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ABSTRACT
Data normality is a typical assumption when performing confirmatory factor analy-
sis. However, always using confirmatory factor analysis under the normally assump-
tion will often lead to poor model fit in real-world applications. In this work, we
construct an efficient sampler for a robust Bayesian confirmation factor analysis
by utilizing the Student’s t distribution and provide a novel way to calculate the
corresponding marginal likelihood. We demonstrate that the proposed strategy is
both computationally efficient and performs favorably when compared to standard
approaches that rely on the normality assumption. Finally, we provide a research
toolkit for robust Bayesian confirmatory factor analysis and model comparison.
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1. Introduction

Confirmatory factor analysis (CFA) is a commonly used technique to test a theoret-
ically informed explanation for the association between observed variables. Joreskog
(1969) introduced a general approach for performing CFA inference using maximum
likelihood. Numerous scientific domains, including social science, psychology, medicine,
health science, engineering, and many more, utilize CFA (Depaoli, 2021; Lawal et
al., 2020; Lesia, Aigbavboa, & Thwala, 2024; Shao, Elahi Shirvan, & Alamer, 2022;
Sureshchandar, 2023).The main value of CFA is that it enables the empirical testing
of theories in a way that aligns with the hypothetico-deductive approach of scientific
inquiry (Haig, 2005, 2018). Confirmatory factor analysis, in other words, tests whether
observed data conflict with a theory.

Despite the importance of CFA, its application can be limited due to its dependence
on the assumption of data normality. This is assumption is problematic as real-world
data do not always come from normal distributions. Consequently, if CFA is used
blindly, always using the assumption of normality, the analysis may be compromised
and incorrect results and conclusions may be drawn. This work addresses the normality
problem by presenting a robust Bayesian CFA analysis method that can be used for
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analysis, with the assumption of normally distributed data. In order to accomplish this,
we renounce the normalcy assumption and instead, introduce an approach using the
more robust Student’s t distribution (Tong & Zhang, 2020). For example, extending
the use of confirmatory factor analysis to account for non-normality can significantly
enhance their applicability in most areas of agriculture research. In life and biological
sciences, commonly observed genomics or phenomics data often deviates from the
normal distribution. Examples include measurements of plant phenotypic traits such
as leaf nitrogen concentration or time to flowering stages (Stroup, 2015). By allowing
a Student’s t distribution error assumption into CFA, researchers can better handle
and understand these non-normally distributed data, providing a more robust and
adequate analysis. This approach allows for more reliable validation of theoretical
concepts established for complex variables for this example, say water or nutrient
use efficiencies from observable data, ultimately improving the understanding of the
underpinning biological processes.

Understanding the connection between data variables, both observable and latent,
is the primary goal of the CFA. For instance, one may wish to know how well the
observed response to each mental health survey item represents a symptom of anxiety
condition (here, the anxiety level is assumed to be unobserved). In other words, CFA
quantifies the indirect link between latent and observable variables, where the observ-
able data is measured, for example, through survey questions. A crucial component
that needs to be considered is a factor loading matrix, which is a set of numerical
quantities that measure the degree to which observable variables and latent variables
correspond. As soon as factor loadings are available (through a statistical inference
procedure), the researcher can determine which factor loadings exhibit connections
that are statistically significant. For instance, we may establish that factor loadings
higher than a given threshold, for example 0.8, are appropriate for evaluating a par-
ticular latent factor. Moreover, if the entire survey, or, a majority of survey questions
have factor loadings that are higher than this threshold, we can conclude that the
observed data are consistent with the theorised latent factors. For an extensive CFA
overview, we refer to Depaoli (2021); Roos & Bauldry (2022) and Harrington (2009).

Under the CFA setting, one can perform inference using maximum likelihood (ML),
generalized least squares (GLS), or Bayesian approach (Browne, 1973, 1984; Depaoli,
2021). Both the GLS and the ML methods, in general, operate under the presumption
that the observed data is derived from multivariate normal distributions. In other
words, the data is assumed to be normally distributed. Indeed, these estimators exhibit
good qualities under the normality assumption. For instance, it is possible to prove
that the ML estimator is asymptotically identical to the “best” GLS estimator (Lee,
2007). Because the normality assumption is restrictive, asymptotically distribution-
free methods can be used when the observed data is still assumed to be independent
and identically distributed, but, the multivariate normality assumption is discarded
(Browne, 1984).

In this work, we focus on the Bayesian inference task, which offers a number of
benefits over traditional estimation techniques, particularly when compared to GLS
and ML methods (Asparouhov, Muthén, & Morin, 2015). The benefit of the Bayesian
approach applied to latent variables models, including the CFA, are highlighted by
Lee (2007). First, the Bayesian setup makes it possible to include important prior
information, offer the posterior distribution’s full characterization of the relevant pa-
rameters, and produce superior outcomes with smaller data sizes. The application of
the Bayesian approach began to gain traction in social sciences. For instance, Jack-
man (2009) states that “Bayesian inference is straightforward and direct” when the
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posterior probability statement in Bayesian analysis is used. To be more precise, the
Bayesian paradigm takes into account the characterization of existing knowledge fol-
lowing the data observation. Lastly, compared to the classical (frequentist) inference
techniques, the posterior distribution offers a much more natural way to examine
essential inference summaries such as confidence intervals through means, standard
deviations, and other helpful statistics.

