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Estimating the Number of Vertices
in Convex Polytopes

Robert Salomone, Radislav Vaisman, Dirk P. Kroese

Abstract—Estimating the number of vertices of a convex
polytope defined by a system of linear inequalities is crucial for
bounding the run-time of exact generation methods. It is not easy
to achieve a good estimator, since this problem belongs to the #P
complexity class. In this paper we present two randomized algo-
rithms for estimating the number of vertices in polytopes. The
first is based on the well-known Multilevel Splitting technique.
The second, called Stochastic Enumeration, is an improvement of
Knuth’s backtrack algorithm. Both methods are shown to bring a
significant variance reduction, and outperform the current state-
of-the-art in test cases.

Index Terms—Multilevel Splitting, Stochastic Enumeration,
Rare Events, Vertex Counting, Backtrack Trees

I. INTRODUCTION

CALCULATING the number of vertices of a bounded
convex polyhedron (polytope) is an important compu-

tational problem [1], [2], [3], [4], [5], [6]. There exists two
basic approaches for handling the vertex generation problem.
The first is Motzkin’s double description method [6], which
exploits a sequential construction of a polytope. For imple-
mentations, see the algorithms developed by Seidel [4] and
Chazelle [5]. The second approach involves pivoting around
the edge skeleton of a polytope. An example of an efficient
implementation is the reverse search (RS) algorithm of Avis
and Fukuda [1], [3].

It is important to note that pivoting methods, and in par-
ticular the RS algorithm, have a runtime that is proportional
to the number of vertices of a polytope. Consequently, for
instances with a large number of vertices, this algorithm can
become computationally impractical. Therefore, prior to using
such methods, it is prudent to get an estimate of the number
of vertices [2].

Unfortunately, such an estimate is not easy to obtain, since
the vertex enumeration problem belongs to the #P complexity
class [7]. This complexity class, introduced by Valiant [8],
consists of the set of counting problems that are associated
with a decision problem in NP (non–deterministic polyno-
mial time). For example, #SAT is the problem of counting
the number of feasible solutions to a satisfiability formula
(SAT). The #P–complete complexity class is a sub–class of
#P consisting of those problems in #P to which any other
problem in #P can be reduced via a polynomial reduction.
#SAT, for example, is #P–complete. Interestingly, various
#P–complete problems are associated with an easy decision
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problem, i.e., the corresponding decision problem is in P
(polynomial time), such as the satisfiability of propositional
formulas in disjunctive normal form (DNF), or, existence of a
polytope vertex.

For some #P-complete problems there are known efficient
approximations. For example, Karp and Lubby [9] intro-
duced a fully polynomial randomized approximation scheme
(FPRAS) for counting the solutions of DNF satisfiability
formulas. Similar results were obtained for the knapsack and
permanent counting problems by Dyer and Jerrum et al. [10],
[11]. Unfortunately, there are also many negative results, see
Dyer et al. and Vadhan [12], [13].

There are two main approaches to tackle such difficult
counting problems. The first one is Markov Chain Monte Carlo
(MCMC) and the second is sequential importance sampling
(SIS). Both approaches exploit the finding of Jerrum et al.
[14] that counting is equivalent to uniform sampling over
a suitably restricted set. MCMC methods sample from such
restricted regions by constructing an ergodic Markov chain
with limiting distribution equal to the desired uniform distri-
bution. A number of MCMC approaches with good empirical
performance have been proposed; see, for example, [15],
[16], [17], [18]. There are also many examples of successful
SIS implementations on various counting problems; see, for
example, [19], [20], [9], [21]. More recent advances and
background material can be found in [22].

To the best of our knowledge, the problem of estimating
the number of vertices of a convex polytope does not have
a FPRAS. That is, for this particular problem, an efficient
randomized approximation algorithm is not known to exist.
Moreover, the sole (to our knowledge) method currently
available is that of Avis & Devroye [2], which is based on
the backtrack tree size estimator of Knuth [23], implemented
within RS. This method, while theoretically unbiased, is
flawed in the sense that in practice it has a tendency to vastly
underestimate the number of vertices. We address the cause of
this, proposing two new estimation methods that outperform
the current state of the art.

The first method is Multilevel Splitting. This powerful idea
was first used by Kahn and Harris [24] to estimate rare-event
probabilities. The main idea is to partition the state space
in such a way that the problem becomes one of estimating
conditional probabilities that are not rare. The Generalized
Splitting Method (GS) by Botev & Kroese [15], generalizes
this to a method able to evaluate wide range of rare-event
estimation problems. For a survey of the general methodology
and specific examples for counting via splitting, we refer to
[21, Chapter 4] and [25], [26].

The second method under consideration is the novel
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Stochastic Enumeration (SE) algorithm [27] which was orig-
inally proposed in [23] for backtrack tree estimation. The SE
algorithm belongs to the SIS family of estimators. The main
difference between general SIS procedures and SE is that
the latter employs polynomial oracles during the execution
and runs multiple trajectories (samples) in parallel, instead
of repeatedly running single trajectories. The SE algorithm
has a budget parameter that limits the number of parallel
samples. It was shown in [27] that SE provides powerful
variance reduction. For example, it was established that SE
is an FPRAS for estimating the size of certain random trees.

