(G,R, q) R̂E δabs r̂(G,R, q) R̂E δabs

5 × 10−2 5.002 × 10−2 1.323 × 10−2 3.539 × 10−4 4.991 × 10−2 4.220 × 10−3 1.750 × 10−3

1 × 10−2 1.016 × 10−2 2.295 × 10−2 1.578 × 10−2 9.991 × 10−3 9.250 × 10−3 8.694 × 10−4

5 × 10−4 5.252 × 10−4 4.862 × 10−2 5.042 × 10−2 5.145 × 10−4 1.746 × 10−2 2.905 × 10−2

1 × 10−4 1.057 × 10−4 5.165 × 10−2 5.712 × 10−2 1.031 × 10−4 1.831 × 10−2 3.139 × 10−2

5 × 10−6 5.295 × 10−6 5.242 × 10−2 5.890 × 10−2 5.160 × 10−6 1.852 × 10−2 3.197 × 10−2

1 × 10−6 1.059 × 10−6 5.245 × 10−2 5.898 × 10−2 1.032 × 10−6 1.853 × 10−2 3.199 × 10−2

5 × 10−8 5.295 × 10−8 5.246 × 10−2 5.900 × 10−2 5.160 × 10−8 1.853 × 10−2 3.200 × 10−2

1 × 10−8 1.059 × 10−8 5.246 × 10−2 5.900 × 10−2 1.032 × 10−8 1.853 × 10−2 3.200 × 10−2

5 × 10−10 5.295 × 10−10 5.246 × 10−2 5.900 × 10−2 5.160 × 10−10 1.853 × 10−2 3.200 × 10−2

1 × 10−10 1.059 × 10−10 5.246 × 10−2 5.900 × 10−2 1.032 × 10−10 1.853 × 10−2 3.200 × 10−2

5 × 10−12 5.295 × 10−12 5.246 × 10−2 5.900 × 10−2 5.160 × 10−12 1.853 × 10−2 3.200 × 10−2

1 × 10−12 1.059 × 10−12 5.246 × 10−2 5.900 × 10−2 1.032 × 10−12 1.853 × 10−2 3.200 × 10−2

5 × 10−14 5.295 × 10−14 5.246 × 10−2 5.900 × 10−2 5.160 × 10−14 1.853 × 10−2 3.200 × 10−2

1 × 10−14 1.059 × 10−14 5.246 × 10−2 5.900 × 10−2 1.032 × 10−14 1.853 × 10−2 3.200 × 10−2

5 × 10−16 5.295 × 10−16 5.246 × 10−2 5.900 × 10−2 5.160 × 10−16 1.853 × 10−2 3.200 × 10−2

1 × 10−16 1.059 × 10−16 5.246 × 10−2 5.900 × 10−2 1.032 × 10−16 1.853 × 10−2 3.200 × 10−2

5 × 10−18 5.295 × 10−18 5.246 × 10−2 5.900 × 10−2 5.160 × 10−18 1.853 × 10−2 3.200 × 10−2

1 × 10−18 1.059 × 10−18 5.246 × 10−2 5.900 × 10−2 1.032 × 10−18 1.853 × 10−2 3.200 × 10−2

5 × 10−20 5.295 × 10−20 5.246 × 10−2 5.900 × 10−2 5.160 × 10−20 1.853 × 10−2 3.200 × 10−2

1 × 10−20 1.059 × 10−20 5.246 × 10−2 5.900 × 10−2 1.032 × 10−20 1.853 × 10−2 3.200 × 10−2
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ŝ(
b
im

j
)

2
9
9

(a) TheW(300) graph BIM results using N = 1, 000 sample size. It is
not clear if the s(bim1)

299 is indeed larger than s
(bim j)
99 for 2 ≤ j ≤ 300. The

result is not statistically significant. In particular, with the N = 1, 000
sample size, we fail to reject the null hypothesis of the Kruskal–Wallis
test; the corresponding p − value is 0.5787.
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(b) The W(300) graph BIM results using N = 10, 000 sample
size. The s(bim1)

299 appears to be larger than s
(bim j)
99 for 2 ≤ j ≤ 300.

The result is statistically significant, that is, the null hypothesis of
the Kruskal–Wallis test is rejected; the corresponding p − value is
6.237 × 10−7.

Figure 6: TheW(300) graph: BIM results obtained using the N = 1, 000 and the N = 10, 000 sample sizes, and Nsim = 100.