Assuming that the research data is not necessarily normally distributed (a common
scenario in survey data (Cain, Zhang, & Yuan, 2017)), and may or may not contain
outliers, the main focus of this study is the introduction of a robust Bayesian esti-
mation procedure of the corresponding CFA model including model comparison via
Bayes factors (Gelman & Rubin, 1992). No prior checks for normality or the pres-
ence of outliers are required when using the suggested model. To address the above
challenge, we suggest to replace the normal (Gaussian) error term in the CFA model
with the error term that follows the Student’s t distribution. We show that the pro-
posed Bayesian inference procedure can handle the error term distribution substitution
rather directly, and that the new CFA model will be less influenced by outliers (see
for example (Tong & Zhang, 2020)). The derivation of an efficient sampling scheme
from the relevant posterior distribution presents the main challenge. In this work, we
provide an effective Gibbs (Gelman, Carlin, Stern, & Rubin, 2003) sampler approach
that can handle the CFA model with the Student’s t distribution error term. This pro-
cess allows to obtain accurate estimators of key parameters, such as the factor loading
coefficients and the accompanied confidence intervals. The study makes the following
specific contributions.

(1) First, we provide an efficient Gibbs sampler construction method for the Stu-
dent’s t distribution error term setup. This allows to perform robust Bayesian
inference under the CFA setting.

(2) Our second contribution is the development of an effective way to calculate the
corresponding marginal likelihood. Numerical evaluation shows that the pro-
posed importance sampling estimator (Rubinstein, Ridder, & Vaisman, 2014)
has a small relative error (Rubino & Tuffin, 2009) and thus, a relatively modest
number of samples is sufficient for providing reliable estimates of the marginal
likelihood. Thus, our estimator opens the way for fast and reliable model com-
parison using Bayes factors.

(3) Finally, we offer a research R package that computes marginal likelihood esti-
mators and implements both the normal CFA (nCFA) and the Student’s t CFA
(tCFA) models. Since the package was written in C++, the software is computa-
tionally efficient and can handle data sets of a reasonable size. We believe that
practitioners can benefit from this package.

To conclude, we propose a robust approach for Bayesian CFA analysis. Our experi-
mental research indicates that the tCFA model can offer a considerable advantage over
the traditional nCFA model; for this reason, we believe that tCFA should be taken
into account in practical situations.

The structure of this document is as follows. We explicitly define the CFA problem
and provide a brief description of the appropriate conjugate Bayesian analysis for the
nCFA model in Section 2. In Section 3, we demonstrate how the Markov Chain Monte
Carlo (MCMC) sampler for the nCFA model, can be extended to handle the Student’s
t distribution setting, hence eliminating the need for the data normality assumption.
Section 4 shows how one can construct a simple importance sampling estimator for
marginal likelihood calculation. An experimental investigation that shows how well the
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suggested methods work with both synthetic and real-world data examples is presented
in Section 5. Finally, we conclude with Section 6, which provides a summary of our
findings and potential avenues for further research.

2. The nCFA — Bayesian CFA under the data normality assumption

We consider the CFA model

yi = Λωi + ϵi, (1)

where i = 1, . . . , n is the number of observations, y = (y1, . . . ,yn) is the whole observ-
able data, where yi = (yi,1, . . . , yi,p)

⊤. Similarly, ω = (ω1, . . . ,ωn) is the latent data,
where ωi = (ωi,1, . . . , ωi,q)

⊤, and ϵ = (ϵ1, . . . , ϵn) is the measurement error, where
ϵi = (ϵi,1, . . . , ϵi,p)

⊤. In this manuscript, we denote the factor loading matrix by Λ =
(λk,j)1≤k≤p, 1≤j≤q. We further assume that for all 1 ≤ i ≤ n, ωi and ϵi follow a multi-
variate normal distribution. Specifically, we set ωi ∼ MVN(0,Φ) and ϵi ∼ MVN(0,Ψϵ),
where Φ is a q × q general covariance matrix, and Ψϵ = diag(ψ1, . . . , ψp) is a diag-
onal covariance matrix. The probability distributions utilized in this manuscript are
described in Section 1 of the Online Supplementary Materials record. Since ϵi has the
multivariate Gaussian distribution, we proclaim this model to pursue the normality
assumption.

Following (Depaoli, 2021; Lee, 2007; Lee & Song, 2012), consider the collection
of conjugate prior distributions for the set of parameters of interest, namely, for
(Λ,Φ,Ψϵ,ω). Specifically, let

λk,j ∼ N(0, σ2k,j) for k = 1, . . . , p and j = 1, . . . , q, (2)

Φ ∼ IW(A, a),

ψk ∼ IG(αk, βk) for k = 1, . . . , p,

and, to ensure identifiability, we fix one of the factor loadings (in each column of
the factor loading matrix), to a constant value of 1. The sampling from the posterior
distribution

p(Λ,Φ,Ψϵ,ω|y) =
n∏
i=1

p(Λ,Φ,Ψϵ,ωi|yi), (3)

can be performed efficiently via Gibbs sampler (Gilks, Richardson, & Spiegelhalter,
1996). Specifically, from (2) and (3), it can be shown (see for example (Lee, 2007), or,
consider a more general case in Section 3 of this manuscript), that:

λk,j |y,Λ−λk,j
,Φ,Ψϵ,ω ∼ N

(
σ2

(
n∑
i=1

ωi,j(yi,k −
∑q

l=1 λklωil1{l ̸=j})

ψk

)
, σ2

)
, (4)

were Λ−λk,j
is the set of all elements of Λ except of λk,j and

σ2 =

(
1

σ2k,j
+

n∑
i=1

ω2
i,j

ψk

)−1

for k = 1, . . . , p and j = 1, . . . , q,
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Φ|y,Λ,Ψϵ,ω ∼ IW
(
A+ ω⊤ω, a+ n

)
,

ψk|y,Λ,Φ,ω ∼ IG

(
0.5n+ αk, βk +

1

2

n∑
i=1

(yi,k −Λkωi)
2

)
for k = 1, . . . , p,

were Λk is the kth row of Λ,

ωi|y,Λ,Φ,Ψϵ ∼ MVN
(
Σ′(Λ⊤Ψ−1

ϵ yi),Σ
′
)
,

were Σ′ =
(
Φ−1 +Λ⊤Ψ−1

ϵ Λ
)−1

for 1 ≤ i ≤ n.