In this paper we show that both of these methods produce
much more reliable results than the method of Avis & Devroye
[2]. Despite the superior performance demonstrated by the
proposed methods, neither SE nor GS is uniformly “best” as
each has its own pros and cons. It will be shown in Section
V (numerical results) that SE is generally faster, while GS is
more robust to underestimation.

The rest the paper is organized as follows. In Section II we
give a brief introduction to the vertex counting problem and
show that a good approximation is important. Moreover, we
show how the problem can be formulated using a probabilistic
setting and give a brief introduction to rare-event estimation.
In Sections III and IV we give a general description of the GS
and the SE methods respectively and provide an explanation on
how both algorithms can be used to deliver reliable estimators
for the number of vertices in convex polytopes. Finally, in
Section V we present various examples that demonstrates that
the same computation effort can lead to much better estimates
than currently available.

II. CONVEX POLYTOPE VERTEX COUNTING PROBLEM

Polyhedral combinatorics is a rich and diverse field that uses
techniques from many areas including algebra and topology.
We provide a very brief introduction to the theory of convex
polytopes by starting with some basic definitions.

Definition 2.1 (Convex polyhedron): A convex polyhedron
P is defined as the solution space of a system of linear
inequalities; that is,

P =
{
u ∈ Rd : Au 6 b

}
,

where A is an n× d matrix, (n > d), and b is an n-vector. A
bounded polyhedron is called a polytope. 2

Definition 2.2 (Vertices, bases, and simple polytopes):
1) A point u is called a vertex if there is some d× d sub-

matrix A′ of A such that u is the unique solution of

A′u = b′, u ∈ P,

where b′ is the corresponding sub-vector of b.
2) The matrix A′ is called a basis for u.
3) The vertex u is called degenerate if it can be represented

with more than one basis.
4) A polytope with no degenerate vertices is called simple.

2

Note that we are interested in approximating the number of
vertices, since this quantity is crucial for bounding the running

time of the RS algorithm; see [2]. Before one tries to develop
an approximation, the natural question of lower and upper
bounds is clearly of interest. From [28], we learn the following.

Theorem 2.1 (Upper and lower bounds to the number of
vertices): Given a polytope P (Definition 2.1), the following
holds.

1) McMullen upper bound theorem; the number of vertices
in polytope P is at most

f(n, d) =

(
n− b(d+ 1)/2c

n− d

)
+

(
n− b(d+ 2)/2c

n− d

)
.

2) Barnette lower bound theorem; the number of vertices
in polytope P is at least

g(n, d) = n(d− 1)− (d+ 1)(d− 2).

2

Unfortunately, Theorem 2.1 is of little use in determining
the running time of the RS method, since the gap between the
bounds is generally too large. To see this, consider hypercube
in dimension d = 40. The exact number of vertices is equal
to 240 ≈ 1.09× 1012, but the lower and the upper bounds are
1562 and 5.59× 1015, respectively.

The above example emphasizes the need for a good ap-
proximation algorithm for vertex counting. In this paper we
concentrate on solving this problem using randomized algo-
rithms and, in particular, the Monte Carlo technique. We next
describe a major problem one can encounter while applying a
Monte Carlo algorithm, namely the rare-event setting.

A. Monte Carlo Under a Rare-Event Setting

Consider a set X , a set X ∗ ⊆ X and suppose that the
probability

` =
|X ∗|
|X |

,

is to be estimated. We further suppose that one can sample
uniformly at random from X . The Crude Monte Carlo (CMC)
procedure for the estimation of ` is defined as follows.
Sample N independent and uniformly distributed samples,
X1, . . . ,XN from X and, let Zi (for i = 1, . . . , N ) be
(independent) Bernoulli random variable such that

Zi = 1{Xi∈X∗} =

{
1 if Xi ∈ X ∗

0 otherwise,

where 1 is indicator random variable. The CMC estimator̂̀
CMC is given by:

̂̀
CMC =

1

N

N∑
i=1

Zi. (1)

It is not very hard to see that E(Zi) = ` and Var(Zi) = σ2 =
`(1 − `) for all i = 1, . . . , N . Consequentially, it holds that
the estimator is unbiased; that is,

E
(̂̀

CMC

)
= E

(
1

N

N∑
i=1

Zi

)
=

1

N

N∑
i=1

E(Zi) = `. (2)
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Moreover, the variance of the estimator is given by

Var
(̂̀

CMC

)
= Var

(
1

N

N∑
i=1

Zi

)
=

1

N2

N∑
i=1

Var(Zi) (3)

=
`(1− `)
N

.