4.3. The random internet network

In this case study, we consider a random internet graph topology [44]. The generated graph has 200 vertices, 288
edges, and 108 SRLGs. In this network, we only consider links between the so-called T and M vertices (these vertices
are transit providers), and all other edges are assumed to be reliable. We assigned 70 links to the first 3 SRLGs,
namely, to R1, R2, and R3. For each Ri (i ∈ {1, 2, 3}), 70 edges were chosen uniformly at random from the set of
288 edges. For the remaining set of SRLGs, we assign one edge to each Ri for i ∈ {4, . . . , 108}, where an edge for
Ri was selected uniformly at random from the set of 288 edges, too. We run the PMC algorithm with N = 1, 000,
N = 10, 000, and Nsim = 100. Table 8 summarizes the unreliability results. As for the bridge and the wheel case
studies, the R̂E shows stability. Figure 7 depicts the corresponding BIM results for the first ten components with
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the largest ŝ(bim j)
107 values, and one can verify that (as expected), there is clear statistically-significant evidence of the

importance of the R1, the R2 and the R3.

Table 8 The random internet network: average unreliability estimators and the corresponding R̂Es for various values of SRLG failure probability
q. The average CPU time (Nsim = 100) for a single PMC run with N = 1, 000 and N = 10, 000 sample size is 0.0973 and 0.9904 seconds,
respectively.

N = 1, 000 N = 10, 000
q r̂(G,R, q) R̂E r̂(G,R, q) R̂E
5 × 10−2 1.485 × 10−1 6.483 × 10−3 1.513 × 10−1 1.963 × 10−3

1 × 10−2 2.942 × 10−2 1.242 × 10−2 3.001 × 10−2 3.797 × 10−3

5 × 10−4 1.471 × 10−3 1.751 × 10−2 1.493 × 10−3 6.116 × 10−3

1 × 10−4 2.942 × 10−4 1.785 × 10−2 2.986 × 10−4 6.271 × 10−3

5 × 10−6 1.471 × 10−5 1.794 × 10−2 1.493 × 10−5 6.309 × 10−3

1 × 10−6 2.942 × 10−6 1.794 × 10−2 2.986 × 10−6 6.311 × 10−3

5 × 10−8 1.471 × 10−7 1.794 × 10−2 1.493 × 10−7 6.311 × 10−3

1 × 10−8 2.942 × 10−8 1.794 × 10−2 2.986 × 10−8 6.311 × 10−3

5 × 10−10 1.471 × 10−9 1.794 × 10−2 1.493 × 10−9 6.311 × 10−3

1 × 10−10 2.942 × 10−10 1.794 × 10−2 2.986 × 10−10 6.311 × 10−3

5 × 10−12 1.471 × 10−11 1.794 × 10−2 1.493 × 10−11 6.311 × 10−3

1 × 10−12 2.942 × 10−12 1.794 × 10−2 2.986 × 10−12 6.311 × 10−3

5 × 10−14 1.471 × 10−13 1.794 × 10−2 1.493 × 10−13 6.311 × 10−3

1 × 10−14 2.942 × 10−14 1.794 × 10−2 2.986 × 10−14 6.311 × 10−3

5 × 10−16 1.471 × 10−15 1.794 × 10−2 1.493 × 10−15 6.311 × 10−3

1 × 10−16 2.942 × 10−16 1.794 × 10−2 2.986 × 10−16 6.311 × 10−3

5 × 10−18 1.471 × 10−17 1.794 × 10−2 1.493 × 10−17 6.311 × 10−3

1 × 10−18 2.942 × 10−18 1.794 × 10−2 2.986 × 10−18 6.311 × 10−3

5 × 10−20 1.471 × 10−19 1.794 × 10−2 1.493 × 10−19 6.311 × 10−3

1 × 10−20 2.942 × 10−20 1.794 × 10−2 2.986 × 10−20 6.311 × 10−3
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(a) The random internet network BIM results using N = 1, 000 sample
size. The s

(bim j)
107 s for 1 ≤ j ≤ 3 appear to be larger than s

(bim j)
107 for

4 ≤ j ≤ 108. The result is statistically significant, that is, the null
hypothesis of the Kruskal–Wallis test is rejected; the corresponding
p − value is 1.337 × 10−64.
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(b) The random internet network BIM results using N = 10, 000 sam-
ple size. The s

(bim j)
107 s for 1 ≤ j ≤ 3 appear to be larger than s

(bim j)
107

for 4 ≤ j ≤ 108. The result is statistically significant, that is, the null
hypothesis of the Kruskal–Wallis test is rejected; the corresponding
p − value is 2.137 × 10−125.