That is, we conclude that the set of conditional distributions (4) can be readily used
for efficient sampling from the posterior distribution in (3).

3. The tCFA — robust Bayesian CFA

Consider the CFA model from (1), but, in this section, we assume that measurement
errors follow the Student’s t distribution. It is well known that the usage of t distri-
bution allows for greater robustness; see for example (Lange, Little, & Taylor, 1989).
Formally, for the robust model (tCFA), instead of ϵi,k ∼ N(0, ψk) for 1 ≤ i ≤ n and
1 ≤ k ≤ p, define ϵi,k ∼ t(νk, 0, ψk). In this case, the set of parameters of interest is
extended to be (Λ,Φ,Ψϵ,ω,ν), where ν = (ν1, . . . , νk)

⊤ is the vector of degrees of
freedom that correspond to the Student’s t distribution. Note that yi|Λ,Φ,Ψϵ,ωi,ν
is not Gaussian any more. Instead, we are dealing with Student’s t distribution with
location Λωi, scale of Ψϵ and ν degree of freedom. Specifically, it holds that:

yi,k|Λ,Φ,Ψϵ,ωi,ν ∼ t (Λkωi, ψk, νk) , ∀ 1 ≤ i ≤ n, 1 ≤ k ≤ p. (5)

Geweke (1993), proposed to introduce latent variables with the view to handle
Student’s t distribution measurement errors. In this paper, we mimic this strategy to
perform inference under the robust CFA setting. Specifically, instead of handling the
Student’s t distribution directly, Geweke (1993) uses the data augmentation approach
and exploits the fact that for a latent variable z ∼ IG(ν/2, ν/2), and for X|z ∼
N(µ, zσ2), it holds that X ∼ t(µ, σ2, ν). That is, one can rewrite (5) via

yi,k|Λ,Φ,Ψϵ,ωi,ν, zi,k ∼ N (Λkωi, zi,kψk) , ∀ 1 ≤ i ≤ n, 1 ≤ k ≤ p, (6)

where zk ∼ IG(νk/2, νk/2).
Finally, to fully specify the Bayesian model, we will need to define the set of priors.

The benefit of Geweke’s strategy is fully revealed here, since (6) allows to extend the
set of conjugate priors from (2). That is, we just need to introduce a prior over the
vector ν. In this case, we choose to implement the uniform prior, namely

νk ∼ U(2, νmax) for k = 1, . . . , p, (7)

where νmax is a constant such as νmax = 100. From, (2), (7), and (6), we next derive the
corresponding conditional distributions. The latter consequently leads to the construc-
tion of an efficient Gibbs sampler. The conditional distributions for (Φ,Ψϵ,ω,ν,Z)
(where Z is an n×pmatrix of latent variables), are provided in (8). Since the derivation
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of (8) is quite standard, we provide the corresponding technical details in Section 2 of
the Online Supplementary Materials record.

λk,j |y,Λ−λk,j
Φ,Ψϵ,ω,ν,Z ∼ N

(
σ2

(
n∑
i=1

ωi,j(yi,k −
∑q

l=1 λklωil1{l ̸=j})

ψkzi,k

)
, σ2

)
, (8)

where σ2 =

(
1

σ2k,j
+

n∑
i=1

ω2
i,j

ψkzi,k

)−1

for k = 1, . . . , p and j = 1, . . . , q,

Φ|y,Λ,Ψϵ,ω,ν,Z ∼ IW
(
A+ ω⊤ω, a+ n

)
,

ψk|y,Λ,Φ,ω,ν,Z ∼ IG

(
0.5n+ αk, βk +

1

2

n∑
i=1

(zi,k)
−1(yi,k −Λkωi)

2

)
,

for k = 1, . . . , p,

ωi|y,Λ,Φ,Ψϵ,ν,Z ∼ MVN
(
Σ′(Λ⊤(ΨϵZi)

−1yi),Σ
′
)
,

where Σ′ =
(
Φ−1 +Λ⊤(ΨϵZi)

−1Λ
)−1

for 1 ≤ i ≤ n,

zi,k|y,Λ,Φ,Ψϵ,ω,ν ∼ IG

(
0.5 + 0.5νk, 0.5νk +

ψ−1
k

2
(yi,k −Λkωi)

2

)
.

In order to complete the specification of the Gibbs sampler, we show how to handle a
non-conjugate conditional distribution ν|y,Λ,Φ,Ψϵ,ω,Z.

3.1. Conditional distribution of the degree of freedom ν

It holds that:

p(ν|y,Λ,Φ,Ψϵ,ω,Z) ∝ p(Z|ν)p(ν) ∝
n∏
i=1

p∏
k=1

p(zi,k|νk)

∝
n∏
i=1

p∏
k=1

(0.5νk)
0.5νk

Γ(0.5νk)
(zi,k)

−(0.5νk+1)e
− 0.5νk

zi,k ,

and thus, for k = 1, . . . , p, we arrive at:

p(νk|y,Λ,Φ,Ψϵ,ω) ∝
n∏
i=1

(0.5νk)
0.5νk

Γ(0.5νk)
(zi,k)

−(0.5νk+1)e
− 0.5νk

zi,k (9)

=
(0.5νk)

0.5nνk

(Γ(0.5νk))n

(
n∏
i=1

zi,k

)−(0.5νk+1)

exp

{
−0.5νk

n∑
i=1

(zi,k)
−1

}
.