With (2) and (3), we can measure the accuracy of the CMC
estimator. Note that according to central limit theorem, ̂̀CMC

is approximately N
(
`, σ2/N

)
distributed, where N stands for

normal distribution. Let zγ be the γ quantile of the N (0, 1)
distribution; that is, Φ(zγ) = γ, where Φ denotes the standard
normal cdf. Then,

P
(
` ∈ ̂̀CMC ± z1−γ/2

σ√
N

)
≈ 1− γ, (4)

holds, and ̂̀CMC±z1−γ/2 σ√
N

defines a confidence interval for

the point estimate ̂̀CMC. The width of this interval is given
by

wa = 2z1−γ/2
σ√
N
,

however, when dealing with very small values, say ` = 10−11,
an absolute width of this interval, for example, a reasonable
5% (wa = 0.05) is meaningless and, one should instead
consider a relative width defined by

wr =
wầ
CMC

.

Now, divide (4) by ̂̀CMC and arrive at

P
(
` ∈ ̂̀CMC

(
1± z1−γ/2

σ̂̀
CMC

√
N

))
≈ 1− γ,

a much better confidence bound for rare-event estimation
problems. This brings us to the standard measure of rare-event
estimator efficiency called relative error (RE), [29]. The RE
of ̂̀CMC is defined by

RE
(̂̀

CMC

)
=

σ

`
√
N

=

√
Var

(̂̀
CMC

)
E
(̂̀

CMC

) =︸︷︷︸
(2),(3)

√
`(1−`)
N

`
.

Proceeding with the rare-event setting, for which it holds that
`� 1, we see that

RE
(̂̀

CMC

)
=

√
`(1−γ)
N

`
≈ 1√

N`
. (5)

The above equation imposes a serious challenge, as illustrated
in the following example.

Example 2.1 (Sample size under rare-event setting): Let
` = 10−11, and suppose that we are interested in a modest
10% RE. It will not be very hard to verify from (5), that the
required number of experiments N is about 1013. Such N
is unmanageable in the sense of computation effort, and one
needs to resort to variance minimization techniques. 2

B. CMC Algorithm For the Vertex Counting Problem

For the rest of the paper we assume that P is non-empty
and non-degenerate, A has full column rank, and that there are
no redundant constraints in the corresponding linear system.

We begin by putting the vertex counting problem into the
CMC framework from Section II-A. Recall Definition 2.2, and
consider the following random experiment. Given a system
of linear inequalities Au 6 b, were A is a n × d matrix
and b is n-vector, choose a sub-matrix A′ of size d × d and
the corresponding d-sub-vector b′, uniformly at random. With
these A′ and b′, check if A′ is a vertex.

More formally, let X be the set of d-dimensional vectors
of indices, taken without replacement from {1, . . . , n}, that is,
X is defined by:

{x = (i1, . . . , id) : 1 6 i1 < i2 < · · · < id 6 n} .

Note that each x ∈ X defines a sub-matrix A′ = A(x),
the corresponding sub-vector b′ = b(x), and thus, the linear
system:

ai1,1 ai1,2 · · · ai1,d
ai2,1 ai2,2 · · · ai2,d

...
...

. . .
...

aid,1 aid,2 · · · aid,d


︸ ︷︷ ︸

A(x)


u1
u2
...
ud

 =


bi1
bi2
...
bid


︸ ︷︷ ︸
b(x)

. (6)

Let ux be the solution of the linear system (6) and define
U(X ) to be the uniform distribution on X .

Remark 2.1 (Random object generation): The generation
of X ∼ U(X ) is straightforward. For example, it can be
achieved by generating a random permutation of {1, . . . , n}
and choosing the first d indices from the latter; see for
example, [29, Chapter 2]. 2

Let X ∗ ⊆ X be the set of indices that determine feasible
bases, that is:

X ∗ = {x ∈ X : Aux 6 b}.

Next, define the event {X ∈ X ∗}, where X ∼ U(X ). Hav-
ing in mind that |X | =

(
n
d

)
, since there are

(
n
d

)
possibilities

to choose a d× d sub-matrix from A, the cardinality of X ∗ is
given by:

|X ∗| = |X |P (X ∈ X ∗) =

(
n

d

)
P (X ∈ X ∗) .

The above equation immediately implies the usage of CMC
framework from the previous section, by setting the Bernoulli
random variable Z to be Z = 1{X∈X∗} and applying (1) for
the estimation of P (X ∈ X ∗).

Unfortunately, this simple idea will generally fail because of
the rare events involved. To see this, recall the hypercube (n =
80, d = 40) example from Section II. In this case the exact
value of P (X ∈ X ∗) is equal to 240/

(
80
40

)
≈ 1.02× 10−11 and

we fall into the rare-event trap; see Example 2.1.
To overcome this problem, we describe two randomized

algorithms that are capable of handling the rare-event problem
discussed above. Both methods are unbiased like the CMC
estimator but their variance is significantly much smaller.
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III. GENERALIZED SPLITTING

Note that the main problem with the CMC estimator from
the previous section was the high variance. Here we propose
to adopt a quite general variance minimization technique for
the estimation of rare-event probability ` = P(X ∈ X ∗) —
the GS method, [15].