Figure 7: The random internet network: BIM results obtained using the N = 1, 000 and the N = 10, 000 sample sizes, and Nsim = 100.

We proceed with the bench-marking of the PMC algorithm for different failure regimes and extensions (see Re-
mark 1).

4.3.1. The random internet network with SRLG capacity regime
Here, we use the same generated graph with 200 vertices, 288 edges, and 108 SRLGs. However, in addition, for

each SRLG, we set a capacity number, which is chosen uniformly at random between 1 and 10. It is convenient to
view the capacity as the number of fibers in a specific duct. Now, for the network to be reliable, we also require
that it will be both fully connected and utilize 99% of the available capacity, where the latter is defined as the sum
of capacities in all SRLGs that are in the up state. We run the PMC algorithm with N = 1, 000, N = 10, 000, and
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Nsim = 100. Table 9 summarizes the unreliability results for this graph. The R̂E is stable. It is also interesting to note
that the unreliability increased as compared to the random internet graph case study without the capacity constraint.
This growth in the unreliability is expected, because we have an additional constraint on the required capacity.

Figure 8 shows all (108) BIM components. This time, we identified 59 components of major importance. The list
of indices of important SRLGs is as follows: 1, 2, 3, 4, 5, 6, 9, 11, 12, 14, 15, 23, 26, 27, 28, 30, 31, 32, 33, 34, 35, 38,
39, 43, 45, 46, 47, 56, 58, 59, 60, 64, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 89, 91, 95, 96,
99, 101, 103, 104, 105, 106. One can see that under the capacity constraint setting, about half of SRLG components
are important. We conjecture that this is due to the fact that the capacity requirement was set to 99%, thus allowing a
sufficient freedom in the sense of components importance.

Table 9 The random internet network with SRLG capacity regime: average unreliability estimators and the corresponding R̂Es for various values
of SRLG failure probability q. The average CPU time (Nsim = 100) for a single PMC run with N = 1, 000 and N = 10, 000 sample size is 0.1661
and 1.5061 seconds, respectively.

N = 1, 000 N = 10, 000
q r̂(G,R, q) R̂E r̂(G,R, q) R̂E
5 × 10−2 9.793 × 10−1 1.025 × 10−4 9.794 × 10−1 2.923 × 10−5

1 × 10−2 4.750 × 10−1 1.397 × 10−3 4.763 × 10−1 4.397 × 10−4

5 × 10−4 2.905 × 10−2 2.640 × 10−3 2.922 × 10−2 8.655 × 10−4

1 × 10−4 5.852 × 10−3 2.719 × 10−3 5.886 × 10−3 8.929 × 10−4

5 × 10−6 2.931 × 10−4 2.739 × 10−3 2.948 × 10−4 8.996 × 10−4

1 × 10−6 5.863 × 10−5 2.739 × 10−3 5.897 × 10−5 8.999 × 10−4

5 × 10−8 2.931 × 10−6 2.740 × 10−3 2.948 × 10−6 8.999 × 10−4

1 × 10−8 5.863 × 10−7 2.740 × 10−3 5.897 × 10−7 8.999 × 10−4

5 × 10−10 2.931 × 10−8 2.740 × 10−3 2.948 × 10−8 8.999 × 10−4

1 × 10−10 5.863 × 10−9 2.740 × 10−3 5.897 × 10−9 8.999 × 10−4

5 × 10−12 2.931 × 10−10 2.740 × 10−3 2.948 × 10−10 8.999 × 10−4

1 × 10−12 5.863 × 10−11 2.740 × 10−3 5.897 × 10−11 8.999 × 10−4

5 × 10−14 2.931 × 10−12 2.740 × 10−3 2.948 × 10−12 8.999 × 10−4

1 × 10−14 5.863 × 10−13 2.740 × 10−3 5.897 × 10−13 8.999 × 10−4

5 × 10−16 2.931 × 10−14 2.740 × 10−3 2.948 × 10−14 8.999 × 10−4

1 × 10−16 5.863 × 10−15 2.740 × 10−3 5.897 × 10−15 8.999 × 10−4

5 × 10−18 2.931 × 10−16 2.740 × 10−3 2.948 × 10−16 8.999 × 10−4

1 × 10−18 5.863 × 10−17 2.740 × 10−3 5.897 × 10−17 8.999 × 10−4

5 × 10−20 2.931 × 10−18 2.740 × 10−3 2.948 × 10−18 8.999 × 10−4

1 × 10−20 5.863 × 10−19 2.740 × 10−3 5.897 × 10−19 8.999 × 10−4
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(a) The random internet network with SRLG capacity regime BIM
results using N = 1, 000 sample size. About half of s

(bim j)
107 s appear to

be more important than the others. The result is statistically significant,
that is, the null hypothesis of the Kruskal–Wallis test is rejected; the
corresponding p − value is 2.459 × 10−137.
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(b) The random internet network with SRLG capacity regime BIM
results using N = 10, 000 sample size. About half of s

(bim j)
107 s appear

to be more important than the others. The result is statistically signifi-
cant, that is, the null hypothesis of the Kruskal–Wallis test is rejected;
the corresponding p − value is 0.