The distribution in (9) is not standard, but, it can be sampled via Metropolis Hastings
(Gelman et al., 2003; Gilks et al., 1996) method as follows. First, note that

log p(νk|y,Λ,Φ,Ψϵ,ω,Z) = 0.5nνk log(0.5νk)− n log Γ(0.5νk)
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− (0.5νk + 1)

n∑
i=1

log zi,k − 0.5νk

n∑
i=1

(zi,k)
−1 + constant,

an in addition, it holds that

d log(0.5νk)

dνk
=

1

0.5νk

d0.5νk
dνk

=
1

νk
, and

d

dνk
log(Γ(0.5νk)) =

d0.5

d0.5νk
log(Γ(0.5νk)),

d log p(νk|Z)

dνk
=
n

2
log(νk/2) +

n

2
− n

d log Γ(νk/2)

dνk
− 1

2

n∑
i=1

log zi,k − 0.5

n∑
i=1

(zi,k)
−1

=
n

2
log(νk/2) +

n

2
− n

2

d log Γ(νk/2)

d(νk/2)
− 1

2

n∑
i=1

log zi,k − 0.5

n∑
i=1

(zi,k)
−1,

and

d2 log p(νk|Z)

d2νk
=

n

2νk
− n

2

(
d

dνk

d

d(νk/2)
log Γ(νk/2)

)
=

n

2νk
− n

2

(
d1/2

dνk/2

d

d(νk/2)
log Γ(νk/2)

)
=

n

2νk
− n

4

d2

d2(νk/2)
log Γ(νk/2).

Since d
d(νk/2)

log Γ(νk/2) and d2

d2(νk/2)
log Γ(νk/2) is the digamma and the trigamma

functions, respectively; these functions can be calculated using standard statistical
packages.

Finally, in order to sample efficiently from the target in (9), we will approximate
the Metropolis proposal distribution via a normal distribution with the mean located
on the target’s mode and the standard deviation set to be the negative Hessian of the
target’s logarithm evaluated at the mode. Specifically, the mode can be found using
the Newton–Raphson method (Ypma, 1995) by solving numerically

n

2
log(νk/2) +

n

2
− n

2

d log Γ(νk/2)

d(νk/2)
− 1

2

n∑
i=1

log zi,k − 0.5

n∑
i=1

(zi,k)
−1 = 0.

Provided that the mode is located in ν∗k , the corresponding hessian is computed at

ν∗k , via H|ν∗
k

= n
2ν∗

k
− n

4
d2

d2(νk/2)
log Γ(ν∗k/2). Consequently, the Metropolis-Hastings

proposal is ν ′k ∼ N(ν∗k , H|ν∗
k
), and the sampled ν ′k is accepted with probability

α = min
{
1, f(ν

′
k)

f(νk)

}
, where f(·) is the target proposal in (9).

4. Marginal likelihood estimation using importance sampling

In this section we propose a method which is based on importance sampling (IS)
(Rubinstein et al., 2014) for marginal likelihood (and Bayes factor) estimation. Our
numerical evaluation indicates that this simple idea results in good estimates with
small relative errors (RE) (Rubino & Tuffin, 2009). The basic concept is as follows.
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The marginal likelihood, namely, the integral
∫
p(y|θ)p(θ)dθ, can be written as:∫

p(y|θ)p(θ)dθ =

∫
p(y|θ)p(θ)g(θ)

g(θ)
dθ =

∫
p(y|θ) p(θ)

g(θ)
g(θ)dθ = Eg(θ)

[
p(y|θ)p(θ)

g(θ)

]
.

The central difficulty here is to specify a sampling distribution g(θ). As soon as a
good sampling distribution is available, one can obtain an estimator of the marginal
likelihood via

p̂(y)IS =
1

N

N∑
i=1

p(y|θi)p(θi)
g(θi)

,

where θi for i = 1, . . . , N are independent and identically distributed samples
from g(θ). While there exists an extensive IS theory, our contribution in this pa-
per is that we show how to obtain a simple sampling distribution g(θ), which also
provides good results in the sense of low variance and thus low RE. The RE, which

is defined via: RE = Var
(
p̂(y)IS

)/
E
[
p̂(y)IS

]
is used to examine the efficiency of

CMC estimators. Specifically, the RE is proportional to the minimum sample size N
needed to guarantee a prespecified estimator precision. For a detailed example, please
see (Herr, Vaisman, Scovell, & Kinaev, 2024, Section D). Note that θ = {Λ,Φ,Ψϵ,ω}
and θ = {Λ,Φ,Ψϵ,ω,ν} for the normal and for the Student’s t distribution cases,
respectively. The latent variable representation of the Student’s t distribution allows
us to handle both cases simultaneously. Our proposition is to treat each component
of θ independently, that is, we set

g(θ) = g(Λ,Φ,Ψϵ,ν) = gΛ(Λ)gΦ(Φ)gΨϵ
(Ψϵ)gω(ω)gν(ν).

The distribution g(θ) will be derived from the posterior samples. Suppose now that
θ(i) for i = 1, . . . ,M , are MCMC samples that (approximately) follow the desired
posterior distribution. The derivation of g(θ) is based on the method of moments
(Casella & Berger, 2002) as follows.

(1) For the factor loading matrix Λ, define gΛ(Λ) =
∏p
k=1

∏q
j=1 gλk,j

(λk,j), for k =

1, . . . , p and j = 1, . . . , q. Set gλk,j
(λk,j) to be a Normal distribution density

function, namely, let λk,j ∼ N
(
µ̂λk,j

, σ̂2λk,j

)
, where

µ̂λk,j
=

1

M

M∑
m=1

θ(i)(λk,j) and σ̂2λk,j
=

1

M − 1

M∑
m=1

(
θ(i)(λk,j)− µ̂λk,j

)2
.

(2) Similarly, for the latent variable vector ω, define gω(ω) =
∏n
i=1

∏q
j=1 gωi,j

(ωi,j),

for i = 1, . . . , n and j = 1, . . . , q. Set gωi,j
(ωi,j) to be a Normal distribution

density function, that is, let ωi,j ∼ N
(
µ̂ωi,j

, σ̂2ωi,j

)
, where

µ̂ωi,j
=

1

M

M∑
m=1

θ(i)(ωi,j), and σ̂2ωi,j
=

1

M − 1

M∑
m=1

(
θ(i)(ωi,j)− µ̂ωi,j

)2
.