We already saw that sampling in X ∗ is difficult. The main
idea of GS is to design a sequential sampling plan, with a view
to decompose a “difficult” problem (sampling on X ∗), into a
number of “easy” ones associated with a sequence of subsets
in the sampling space X . In particular, we are interested in
estimating the rare-event probability ` = |X ∗|/|X |, where
X ∗ ⊆ X and |X | is known in advance. We further assume
without loss of generality, that generating random variables
from the uniform distribution on X is easy. A very general
splitting framework can be summarized as follows, [30], [21].

1) Find a sequence of sets X = X0 ⊃ X1 ⊃ · · · ⊃ XT =
X ∗. Assume that the subsets Xt can be written as level
sets of some performance function S : X → R for levels
−∞ = γ0 6 γ1 · · · 6 · · · 6 γT = γ, that is

Xt = {x ∈ X : S(x) > γt}, t = 0, . . . , T.

Then, the quantity of interest ` is given by:

` =
|X ∗|
|X |

=

T∏
t=1

|Xt|
|Xt−1|

=

T∏
t=1

P(S(X) > γt | S(X) > γt−1)

= P(S(X) > γT ).

2) For each t = 1, . . . , T , develop an efficient estimator ĉt
for the conditional probabilities

ct = P(S(X) > γt | S(X) > γt−1).

To avoid rare-event problems at the intermediate levels
(γt), we assume that the sets Xt, t = 1, . . . , T , are
specifically designed such that the {ct} are not rare-
event probabilities.

3) Deliver ̂̀=

T∏
t=1

ĉt,

as an estimator of `.
With this general framework in hand, we are ready to state
the main GS algorithm [30].

Algorithm 3.1 (Generalized Splitting Algorithm for Estimat-
ing `):
Input: Given a sequence γ1, . . . , γT , a performance function
S : X → R, and a sample size N , execute the following steps.

1) (Initialization). Set t = 1, generate N independent
samples W0 = {X1, . . . , XN} uniformly from U(X ).
Let W1 be the subset of elements X in W0 for which
S(X) > γ1, and let N1 be the size of W1. If N1 = 0,
go to Step 5.

2) (Estimation). Set:

ĉt =
Nt
N
.

3) (Markov chain sampling). For each Xi in Wt =
{X1, . . . ,XNt}, sample independently:

Yi,j ∼ κt(y | Yi,j−1), Yi,0 = Xi, j = 1, . . . , Sti,

where Sti is the splitting factor

Sti =

⌊
N

Nt

⌋
+Ki, Ki ∼ Ber(0.5), such that,

Nt∑
j=1

Kj = N mod Nt.

Here κt(y | Yi,j−1) is a Markov transition density
whose stationary distribution is the uniform distribution
on Xt. Reset

Wt = {Y1,1, . . . ,Y1,St1 , · · · ,YNt,1, . . . ,YNt,StNt
},

where Wt contains N elements.
4) (Updating). Let Wt+1 be the subset of elements X in
Wt for which S(X) > γt+1, and let Nt+1 be the size
of Wt+1. Increase the level counter: t = t+ 1.

5) (Stopping condition). If t = T go to Step 6. If Nt = 0,
set Nt+1 = Nt+1 = · · · = NT = 0 and go to Step 6;
otherwise, repeat from Step 2.

6) (Stopping condition) Deliver the unbiased estimate of
the rare-event probability,

̂̀=

T∏
t=1

ĉt.

2

Remark 3.1 (Sampling from stationary distribution): The
crucial step of Algorithm 3.1 is to (approximately) sample
from the uniform distribution on each Xt using MCMC [30]
in Step 3. The specific choice of transition density is given in
Algorithm 3.2. 2

For detailed analysis of the GS method, and in particular for
the proof of unbiasedness, see [22], [30]. Next, we continue
with GS’s implementation details for the convex polytope
vertex counting problem.

A. GS Algorithm For Vertex Counting
To deliver an estimator of ` and use the GS Algorithm 3.1,

we have to resolve the following tasks.
• Task 1. Define a sequence of level sets X = X0 ⊃
X1 ⊃ · · · ⊃ XT = X ∗. Recall that these sets are are
defined by the performance function S : X → R, and the
corresponding performance levels γt, t = 0, . . . , T .

• Task 2. Develop an MCMC scheme for sampling from
uniform distribution on Xt.

The first task is resolved by adopting the CMC algorithm
setting from Section II-A. Similar, we define

X = X0 = {x = (i1, . . . , id) : 1 6 i1 < i2 < · · · < id 6 n} ,

where x is a d dimensional vector of indices taken without
replacement from {1, . . . , n}. Furthermore, we set the nominal
distribution to be the uniform distribution on X , and, define

X ∗ = {x ∈ X : Aux 6 b},
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to be the set of feasible bases. With these definitions, let the
performance function for each x ∈ X to be the number of
satisfied constraints of the linear system Au 6 b, that is:

S(x) =

n∑
i=1

1{A(i)ux≤b(i)}, (7)

where A(i) is the ith row of A, ux is the solution of the linear
system (6), and b(i) is the ith component of b.

Noting that (7) defines intermediate sets

Xt = {x ∈ X : S(x) > γt}, t = d+ 1, . . . , n, γt = t,

we complete the requirements of the first task.