Figure 8: The random internet network with SRLG capacity regime: BIM results obtained using the N = 1, 000 and the N = 10, 000 sample sizes,
and Nsim = 100.
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4.3.2. The random internet network with SRLG capacities and partial connectivity regime
Again, we utilize the same randomly generated internet network with 200 vertices, 288 edges, and 108 SRLGs.

As in the previous example, for each SRLG, the capacity number is chosen uniformly at random from the {1, . . . , 10}
set. In addition, we would like to benchmark the partial connectivity regime. Under this regime, for the network to be
in the up state, we require that 1) the network utilizes 80% of the available capacity, and 2) at least 92.5% of vertices
are connected. In other words, we allow partial connectivity. Table 10 summarizes the unreliability results for this
graph. The R̂E shows stability and due to the relaxed requirement of the partial connectivity, the system unreliability
experience a dramatic decrease. Figure 9 shows all BIM components. However, for both the N = 1, 000 and the
N = 10, 000 sample size, we fail to identify the set of most significant SRLGs.

Table 10 The random internet network with SRLG capacities and partial connectivity regime: average unreliability estimators and the
corresponding R̂Es for various values of SRLG failure probability q. The average CPU time (Nsim = 100) for a single PMC run with N = 1, 000
and N = 10, 000 sample size is 0.1304 and 1.3182 seconds, respectively.

N = 1, 000 N = 10, 000
q r̂(G,R, q) R̂E r̂(G,R, q) R̂E
5 × 10−2 2.296 × 10−2 1.449 × 10−2 2.337 × 10−2 4.675 × 10−3

1 × 10−2 9.782 × 10−4 4.591 × 10−2 9.763 × 10−4 1.240 × 10−2

5 × 10−4 2.562 × 10−6 7.225 × 10−2 2.453 × 10−6 2.296 × 10−2

1 × 10−4 1.028 × 10−7 7.392 × 10−2 9.811 × 10−8 2.371 × 10−2

5 × 10−6 2.571 × 10−10 7.433 × 10−2 2.453 × 10−10 2.390 × 10−2

1 × 10−6 1.028 × 10−11 7.435 × 10−2 9.811 × 10−12 2.391 × 10−2

5 × 10−8 2.571 × 10−14 7.435 × 10−2 2.453 × 10−14 2.391 × 10−2

1 × 10−8 1.028 × 10−15 7.435 × 10−2 9.811 × 10−16 2.391 × 10−2

5 × 10−10 2.571 × 10−18 7.435 × 10−2 2.453 × 10−18 2.391 × 10−2

1 × 10−10 1.028 × 10−19 7.435 × 10−2 9.811 × 10−20 2.391 × 10−2

5 × 10−12 2.571 × 10−22 7.435 × 10−2 2.453 × 10−22 2.391 × 10−2

1 × 10−12 1.028 × 10−23 7.435 × 10−2 9.811 × 10−24 2.391 × 10−2

5 × 10−14 2.571 × 10−26 7.435 × 10−2 2.453 × 10−26 2.391 × 10−2

1 × 10−14 1.028 × 10−27 7.435 × 10−2 9.811 × 10−28 2.391 × 10−2

5 × 10−16 2.571 × 10−30 7.435 × 10−2 2.453 × 10−30 2.391 × 10−2

1 × 10−16 1.028 × 10−31 7.435 × 10−2 9.811 × 10−32 2.391 × 10−2

5 × 10−18 2.571 × 10−34 7.435 × 10−2 2.453 × 10−34 2.391 × 10−2

1 × 10−18 1.028 × 10−35 7.435 × 10−2 9.811 × 10−36 2.391 × 10−2

5 × 10−20 2.571 × 10−38 7.435 × 10−2 2.453 × 10−38 2.391 × 10−2

1 × 10−20 1.028 × 10−39 7.435 × 10−2 9.811 × 10−40 2.391 × 10−2
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(a) The random internet network with SRLG capacities and partial
connectivity regime BIM results using N = 1, 000 sample size. It is not
clear if there exist more important components. Specifically, we fail to
reject the null hypothesis of the Kruskal–Wallis test; the corresponding
p − value is 0.148.
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(b) The random internet network with SRLG capacities and partial
connectivity regime BIM results using N = 10, 000 sample size. It
is not clear if there exist more important components. Specifically,
we fail to reject the null hypothesis of the Kruskal–Wallis test; the
corresponding p − value is 0.4099.