(3) For the covariance matrixΦ, define gΦ(Φ) to follow the Inverse Wishart distribu-
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tion. Let θ(i)(Φ) be the ith posterior sample that corresponds to the covariance
matrix Φ. Then, set Φ ∼ IW(A′, a′), and estimate the parameters of gΦ(Φ),
namely, A′ and a′, as follows. First, note that:

E[Φ] =
A′

a′ − q − 1
for a′ > q + 1, (10)

and that:

Var(Φi′,j′) =
(a′ − q + 1)A′2

i′,j′ + (a′ − q − 1)Ai′,i′Aj′,j′

(a′ − q)(a′ − q − 1)2(a′ − q − 3)
for 1 ≤ i′, j′ ≤ q.

That is, for any 1 ≤ i′ ≤ q,

Var(Φi′,i′) =
(a′ − q + 1)A′2

i′,i′ + (a′ − q − 1)Ai′,i′Ai′,i′

(a′ − q)(a′ − q − 1)2(a′ − q − 3)
=

2A′2
i′,i′

(a′ − q − 1)2(a′ − q − 3)
,

and since E[Φi′,j′ ]
2 =

A′2
i,i

(a′−q−1)2 , it holds that:

E[Φi′,i′ ]
2

Var(Φi′,i′)
=

A′2
i,i

(a′−q−1)2

2A′2
i′,i′

(a′−q−1)2(a′−q−3)

=
1

2
(a′ − q − 3). (11)

Finally, using the posterior samples, calculate

µ̂Φ =
1

M

M∑
m=1

θ(i)(Φ), and σ̂2Φi′,i′ =
1

M − 1

M∑
m=1

(
θ(i)(Φi′,i′)− µ̂Φi′,i′

)2
,

for some 1 ≤ i′ ≤ q and thus, the a′ and the A′ parameters can be estimated
(using (11) and (10)), via:

a′ = 2
µ̂Φi′,i′

σ̂2Φi′,i′

+ q + 3, and A′ = (a′ − q − 1)µ̂Φ.

(4) For the covariance matrix Ψϵ, define gΨϵ
(Ψϵ) =

∏p
k=1 gψk

(ψk), where for k =
1, . . . , p, set gψk

(ψk) to be a Gamma distribution density function, namely, let

ψk ∼ Gamma
(
α̂ψk

, β̂ψk

)
. Since it holds that for X ∼ Gamma(α, β), E[X] = αβ

and Var(X) = αβ2, we arrive at:

Var(X)

E[X]
= β and

E[X]

β
= α. (12)

By computing

µ̂ψk
=

1

M

M∑
m=1

θ(i)(ψk), and σ̂2ψk
=

1

M − 1

M∑
m=1

(
θ(i)(ψk)− µ̂ψk

)2
,

9



the α̂ψk
and the β̂ψk

parameters are estimated using (12) via

β̂ψk
=
σ̂2ψk

µ̂ψk

and α̂ψk
=
α̂ψk

β̂ψk

.

(5) Similarly to the calculation presented for Ψϵ, for the vector of degrees of free-
dom, we define gν(ν) =

∏p
k=1 gνk(νk), where for k = 1, . . . , p, set gνk(νk) to

be the Gamma distribution density; specifically, let νk ∼ Gamma
(
α̂νk , β̂νk

)
. By

computing

µ̂νk =
1

M

M∑
m=1

θ(i)(νk), and σ̂2νk =
1

M − 1

M∑
m=1

(
θ(i)(νk)− µ̂νk

)2
,

the α̂νk and the β̂νk parameters are estimated using (12) via β̂νk =
σ̂2

νk

µ̂νk

and

α̂νk =
α̂νk

β̂νk

.

5. Results

In this section, we examine the performance of both the normal (nCFA) and the
Student’s t (tCFA) models. The nCFA and the tCFA methods are applied to synthetic
and real data sets. Specifically, the following case studies are considered.

(1) To test the nCFA and the tCFA models under a controlled setting, we consider
synthetic CFA instances that were generated from the CFA model in (1). In
particular, we took p = 8 and q = 3. The covariance matrix for latent variables
and the factor loading matrix, were set to be:

Φ =

 1 0.5 0
0.5 1.5 −0.5
0 −0.5 2

 and Λ⊤ =

1 0.5 0.8 0 0 0 0 0
0 0 0 1 0.5 0 0 0
0 0 0 0 0 1 0.5 0.8

 ,

respectively. To reliably benchmark the nCFA and the tCFA models, we
simulated 200 datasets for each n ∈ {100, 150, 200, 250}. For each n,
100 datasets were generated from the Gaussian model using the Ψϵ =
diag(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) covariance matrix. The remaining 100
datasets were generated from the g-and-k distribution, which is more flexible
as compared to the normal distribution and thus can model outliers (Drovandi
& Pettitt, 2011; Prangle, 2020). In particular, the g-and-k distribution is defined
via a quantile function:

Q(qgk|Agk, Bgk, ggk, kgk, cgk) (13)

= Agk +Bgk

[
1 + cgk

1− exp {−ggkz(qgk)}
1 + exp {−ggkz(qgk)}

]
(1 + z(qgk)

2)kz(qgk),

where z(qgk) is the qgk-th quantile of the standard normal distribution function.
For this section, we take Agk = −1, Bgk = 1.5, ggk = 2, kgk = 0.4, and cgk = 0.8.
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The g-and-k distribution creates a considerable divergence from the normal
distribution assumption, which is the driving force for the proposed controlled
setup. The details are provided in Table 1, which summarizes multivariate skew-
ness, kurtosis, and the corresponding p-values (Mardia, 1970). The average Mar-
dia’s skewness and kurtosis are within the reported range (between the 75th and
the 95th percentiles) of the 254 multivariate distributions collected from authors
of articles published in Psychological Science and the American Education Re-
search Journal (Cain et al., 2017).