To complete the second task, all we need to do is to
define the MCMC mechanism for approximate sampling from
U(Xt). This will be accomplished by Gibbs sampling, which
is summarized bellow.

Algorithm 3.2 (Gibbs Sampler for Vertex Counting):
Input: Given a linear system defined by n × d matrix A,
a n-dimensional vector b, and a sample X ∈ Xt which is
distributed approximately uniformly on the Xt set, execute the
following steps.

1) (Initialization). Set j = 1.
2) (Sampling). Let X = (I1, . . . , Id). Replace the

Ij th component by a (uniform) random index from
{1, . . . , n} \ {I1, . . . , Id}. If S(X) > γt, go to Step 3,
otherwise, repeat the current step.

3) (Stopping condition). If j < d, set j = j + 1 and go
to Step 2. Otherwise, output X — a sample distributed
approximately uniformly on Xt. 2

IV. STOCHASTIC ENUMERATION

In this section we consider a different type of randomized
algorithm. The proposed estimator is inspired by the work of
Avis & Devroye [2] and is based on an improvement of the
well known Knuth’s algorithm for tree cost estimation [23].

Note that for a given P , the RS method sequentially
constructs a rooted spanning tree Tv , (where v is the tree’s
root), on the set of all vertices of P [3]. See for example, the
spanning tree for the 3D cube in Figure 1. Specifically, given
the matrix A and a vector b, the RS algorithm provides the
tree root v and is able to sequentially compute for each node
w ∈ Tv the set od successors of w.

Note that it is therefore possible to perform a random walk
from the root of Tv to one of its leaves without calculating
the entire tree. This crucial property of the RS method was
exploited in [2]. The authors showed that the combination of
RS and Knuth’s estimator [23], (which requires only the ability
to perform random walks on a tree), yields a straightforward
approximation to the number of vertices of a convex polytope.

The main problem with Knuth’s algorithm is that it intro-
duces high variance, see [2], [31], [32]. Avis et al. [2] proposed
several improvements to the basic Knuth’s estimator. Here, we
apply a different tree counting technique — the SE method.
While SE is a generalization of Knuth’s estimator, it is also
equipped with powerful variance reduction mechanisms. We

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(0, 1, 0)

(1, 1, 0)

(1, 0, 0)

(1, 0, 1)

(1, 1, 1)

Fig. 1. Spanning tree of the 3D cube.

show that this algorithm can be very beneficial in the sense of
SE’s estimator accuracy. Next, we provide a brief overview of
the SE method for counting trees.

A. SE Algorithm Description

The SE algorithm is an extension of the one introduced in
[23], [21]. Our setting is as follows. Consider a rooted tree
T = (V, E) with node set V and edge set E (so that |E| =
|V| − 1). We denote the root of the tree by v0, and for any
v ∈ V the subtree rooted at v is denoted by Tv . With each node
v is associated a non-negative cost c(v). The main quantity of
interest is the total cost of the tree,

Cost(T ) =
∑
v∈V

c(v)

or, more generally, the total cost of a subtree Tv — denoted
by Cost(Tv). For each node v we denote the set of successors
of v by S(v).

Definition 4.1 (Hyper nodes and forests): Let {v1, . . . , vr} ∈
V be tree nodes.
• We call a collection of distinct nodes in the same level

of the tree v = {v1, . . . , vr} a hyper node of cardinality
|v| = r.

• Let v be a hyper node. Generalizing the tree node cost,
we define the cost of the hyper node as

c(v) =
∑
v∈v

c(v).

• Let v be a hyper node. Define the set of successors of v
as

S(v) =
⋃
v∈v

S(v).

• Let v be a hyper node and let B ∈ N, B > 1. Define

H(v) =

{
{S(v)} if |S(v)| 6 B

{w | w ⊆ S(v), |w| = B} if |S(v)| > B,
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to be the set of all possible hyper nodes having cardinality
max{B, |S(v)|} that can be formed from the set of v’s
successors. Note that if |S(v)| 6 B, we get a single hyper
node with cardinality |S(v)|.

• For each hyper node v let

Tv =
⋃
v∈v

Tv

be the forest of trees rooted at v. See Figure 2 for
an example of hyper node v = {v1, v2, v3, v4} and its
corresponding forest Tv = {Tv1 , Tv2 , Tv3 , Tv4}.

• For each forest rooted at hyper node v, define its total
cost as

Cost (Tv) =
∑
v∈v

Cost(Tv).

2

vv1 v2 v3 v4

Fig. 2. Hyper node v that contains regular tree nodes v1, v2, v3 and v4 with
their corresponding subtrees.

With these definitions, we are ready to state the main SE
algorithm. The following Algorithm IV-A is a randomized
algorithm that outputs a random variable CSE, such that:

E (CSE) = Cost(T ).

Algorithm 4.1 (Stochastic Enumeration Algorithm):
Input: Given a hyper node v — the forest root, a mechanism
that is able to generate a set of successors of any tree node,
and a budget B > 1, execute the following steps.