Figure 9: The random internet network with SRLG capacities and partial connectivity regime: BIM results obtained using the N = 1, 000 and the
N = 10, 000 sample sizes, and Nsim = 100.

In order to verify the result in Figure 9, we executed the PMC algorithm with N = 100, 000 and N = 1, 000, 000
sample sizes, but failed to identify the most important components, too. We believe that in this case, it happens
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because there is a significant amount of freedom due to the partial connectivity constraint. The average CPU time for
a single PMC run with N = 100, 000 and N = 1, 000, 000 sample size is 12.818 and 123.34 seconds, respectively.
Figure 10 depicts the corresponding results.
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(a) The random internet graph (with capacities and partial connectiv-
ity) BIM results using N = 100, 000 sample size. It is not clear if there
exist more important components. Specifically, we fail to reject the
null hypothesis of the Kruskal–Wallis test; the corresponding p−value
is 0.839.
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(b) The random internet graph (with capacities and partial connec-
tivity) BIM results using N = 1, 000, 000 sample size. It is not clear
if there exist more important components. Specifically, we fail to re-
ject the null hypothesis of the Kruskal–Wallis test; the corresponding
p − value is 0.1378.

Figure 10: The random internet network with SRLG capacities and partial connectivity regime: BIM results obtained using the N = 100, 000 and
the N = 1, 000, 000, sample sizes, and Nsim = 100.

We proceed with the numerical evaluation of the PMC algorithm on the large real-life network.

4.4. The InterTubes network
In this case study, we benchmark the method performance on the 20 US-based service providers network from

the Internet Atlas Data Repository http://internetatlas.org [45, 46]. This is a large real-life instance of US
long-haul fiber-optic network with 273 vertices, 542 edges, and 542 SRLGs. Unfortunately, the sensitivity of this data
does not allow us to share it. However, the data can be obtained by contacting the Internet Atlas Data Repository. We
execute the PMC algorithm with the N = 1, 000, and the N = 10, 000 sample sizes, and Nsim = 100. The N = 1, 000,
and the N = 10, 000 sample sizes are still sufficient for the R̂E stability as indicated in Table 11.

Table 11 The InterTubes network: average unreliability estimators and the corresponding R̂Es for various values of SRLG failure probability q.
The average CPU time (Nsim = 100) for a single PMC run with N = 1, 000 and N = 10, 000 sample size is 0.5685 and 5.5304 seconds,
respectively.

N = 1, 000 N = 10, 000
q r̂(G,R, q) R̂E r̂(G,R, q) R̂E
5 × 10−2 6.333 × 10−1 2.076 × 10−3 6.306 × 10−1 6.506 × 10−4