Table 1. The average multivariate skewness, kurtosis, and p-values including corresponding standard deviations (in
parentheses). The p-values correspond to Multivariate Normality test, indicating a departure from the multivariate normal

distribution of the g-and-k measurement error model.

Gaussian measurement error g-and-k measurement error

n skewness kurtosis skewness kurtosis
(p-value) (p-value) (p-value) (p-value)

100 6.82 (0.82) 76.8 (1.79) 46.6 (9.11) 121 (12.5)
0.62 (0.26) 0.30 (0.27) 6.43× 10−37 (6.39× 10−36) 1.46× 10−8 (1.45× 10−7)

150 4.63 (0.59) 77.7 (1.69) 47.2 (9.16) 129 (14.1)
0.57 (0.28) 0.34 (0.29) 8.01× 10−100 (7.96× 10−99) 1.22× 10−33 (1.21× 10−32)

200 3.47 (0.46) 78.3 (1.48) 48.3 (8.11) 135 (13.8)
0.58 (0.29) 0.38 (0.29) 6.70× 10−164 (1.00× 10−300) 4.14× 10−64 (4.12× 10−63)

250 2.78 (0.39) 78.6 (1.33) 48.2 (8.17) 137 (14.1)
0.57 (0.29) 0.41 (0.29) 3.18× 10−208 (1.00× 10−300) 1.09× 10−82 (1.08× 10−81)

For each data size n, and for each measurement error distribution (normal
and g-and-k), we applied the nCFA and the tCFA algorithms. Our numerical
results indicate that on average, tCFA outperforms the nCFA for both normal
and g-and-k distribution measurement errors. However, the benefit of tCFA
increases with n for the g-and-k distribution measurement error model. This is
not very surprising, since the Student’s t distribution is more robust and thus,
it is expected to handle outliers in a better fashion.

(2) In our second case study, we consider the CFA analysis of the well-known
Holzinger & Swineford 1939 dataset (Rosseel, 2012). This dataset is used as
a working example in both the lavaan and the blavaan structural equation
modeling packages (Merkle & Rosseel, 2018; Rosseel, 2012). The dataset con-
sists of mental ability scores of children from different schools. Following Rosseel
(2012), we also consider 9 out of the original 26 scores, and use the CFA model
which consists of 3 latent factors (visual, textual, and speed), that are measured
by x1, x2 and x3 for the visual factor, by x4, x5 and x6 for the textual factor,
and by x7, x8 and x9 for the speed factor. Our results indicate the tCFA method
outperforms the nCFA model.

The experimental setup. Both the nCFA and the tCFA models, were implemented in
C++ version 11. The code was compiled and wrapped to a research R package (R version
4.2.2). Section 5 of the Online Supplementary Materials record contains examples on
how to use the package. All tests, including the compilation of the R package were
performed on Intel Core i7-6920HQ CPU 2.90GHz processor with 32GB of RAM run-
ning 64 bit Debian 12 “bookworm”. The software and the research data, are freely at
https://osf.io/ehqsf/?view only=21a5075217474427bb44054bbaf755f5. By con-
ducting several preliminary experiments (not reported here), we obtained a set of pa-
rameters (burnin and sample size), that work well in the sense of MCMC convergence
and IS estimator RE, for the case studies under consideration. In particular, for the
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synthetic case study, both the burnin and the sample size parameters of the MCMC
sampler were fixed to be 10,000. For the second case study, we used the 10,000 burnin
and 50,000 sample size. Chain convergence was tested using the Gelman-Rubin R̂ di-
agnostics (Gelman & Rubin, 1992). For both case studies, the IS marginal likelihood
estimator was computed using 1000 samples.

Finally, for all data instances, the same set of priors was used. While we understand
the importance of proper prior selection and both prior and posterior predictive checks
(Kruschke, 2021), the purpose of this study is to compare the nCFA and the tCFA
methods, thus, the identical prior set was applied. Specifically, we used the following
prior distributions: λk,j ∼ N(0, 102) for k = 1, . . . , 8 and j = 1, . . . , 3, Φ ∼ IW(I3, 4),
ψk ∼ IG(1.0, 1.0) for k = 1, . . . , 8, and νk ∼ U(2, 100) for k = 1, . . . , 8. Here, I3 is
the 3 × 3 identity matrix. To ensure identifiability of the models, we fix λk,j = 1
for (k, j) ∈ {(1, 1), (4, 2), (6, 3)}. Sections 5.1 and 5.2 present detailed results for the
synthetic and the Holzinger & Swineford 1939 experiments, respectively.

5.1. Synthetic data case study

As noted above, for all MCMC runs in this section, we selected the burnin and the
sample size to be 10,000. The marginal likelihood estimator was obtained based on
1000 samples. Our numerical evaluation indicates that the RE of the IS marginal
likelihood estimator is very small. In particular, we observed that the average RE
for all cases is about 6.97 × 10−4, which indicates a strong stability of the proposed
estimator.

100 150 200 250

22

24

26

28

30

32

n

(a) Summary of logarithm of Bayes factors as

a function of the instance size n for the Gaus-

sian measurement error synthetic data. For
n = 100, 150, 200, 250, the estimated log BFs

are 26.351 ± 1.405, 27.397 ± 1.237, 27.565 ±
1.554, 27.637± 1.832, respectively.

100 150 200 250

0
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500

n

(b) Summary of logarithm of Bayes factors as

a function of the instance size n for the g-

and k measurement error synthetic data. For
n = 100, 150, 200, 250, the estimated log BFs

are 115.031±37.863, 181.718±52.456, 229.060±
70.551, 251.037± 88.471, respectively.