1) (Initialization). Set k ← 0, D ← 1, X0 = v and
CSE ← c(X0)/|X0|.

2) (Compute the successors). Let S(Xk) be the set of
successors of Xk.

3) (Terminal position?). If |S(Xk)| = 0, the algorithm
stops, outputting |v|CSE as an estimator of Cost(Tv).

4) (Advance). Choose hyper node Xk+1 ∈ H(Xk) at
random, each choice being equally likely. (Thus, each
choice occurs with probability 1/|H(Xk)|.) Set Dk =
|S(Xk)|
|Xk| and D ← DkD, then set CSE ← CSE +(
c(Xk+1)
|Xk+1|

)
D. Increase k by 1 and return to Step 2. 2

For a detailed analysis of Algorithm IV-A, and in particular
for the proof of unbiasedness, see [27].

Remark 4.1 (SE for estimating the number of vertices): The
adaptation of Algorithm IV-A to vertex counting estimation
problem is straightforward. Define c(w) = 1 for any w ∈ Tv .

In Step 1, set v = {v}, where v is the root of the spanning
tree Tv delivered by RS. To calculate S(Xk) in the second
step of the SE algorithm, use RS to get the successors set
for each tree node w ∈ Xk. Note that SE can be used even
in degenerate case since it is basically an extension of Avis’s
algorithm. 2

Next, we concentrate on the crucial property of the SE
algorithm — the built–in variance reduction mechanism. To
do so, we give an intuitive example in Section IV-B and
demonstrate numerically in Section V that SE can deliver a
much more accurate estimator for the vertex counting problem
than the one proposed by Avis & Devroye, [2]. For a detailed
discussion about the efficiency analysis of the SE method, see
[21] and [27].

B. SE’s Variance Reduction Mechanism
Due to the parallel execution of random walks on a tree,

the SE algorithm can bring enormous variance reduction [27].
To illustrate this, consider the “hair brush” tree T in Figure
3 and suppose that the cost of all vertices is zero except for
vn+1, which has a cost of unity. Our goal is to estimate the
cost of this tree, which obviously satisfies:

Cost(T ) = 1.

It will become clear from the following discussion that the
budget parameter B is controlling the variance reduction capa-
bility of the SE Algorithm IV-A. We will consider two cases.
In particular we examine the behavior of the SE Algorithm
IV-A with budgets B = 1 and B = 2 respectively.

v1

v2 v2

v3 v3

v4

vn

vn+1 vn+1

Fig. 3. The hair brush tree.

• If we set B = 1, the SE Algorithm IV-A essentially
adopts the behaviour of Knuth’s estimator, [23]. Note that
in this case the algorithm reaches the vertex of interest,
vn+1, with probability 1/2n and with D = 2n. In all
other cases, the algorithm terminates with some D′ and
a zero cost node v̄i, i = 2, . . . , n + 1. It follows that
the expectation and variance of the corresponding SE
estimator are

E (CSE) =
1

2n
· 2n · 1 +

2n − 1

2n
·D′ · 0 = 1,
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and

E
(
C2

SE

)
=

1

2n
· (2n · 1)

2
+

2n − 1

2n
· (D′ · 0)

2
= 2n ⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2
= 2n − 1.

• On the other hand, setting B = 2 will force Algorithm
IV-A to reach vn+1 with probability 1. Note that with
this budget and for i = 2, . . . , n, one algorithm trajectory,
(random walk from the tree root), is always disappearing
at v̄i vertices from the left, but the second one is always
split in two new trajectories at the corresponding vi nodes
from the right. Following the execution steps of the SE
Algorithm IV-A one can verify that at the final iteration
the cost of the hyper node Xn+1 = {v̄n+1, vn+1} is
0 + 1 = 1, so (

c(Xn+1)

|Xn+1|

)
=

1

2
.

In addition, the final value of D is

D = 2 · 1 · · · 1︸ ︷︷ ︸
n−1 times

= 2.

It follows that the expectation and variance of the corre-
sponding SE estimator are

E (CSE) = 1 · 2 · 1

2
= 1,

and

E
(
C2

SE

)
= 1 ·

(
2 · 1

2

)2

= 1 ⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2
1− 1 = 0.

By increasing the budget B from 1 to 2 we managed to achieve
remarkable variance reduction, from 2n − 1 to zero.

The above example is the key for understanding the SE
variance reduction mechanism. Note that to deliver some
meaningful estimator for the tree cost one needs (at least)
to reach the vn+1 vertex. In our example, when B = 1, this
happens with probability 1/2n, so we work under the rare-
event setting.

For the sake of simplicity, let us concentrate on the simple
problem of reaching the vertex vn+1. Suppose that we launch
B random walks from the root (v1). Each walk chooses v2
or v̄2 with probability 1/2 respectively; that is, the walks are
divided into “good” (those that reach v2) and “bad” (those
that reach v̄2). Now, we split the “good” walks such that there
will be B of them and continue the process. Note that the
following holds.
• The probability of a single walk (B = 1) to reach the
vn+1 vertex is 1/2n.