1 × 10−2 1.356 × 10−1 6.418 × 10−3 1.344 × 10−1 2.213 × 10−3

5 × 10−4 6.608 × 10−3 1.795 × 10−2 6.513 × 10−3 5.338 × 10−3

1 × 10−4 1.318 × 10−3 2.021 × 10−2 1.301 × 10−3 5.981 × 10−3

5 × 10−6 6.588 × 10−5 2.083 × 10−2 6.502 × 10−5 6.162 × 10−3

1 × 10−6 1.318 × 10−5 2.086 × 10−2 1.300 × 10−5 6.170 × 10−3

5 × 10−8 6.588 × 10−7 2.087 × 10−2 6.502 × 10−7 6.172 × 10−3

1 × 10−8 1.318 × 10−7 2.087 × 10−2 1.300 × 10−7 6.172 × 10−3

5 × 10−10 6.588 × 10−9 2.087 × 10−2 6.502 × 10−9 6.172 × 10−3

1 × 10−10 1.318 × 10−9 2.087 × 10−2 1.300 × 10−9 6.172 × 10−3

5 × 10−12 6.588 × 10−11 2.087 × 10−2 6.502 × 10−11 6.172 × 10−3

1 × 10−12 1.318 × 10−11 2.087 × 10−2 1.300 × 10−11 6.172 × 10−3

5 × 10−14 6.588 × 10−13 2.087 × 10−2 6.502 × 10−13 6.172 × 10−3

1 × 10−14 1.318 × 10−13 2.087 × 10−2 1.300 × 10−13 6.172 × 10−3

5 × 10−16 6.588 × 10−15 2.087 × 10−2 6.502 × 10−15 6.172 × 10−3

1 × 10−16 1.318 × 10−15 2.087 × 10−2 1.300 × 10−15 6.172 × 10−3

5 × 10−18 6.588 × 10−17 2.087 × 10−2 6.502 × 10−17 6.172 × 10−3

1 × 10−18 1.318 × 10−17 2.087 × 10−2 1.300 × 10−17 6.172 × 10−3

5 × 10−20 6.588 × 10−19 2.087 × 10−2 6.502 × 10−19 6.172 × 10−3

1 × 10−20 1.318 × 10−19 2.087 × 10−2 1.300 × 10−19 6.172 × 10−3
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The algorithm manages to reveal the set of important SRLG components. The list of these SRLG indices is:

I = {55, 75, 99, 103, 141, 225, 289, 413, 419, 434, 469, 499, 529}.

When trying to identify these components, we failed to obtain a statistically significant result with N = 1, 000 sample
size. Nevertheless, the N = 10, 000 sample size was sufficient for this purpose. In order to verify the importance
results, we also run the PMC algorithm with N = 100, 000 and N = 1, 000, 000 sample sizes, too. The average
CPU time for a single PMC run with N = 100, 000 and N = 1, 000, 000 sample size is 54.192 and 528.63 seconds,
respectively. Figure 11 depicts the corresponding results of the first twenty components with the largest ŝ(bim j)

541 values.
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(a) The InterTubes network graph BIM results using N = 1, 000 sam-
ple size. We fail to reject the null hypothesis of the Kruskal–Wallis
test; the corresponding p − value is 1.
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(b) The InterTubes network graph BIM results using N = 10, 000
sample size. The s

(bim j)
541 s for j ∈ I appear to be larger than s

(bim j)
541 for

j ∈ {1, . . . , 542} \ I. The result is statistically significant, that is, the
null hypothesis of the Kruskal–Wallis test is rejected; the correspond-
ing p − value is 1.748 × 10−84.
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(c) The InterTubes network graph BIM results using N = 100, 000
sample size. The s

(bim j)
541 s for j ∈ I appear to be larger than s

(bim j)
541 for

j ∈ {1, . . . , 542}\I. The result is statistically significant, that is, the null
hypothesis of the Kruskal–Wallis test is rejected; the corresponding
p − value is about 0 (less than 1.748 × 10−84).
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(d) The InterTubes network graph BIM results using N = 1, 000, 000
sample size. The s

(bim j)
541 s for j ∈ I appear to be larger than s

(bim j)
541 for

j ∈ {1, . . . , 542} \ I. The result is statistically significant, that is, the
null hypothesis of the Kruskal–Wallis test is rejected; the correspond-
ing p − value is about 0 (less than 1.748 × 10−84).

Figure 11: The InterTubes network: BIM results obtained using the N = 1, 000, the N = 10, 000, the N = 100, 000 and the N = 1, 000, 000, sample
sizes, and Nsim = 100.

4.4.1. The InterTubes network with SRLG capacity regime
In order to test different failure regimes, we consider the InterTubes network again. The original data contains in-

formation about the number of fibers in each SRLG. Similar to the example in Section 4.3.1, we set the minimal capac-
ity requirement to be 99%, and oblige the full connectivity. We expect that the system reliability will decrease, since
there is a constraint on the minimal capacity of available fibers. We execute the PMC algorithm with the N = 1, 000,
and the N = 10, 000 sample sizes, and Nsim = 100. As indicated in Table 12, we still enjoy the R̂E stability. It is
interesting to note that the number of important components grows in this case. Specifically, the set of indices of im-
portant BIMs is now: Icap = {6, 55, 59, 75, 82, 86, 99, 103, 117, 128, 141, 225, 289, 404, 413, 419, 434, 469, 499, 529}.
As before, we managed to get a statistically significant result with N = 10, 000, but not with N = 1, 000 sample
size. In order to verify this, we also run the experiment with N = 100, 000 and N = 1, 000, 000 sample sizes. The
average CPU time for a single PMC run with N = 100, 000 and N = 1, 000, 000 sample size is 66.082 and 676.96
seconds, respectively. For all experiments with different sample sizes, we get the same set of the most important BIM
components. See Figure 12, which depicts the corresponding BIM results for the first twenty five components with
the largest ŝ(bim j)

541 values.
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Table 12 The InterTubes network with SRLG capacity regime: average unreliability estimators and the corresponding R̂Es for various values of
SRLG failure probability q. The average CPU time (Nsim = 100) for a single PMC run with N = 1, 000 and N = 10, 000 sample size is 0.6106 and
6.1561 seconds, respectively.