Figure 1. Summary of logarithm of Bayes factors as a function of the instance size n for the Gaussian and
the g-and k measurement error synthetic data.

Figure 1 depicts the logarithm of the corresponding Bayes factor for the Gaussian
and the g-and-k measurement error data. It is apparent that the tCFA model is prefer-
able as compared to the nCFA model. However, for the g-and-k measurement error
data, the Bayes factor grows with n. Figure 2 and Figure 3 show the histograms of
the logarithm of marginal likelihood (for both the nCFA and the tCFA methods), for
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the Gaussian and the g-and-k measurement error data, respectively. Again, one can
observe that tCFA introduces a superior performance as compared to nCFA.
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(b) n = 150.

−2,300 −2,250 −2,200 −2,150 −2,100
0

5

10

15

20

25

Logarithm of marginal likelihood

nCFA
tCFA

(c) n = 200.

−2,800 −2,750 −2,700 −2,650 −2,600
0

5

10

15

20

25

Logarithm of marginal likelihood

nCFA
tCFA

(d) n = 250.

Figure 2. Histograms of marginal likelihoods for the nCFA and the tCFA models when applied to the

Gaussian measurement error synthetic data.
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Figure 3. Histograms of marginal likelihoods for the nCFA and the tCFA models when applied to the g-and
k measurement error synthetic data.

Remark 1 (Bayes factors). The tCFA model is favorable according to the Bayes fac-
tor. This is especially true for data examples that have g-and-k measurement errors.
It is important to note that a better model will lead to gains in the corresponding
squared errors of point estimators. To see this, we consider a typical synthetic in-
stance of size n = 250 that was generated with g-and-k measurement errors. Table
2 and Table 3 in Section 4 of the Online Supplementary Materials record, show the
convergence diagnostic (including bias and squared errors) of nCFA and tCFA for this
specific dataset. The estimated logarithm Bayes factor is 292.4 in favor of the tCFA
model. Tables 2 and 3 are very instructive in the sense that the average squared error
and the average bias are 23.42 and 2.79 for the nCFA model and 1.17 and 0.801 for
the tCFA model. Moreover, we generated 100 instances of size n = 250 with g-and-k
measurement errors. The corresponding summary of the squared error and bias of the
nCFA and the tCFA models are presented in Table 4 in the Online Supplementary
Materials record. This summary indicates that on average, the tCFA model outper-
forms the nCFA model, with the exception of Φ’s bias. The reason for the tCFA’s
performance gains is the flexibility of the Student’s t distribution. Specifically, note
that Table 3 shows that the estimated mean degrees of freedom are between 2.1 and
3.1. These degrees of freedom allow thicker tails and therefore provide a better model
fit for the g-and-k distributed measurement errors.

14



5.2. The Holzinger Swineford 1939 school data

As noted in the experimental setup section, for this example, we set the 10,000 burnin
and the 50,000 sample sizes. Three independent MCMC chains were created for both
the nCFA and the tCFA models. Similar to the synthetic case study, the IS marginal
likelihood estimator is very stable. Based on 1000 samples and multiple independent
runs, the average estimator is −3920.2 for the nCFA and −3888.9 for the tCFA models.
The corresponding average RE is stable and is equal to 3.81×10−4 and to 2.50×10−4

for the nCFA and the tCFA models, respectively. That is, the logarithm of Bayes factor
is log BF ≈ −3888.9 − (−3920.2) ≈ 31.3, that is, the tCFA model is strongly prefer-
able. This is not very surprising as the data deviates from the normality assumption.
Specifically, the Mardia’s skewness and kurtosis are 6.81 and 102.9, respectively. The
corresponding p-values are 2.19× 10−14 and 0.016, respectively, and thus we can con-
clude that the null hypothesis (data normality) is rejected at the 0.05 significance level.
Complete posterior summaries for the nCFA and the tCFA models are summarized in
Tables 2 and 3, respectively.

Table 2. MCMC summary for nCFA model for the Holzinger
Swineford 1939 school data. The execution time for each chain

is about 48.491 seconds on average. The marginal likelihood es-
timation took about 8.987 seconds on average.

Parameter mean sd 2.5% 50% 97.5% R̂

ψ1 0.612 0.113 0.391 0.612 0.835 1.00
ψ2 1.131 0.105 0.940 1.127 1.351 1.00
ψ3 0.834 0.097 0.650 0.831 1.030 1.00
ψ4 0.388 0.049 0.297 0.386 0.489 1.00
ψ5 0.455 0.059 0.346 0.452 0.577 1.00
ψ6 0.366 0.044 0.284 0.364 0.458 1.00
ψ7 0.834 0.089 0.672 0.830 1.022 1.00
ψ8 0.521 0.091 0.346 0.520 0.703 1.00
ψ9 0.550 0.092 0.367 0.551 0.728 1.00
λ2,1 0.601 0.117 0.389 0.595 0.846 1.00
λ3,1 0.791 0.128 0.565 0.782 1.067 1.00
λ5,2 1.128 0.068 1.002 1.126 1.268 1.00
λ6,2 0.938 0.059 0.828 0.936 1.058 1.00
λ8,3 1.230 0.168 0.942 1.216 1.601 1.00
λ9,3 1.195 0.223 0.831 1.168 1.705 1.00
Φ1,1 0.741 0.141 0.487 0.733 1.037 1.00
Φ1,2 0.380 0.078 0.235 0.377 0.542 1.00
Φ1,3 0.243 0.053 0.147 0.240 0.354 1.00
Φ2,2 0.961 0.112 0.757 0.956 1.197 1.00
Φ2,3 0.164 0.047 0.078 0.162 0.264 1.00
Φ3,3 0.350 0.086 0.200 0.344 0.534 1.00
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Table 3. MCMC summary for the tCFA model for the

Holzinger Swineford 1939 school data. The execution time for

each chain is about 105.617 seconds on average. The marginal
likelihood estimation took about 10.37 seconds on average.