• A careful choice of B (which can be a polynomial in tree
height n), will allow us to reach the vertex of interest —
vn+1 with reasonably high probability. In particular, note
that

P(The process reaches vi+1 from vi) = 1− 1/2B ,

so,

P(The process reaches the vn+1 vertex) = (1− 1/2B)n.

Now, by choosing B = log2(n), we arrive at

P(The process reaches the vn+1 vertex)→ e−1, n→∞.

In the sense of avoiding rare events, the probability of e−1 is
much better than 1/2n. Moreover, the SE algorithm shares
similar behavior. The “bad” walks become extinct and the
“good” ones are split to continue to the next level. The only
difference is that SE does not randomly generates next level
states but uses the full enumeration procedure in Steps 2 and
4, thus introducing an additional variance reduction.

Despite the fact that we presented an artificial example, it is
also illustrative enough for our purposes. Generally speaking,
by increasing the budget (in a reasonable manner), we cannot
expect to obtain a zero variance estimator for hard approxima-
tion problems, but we do hope to achieve a significant variance
reduction. The benefits are clearly illustrated in the numerical
section.

V. NUMERICAL RESULTS

We performed many experiments with all algorithms
discussed above. In this section, we introduce various typical
example cases in order to demonstrate the efficacy of the
proposed methods. In the first test case (model 1), we
demonstrate the performance statistics on a set of relatively
small instances, namely 100 random 30 × 15 polytopes.
For the second and third model we choose hypercubes of
dimensions thirty and forty, respectively. These hypercube
models are interesting since the corresponding number of
vertices is known exactly, but too costly to obtain via full
enumeration using lrs. All tests were executed on a dual-core
3.2Ghz processor.

To report our findings we use the following notation.

• |̂XAV|, |̂XSE| and |̂XGS| are the estimators delivered by
the algorithm of Avis (AV), SE and GS, respectively.

• CPU is the execution time in seconds.
• R̂E is the numerical RE of an estimator which is calcu-

lated via

R̂E =

√
V̂ar

(
|̂X |
)

E
(
|̂X |
) ,

where |̂X | is an algorithm output, (|̂X | can stand for
|̂XAV|, |̂XSE|, or |̂XGS|), and V̂ar

(
|̂X |
)

is the estimated
variance.

• The relative experimental error (REE) is given by

REE =

∣∣∣|̂X | − |X ∗|∣∣∣
|X ∗|

,

where |X ∗| is the exact number of vertices.
• R is the replication parameter that stands for the number

of independent repetitions to perform prior to averaging
and delivering final result |̂X | .

• The parameter maxdepth is specific for the AV algorithm.
This criterion specifies the tree level for which a spanning
tree nodes are fully enumerated, that is, no simulation is
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used. The randomized algorithm is then performed from
this particular level. Setting the maxdepth to be greater
than zero has its pros and cons. The advantage is that it
can reduce the estimator variance, but, on the other hand,
the computation effort required by the full enumeration
procedure can be very high. See [2] for additional details.

• The SE and GS algorithms have the budget parameters
denoted by B and N respectively. These parameters
control the number of parallel trajectories within a single
replication of these algorithms.

Next, we proceed with the models.

A. Model 1

For our first model we choose 100 randomly generated
30×15 polytopes. To generate an instance, we choose 30×15
matrix A and 15 × 1 vector b components from discrete
uniform distributions U(1, 100) and U(1, 1000), respectively.
For each polytope we obtain an exact number of vertices
with RS using the lrs package that is publicly available at
http://cgm.cs.mcgill.ca/∼avis/C/lrslib, [1]. Table I summarizes
the average REEs.

TABLE I
A SUMMARY OF AVERAGE REES AND R̂ES OBTAINED FOR THE FIRST

MODEL.

Algorithm maxdepth Average REE Average R̂E
AV 0 188.6% 55.38%
AV 1 56.14% 14.49%
AV 2 137.8% 46.20%
AV 3 42.96% 11.05%
AV 4 56.72% 5.84%
SE — 7.95% 1.65%
GS — 19.82% 1.84%

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

instance number

RE
E

 

 

AV
SE
GS

Fig. 4. Comparisson of REEs for 100 random 30× 15 polytopes.

Figure 4 presents the natural logarithms of REEs achieved
by the AV, SE and GS algorithms for each random instance.
All the algorithms were given 100 seconds per polytope. For
the AV algorithm we choose maxdepth of 3 and R = 100,

since these parameters delivered the most accurate results, see
Table I. The SE and GS methods uses B = 20, R = 1000,
and N = 1400, R = 1, respectively. Figure 4 clearly indi-
cates the superiority of SE and GS as compared to the AV
algorithm. In particular, the experiment statistics showed that
SE and GS outperformed AV for 94% and 75% of test cases,
respectively. Furthermore, SE outperformed GS for 79% of
random polytopes.

B. Model 2

For this model we consider the hypercube in dimension 30
which is defined by a 60 × 30 matrix. The exact number of
vertices is 230 ≈ 1.074× 109. We used the AV algorithm with
maxdepth parameter equal to 4 and R = 45. For SE and GS
we set B = 250, R = 35, and N = 100, R = 10, respectively.
Table II summarizes 10 typical runs of the algorithms.