N = 1, 000 N = 10, 000
q r̂(G,R, q) R̂E r̂(G,R, q) R̂E
5 × 10−2 9.994 × 10−1 2.029 × 10−5 9.994 × 10−1 7.216 × 10−6

1 × 10−2 4.981 × 10−1 2.052 × 10−3 4.982 × 10−1 7.010 × 10−4

5 × 10−4 1.186 × 10−2 1.218 × 10−2 1.175 × 10−2 3.856 × 10−3

1 × 10−4 2.104 × 10−3 1.499 × 10−2 2.075 × 10−3 4.738 × 10−3

5 × 10−6 1.019 × 10−4 1.587 × 10−2 1.003 × 10−4 5.015 × 10−3

1 × 10−6 2.034 × 10−5 1.591 × 10−2 2.004 × 10−5 5.027 × 10−3

5 × 10−8 1.017 × 10−6 1.592 × 10−2 1.002 × 10−6 5.030 × 10−3

1 × 10−8 2.034 × 10−7 1.592 × 10−2 2.003 × 10−7 5.030 × 10−3

5 × 10−10 1.017 × 10−8 1.592 × 10−2 1.002 × 10−8 5.030 × 10−3

1 × 10−10 2.034 × 10−9 1.592 × 10−2 2.003 × 10−9 5.030 × 10−3

5 × 10−12 1.017 × 10−10 1.592 × 10−2 1.002 × 10−10 5.030 × 10−3

1 × 10−12 2.034 × 10−11 1.592 × 10−2 2.003 × 10−11 5.030 × 10−3

5 × 10−14 1.017 × 10−12 1.592 × 10−2 1.002 × 10−12 5.030 × 10−3

1 × 10−14 2.034 × 10−13 1.592 × 10−2 2.003 × 10−13 5.030 × 10−3

5 × 10−16 1.017 × 10−14 1.592 × 10−2 1.002 × 10−14 5.030 × 10−3

1 × 10−16 2.034 × 10−15 1.592 × 10−2 2.003 × 10−15 5.030 × 10−3

5 × 10−18 1.017 × 10−16 1.592 × 10−2 1.002 × 10−16 5.030 × 10−3

1 × 10−18 2.034 × 10−17 1.592 × 10−2 2.003 × 10−17 5.030 × 10−3

5 × 10−20 1.017 × 10−18 1.592 × 10−2 1.002 × 10−18 5.030 × 10−3

1 × 10−20 2.034 × 10−19 1.592 × 10−2 2.003 × 10−19 5.030 × 10−3
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(a) The InterTubes network graph with capacities BIM results using
N = 1, 000 sample size. We fail to reject the null hypothesis of the
Kruskal–Wallis test; the corresponding p − value is 1.
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(b) The InterTubes network graph (with capacities) BIM results using
N = 10, 000 sample size. The s

(bim j)
541 s for j ∈ Icap appear to be

larger than s
(bim j)
541 for j ∈ {1, . . . , 542} \ Icap. The result is statistically

significant, that is, the null hypothesis of the Kruskal–Wallis test is
rejected; the corresponding p − value is 2.774 × 10−125.
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(c) The InterTubes network graph (with capacities) BIM results using
N = 100, 000 sample size. The s

(bim j)
541 s for j ∈ Icap appear to be larger

than s
(bim j)
541 for j ∈ {1, . . . , 542} \ Icap. The result is statistically signif-

icant, that is, the null hypothesis of the Kruskal–Wallis test is rejected;
the corresponding p − value is about 0 (less then 2.774 × 10−125).
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(d) The InterTubes network graph (with capacities) BIM results us-
ing N = 1, 000, 000 sample size. The s

(bim j)
541 s for j ∈ Icap appear to

be larger than s
(bim j)
541 for j ∈ {1, . . . , 542} \ Icap. The result is statis-

tically significant, that is, the null hypothesis of the Kruskal–Wallis
test is rejected; the corresponding p − value is about 0 (less then
2.774 × 10−125).