Parameter mean sd 2.5% 50% 97.5% R̂

ψ1 0.577 0.111 0.361 0.575 0.801 1.00
ψ2 1.038 0.122 0.793 1.039 1.280 1.00
ψ3 0.804 0.097 0.621 0.802 1.003 1.00
ψ4 0.368 0.050 0.275 0.367 0.471 1.00
ψ5 0.434 0.059 0.324 0.432 0.556 1.00
ψ6 0.328 0.052 0.223 0.329 0.429 1.01
ψ7 0.801 0.091 0.634 0.796 0.990 1.00
ψ8 0.469 0.092 0.293 0.467 0.655 1.00
ψ9 0.519 0.091 0.336 0.520 0.695 1.00
λ2,1 0.601 0.116 0.392 0.594 0.849 1.00
λ3,1 0.803 0.128 0.579 0.793 1.080 1.00
λ5,2 1.129 0.068 1.002 1.127 1.270 1.00
λ6,2 0.926 0.059 0.815 0.924 1.047 1.00
λ8,3 1.197 0.163 0.915 1.184 1.558 1.00
λ9,3 1.172 0.225 0.816 1.142 1.691 1.00
Φ1,1 0.734 0.139 0.480 0.728 1.024 1.00
Φ1,2 0.380 0.078 0.235 0.377 0.542 1.00
Φ1,3 0.243 0.053 0.147 0.240 0.354 1.00
Φ2,2 0.964 0.112 0.759 0.958 1.200 1.00
Φ2,3 0.168 0.048 0.081 0.165 0.269 1.00
Φ3,3 0.357 0.088 0.201 0.352 0.544 1.00
ν1 49.68 27.57 7.21 48.19 97.26 1.01
ν2 43.30 27.57 7.14 37.73 96.41 1.01
ν3 63.32 23.16 19.28 65.31 98.36 1.00
ν4 56.18 26.23 10.95 56.82 97.86 1.00
ν5 59.07 24.90 13.88 60.40 98.12 1.01
ν6 38.60 28.46 4.97 30.75 95.78 1.01
ν7 62.05 23.82 17.20 63.96 98.31 1.01
ν8 37.59 27.46 5.73 29.42 95.49 1.00
ν9 49.50 27.47 7.87 47.52 97.31 1.01

Finally, we examined the mixing properties of the nCFA and the tCFA models.
For the Holzinger Swineford 1939 school data. The Gelman-Rubin diagnostics R̂ in
Tables 2 and 3, indicates that the chains reached convergence as desired. Finally, some
additional graphical convergence diagnostics summaries are presented in Section 3 of
the Online Supplementary Materials record.

6. Discussion

In this study, we proposed a Bayesian approach for performing robust confirmatory
factor analysis. Specifically, we demonstrated how to efficiently carry out inference
tasks under the Student’s t distribution measurement error assumption, as well as
how to estimate the corresponding marginal likelihood and perform model selection.
Our numerical analysis shows that when dealing with real-world (non-normal) data,
the Student’s t distribution approach can result in a significant benefit. Additionally,
we provided a research R package for confirmatory factor analysis that is effective in
implementing the measurement error models for both the Gaussian and Student’s t
distributions. One of the significant contribution of this work is that this package was
implemented in C++ and thus it can be readily used in applied research for real-life
data sizes. In our package, we also implemented the marginal likelihood estimator
importance sampling procedure, and therefore, our research software provides a full
work flow machinery for performing robust Bayesian confirmatory factor analysis.
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Our method has many applications in applied settings when researchers are con-
cerned about the influence of outliers when performing CFA. The approach outlined
has clear benefits for researchers who, based on theory, assume that latent variables of
interest infer the presence of more extreme values than what would be expected from
a normal distribution. Such latent variables are not uncommon (Cain et al., 2017;
Micceri, 1989) in subfields of social science like psychopathology, political science and
social psychology. For instance, depression (Tomitaka, 2020) and political attitudes
(Alizadeh & Cioffi-Revilla, 2014) can exhibit more extreme values than what would
be expected from a normal distribution, particularly in certain subpopulations. The
results show that under such conditions (i.e., knowing that extreme values are less
rare events) our approach outperforms a typical approach to CFA, which assumes
multivariate normality.

Despite the advantages of the robust Bayesian approach, this study is subject to
a few limitations. The primary flaw is that factor and ordinal variables cannot yet
be handled by our software. This issue can be resolved by standard Bayesian latent
variable approaches. However, in the current study, these were not implemented. The
proposed R package is not a commercial software and only introduce a single-threaded
implementation of the proposed methods. That is, we believe that a parallel utilization
will allow to handle even larger real-world instances. Finally, it is important to note
that the sample sizes for both the MCMC chains and the IS estimator, are of crucial
importance. Our package does not implement convergence measures and relies on
external R packages such as coda.

We believe that this manuscript opens the way for significant research, and, that
the following directions are of interest.

(1) It is imperative, as previously noted, to expand the suggested approach to incor-
porate factor and ordinary variable management. Furthermore, it is of crucial
importance to extend the concepts presented in this manuscript to general struc-
tural equation models.

(2) We presented a number of computational experiments with certain prior distri-
butions. Therefore, it is important to conduct an extensive research that take
into account the sensitivity of inference under additional prior distribution set-
tings. In addition, it will be of interest to extend the computational experimen-
tal investigation by considering non-Gaussian synthetic instances obtained via
copula-based techniques (Foldnes & Grønneberg, 2015; Foldnes & Olsson, 2016;
Grønneberg, Foldnes, & Marcoulides, 2022).

(3) Finally, a parallel implementation that can handle larger real-life instances is of
great interest. For example, since the marginal likelihood computation is an im-
portance sampling estimator, its computational performance can be significantly
accelerated by using multiple central processing units or a graphics processing
unit.
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