TABLE II
TYPICAL RESULTS OBTAINED IN 10 INDEPENDENT RUNS OF COUNTING

ALGORITHMS FOR THE SECOND MODEL.

Run |̂XAV| CPU |̂XSE| CPU |̂XGS| CPU
1 1.93× 108 1000 1.50× 109 953 1.02× 109 1015
2 1.61× 108 994 8.78× 108 955 1.15× 109 978
3 1.93× 108 999 9.52× 108 953 1.24× 109 1034
4 1.93× 108 998 1.05× 109 959 1.05× 109 1006
5 1.61× 108 992 1.07× 109 965 7.64× 108 1005
6 1.47× 108 987 1.35× 109 950 1.83× 109 1032
7 1.61× 108 994 1.01× 109 955 9.38× 108 999
8 1.93× 108 998 1.10× 109 955 9.76× 108 990
9 1.93× 108 997 1.27× 109 959 1.41× 109 1007

10 1.93× 108 998 1.14× 109 953 1.00× 109 982
Avg 1.79× 108 995 1.13× 109 956 1.14× 109 1005

Table III summarizes the R̂Es and the REEs of the algo-
rithms for the second model.

TABLE III
RELATIVE AND EXPERIMENTAL ERRORS FOR THE SECOND MODEL.

|̂XAV| |̂XSE| |̂XGS|
R̂E 0.55% 5.60% 8.84%
REE 83.4% 5.43% 5.97%

For this model, the SE and GS introduce a comparable per-
formance (with a slight advantage for SE), and their estimators
are quite accurate. However, the algorithm of Avis reports a
clear underestimation as shown in Table II. Note that |̂XAV|’s
R̂E is very small (less than 1%), but its REE is about 83%.
The reason is that AV underestimates its variance and hence
RE.

C. Model 3

For the second hypercube model we consider the hypercube
in dimension 40 which is defined by a 80 × 40 matrix. The
exact number of vertices is 240 ≈ 1.099× 1012. We used the
AV algorithm with maxdepth parameter equal to 4 and R = 40.
For SE and GS we set B = 750, R = 600, and N = 100, R =
10, respectively. Table IV summarizes 10 typical runs of the
algorithms.
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TABLE IV
TYPICAL RESULTS OBTAINED IN 10 INDEPENDENT RUNS OF COUNTING

ALGORITHMS FOR MODEL 3.

Run |̂XAV| CPU |̂XSE| CPU |̂XGS| CPU
1 2.82× 1010 4561 1.04× 1012 3992 8.94× 1011 4167
2 2.82× 1010 4561 7.64× 1011 3987 1.29× 1012 4079
3 1.07× 1010 4547 7.25× 1011 3982 7.69× 1011 4149
4 2.82× 1010 4557 7.89× 1011 4002 1.08× 1012 4106
5 2.82× 1010 4558 7.17× 1011 4003 1.21× 1012 4248
6 1.07× 1010 4544 9.92× 1011 3999 1.28× 1012 4272
7 1.07× 1010 4550 9.61× 1011 4002 9.89× 1011 4126
8 2.82× 1010 4559 7.15× 1011 3982 1.20× 1012 4272
9 1.07× 1010 4548 1.01× 1012 4019 1.26× 1012 4090
10 2.82× 1010 4577 1.33× 1012 4004 9.22× 1011 4140

Avg 2.12× 1010 4556 9.04× 1011 3988 1.09× 1012 4151

TABLE V
RELATIVE AND EXPERIMENTAL ERRORS FOR THE THIRD MODEL.

|̂XAV| |̂XSE| |̂XGS|
R̂E 0.26% 5.73% 5.35%
REE 98.1% 17.8% 0.92%

Table V summarizes the average R̂E and the REE of the
algorithms for the third model.

This model emphasizes the underestimation problem of SIS
algorithms, since both |̂XAV| and |̂XSE| provide an under-
estimation. Table V indicates that the REEs for these algo-
rithms are 98.07% and 17.75% respectively. Consequently, the
GS algorithm demonstrates a better performance for this case.

Our numerical results indicates that both SE and GS out-
perform the existing method of Avis [2]. We recommend the
use of the GS algorithm for polytopes with a large number
of vertices for a variety of reasons. Primarily this is because
the GS estimator does not have the tendency to underestimate
that tree-based methods to for large cases, and requires no
calibration of parameters outside of an initial pilot run. On
the other hand, for Knuth and SE approaches one must ensure
that adequate values for maxdepth and budget (B) respectively
are used so to ensure underestimation is not occurring.

It is important to note that the runtime of GS is dependent
on the input size (n and d), whereas SE depends on the
tree-size (number of vertices). As such, for polytopes with a
relatively small to moderate number of vertices, say less than
109, SE often will outperform GS, and in fact deliver estimates
much more quickly and with less variance. For this reason, in
practice we recommend first running the SE algorithm with
high budget parameters, and if the estimate is quite large
(greater than 109), using the GS estimator instead.
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