Figure 12: The InterTubes network with SRLG capacity regime: BIM results obtained using the N = 1, 000, the N = 10, 000, the N = 100, 000,
and the N = 1, 000, 000 sample sizes, and Nsim = 100.
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Finally, we consider an example, for which, the PMC algorithm fails.

4.5. The InterTubes network with SRLG capacities and partial connectivity regime

Again, we utilize the InterTubes network with capacity constraint set to 80%, and similar to Section 4.3.2, we
allow operating within partial connectivity of 92.5%. We run the PMC algorithm with N = 1, 000, N = 10, 000,
N = 100, 000, and N = 1, 000, 000 sample sizes, where the average CPU time for a single PMC run is 0.6292, 6.2366,
62.571, and 630.41 seconds, respectively. However, for this case study, the R̂E of the reliability estimator is not stable.
Figure 13 shows a typical behavior of the reliability estimator and the corresponding R̂E. The problem is that there
exist rare events in spectra components, and these cannot be adequately estimated with PMC (see Section 3.2). These
components should be estimated via advanced variance minimization techniques, namely, using importance sampling
or multilevel splitting approach. For a detailed discussion, we refer to Vaisman et. al. [35]. Naturally, enabling the
PMC algorithm to handle small spectra components is an important direction of the future research.
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Figure 13: The InterTubes network with SRLG capacities and partial connectivity regime: a typical behavior of unreliability estimators and the
corresponding R̂Es for various values of SRLG failure probability q with the N = 100, 000 sample size.

5. Conclusion

In this paper, we introduced a computationally efficient method which is suitable for the analyses of reliability and
importance measure of complex real-life networks under the shared risk link group failure scenario. The proposed
approach is both theoretically and computationally sound. In particular, we showed that the Permutation Monte Carlo
method is easy to implement and that it is very useful for assessing system reliability and importance measure in the
sense that it can handle real-life problem instances. We also showed that a statistical approach for handling network
importance measure can resolve the problem of the corresponding estimator instability. One of the most pivotal
limitations of the proposed method is that it is not suitable for handling a scenario in which the failure probability of
each shared risk link group component is not the same. While several procedures for this setting are available, they do
not scale well for large problems. In addition, the Permutation Monte Carlo algorithm is not suitable for an adequate
estimation of spectra that involve extremely small components. In this case, one needs to resort to different variance
minimization methods such as importance sampling and multilevel splitting. However, when applying such methods,
we need to be aware of the corresponding scale issues since these algorithms are generally more computationally
intensive. As for the future research, we believe that the following directions are of interest.
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1. It is important from both the theoretical and practical points of view, to identify classes of networks for which the
spectra approach is a Fully Polynomial Randomized Approximation Scheme. Namely, given specific network
topology, the task is to present an analysis in the spirit of Theorem 1, for both the reliability and the importance
measure estimators.

2. In this paper, we used an ANOVA-like test to identify the set of important components. While this approach
proves to be useful in practice, it has the limitation that it only considers the last spectra component (which
is not equal to 1). We believe that it would be important to examine a more refined statistical framework for
identifying important components. Such framework will involve a multiple hypothesis testing and consider all
spectra components.

3. While in this paper we only handle shared risk link groups, it is straightforward to extend the work to the setting
of shared risk vertices in optical mesh networks and shared risk equipment with multi-port network within
vertex groups. The spectra invariant and the corresponding Permutation Monte Carlo machinery remains valid,
and these extensions are of great practical importance.

4. We showed several computational experiments that involve different network failure regimes. However, it is
of interest to perform an extensive test of the robustness of the proposed algorithmic method under additional
important failure regime settings.

5. This is of great interest to extend the spectra ideas beyond the reliability context. In this paper, we considered
a graph connectivity function, which is just a special case of a general Boolean function. The application of
the proposed method to general Boolean functions in different domains is a very promising research direction.
However, for a general Boolean function, one might require a redefinition of the corresponding spectra object
and in particular theAis and the Bis sets (please see the beginning of Section 3).

6. Finally, while we provide a single-threaded implementation of the Permutation Monte Carlo algorithm, from
the practical point of view, it would be of great interest to develop a parallel software implementation that
is capable of running on multiple CPUs or a GPU. Since the Permutation Monte Carlo algorithm is easy to
parallelize, the corresponding task is both feasible and beneficial for the analysis of various networks (such as
optical communication networks, transportation networks, power grids, etc.), with many shared risk link groups
and a large number of vertices and links. Such software will allow practitioners to handle even larger real-life
network instances with several thousands of vertices, edges, and shred risk groups.
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