
Sequential Monte Carlo

for Counting Vertex Covers in General Graphs

Radislav Vaismana, Zdravko I. Botevb, Ad Ridderc

a School of Mathematics and Physics,

University of Queensland , Brisbane, Australia

r.vaisman@uq.edu.au

b The University of New South Wales,

Sydney, NSW 2052, Australia

botev@unsw.edu.au

c Faculty of Economics and Business Administration,

Vrije University, Amsterdam, The Netherlands

ad.ridder@vu.nl

August 27, 2014

Abstract

In this paper we describe a Sequential Importance Sampling (SIS) pro-

cedure for counting the number of vertex covers in general graphs. The

optimal SIS proposal distribution is the uniform over a suitably restricted

set, but is not implementable. We will consider two proposal distributions

as approximations to the optimal. Both proposals are based on randomiza-

tion techniques. The first randomization is the classic probability model of

random graphs, and in fact, the resulting SIS algorithm shows polynomial

1



complexity (FPRAS) for random graphs. The second randomization in-

troduces a probabilistic relaxation technique that uses Dynamic Program-

ming. The numerical experiments show that the resulting SIS algorithm

enjoys excellent practical performance in comparison with existing meth-

ods. In particular the method is compared with cachet - an exact model

counter, and the state of the art SampleSearch, which is based on Belief

Networks and importance sampling.

Keywords. Vertex Cover, Counting problem, Sequential importance sampling,

Dynamic Programming, Relaxation, Random Graphs.

2



1 Introduction

In this article we propose an approximation algorithm for the vertex cover count-

ing problem in a graph, by using Monte Carlo methods. In graph theory, a vertex

cover of a graph is a set of vertices such that each edge of the graph is incident

to at least one vertex of the set.

v1

v3

v2

v4

Figure 1: Example of vertex cover formed by v1 and v3.

The vertex cover problem is one of the classical NP-complete decision problems in

computational complexity theory, see Karp [16]. Hence, it is often used for devel-

oping approximation algorithms in the domain of scientific computing. A natural

generalization is the associated counting problem: how many vertex covers are

there for a given graph? This is closely related to propositional model counting

where it is asked to count the number of assignments for a given propositional

formula [11]. Efficient model counting algorithms are of interest for Bayesian

inference problems or combinatorial design problems.

Vertex cover counting is #P-complete, meaning—basically similar to NP-

complete—that it is in #P, and that every #P problem can be reduced to it

in polynomial counting reduction. We refer to Valiant [28] for more details on

these complexity classes. Specifically, #P-completeness means that exact solu-

tions of the counting problem cannot be obtained by polynomial-time algorithms.

3



Moreover, it has been shown in [9, 27] that counting the number of vertex covers

remains hard even when restricted to planar bipartite graphs of bounded degree

or regular graphs of constant degree. In addition, Liu and Lu [19] showed that

there is no efficient approximation algorithm capable to count vertex covers if

some vertex can appear in 6 clauses unless NP=RP (RP is the class of problems

for which there is a randomized algorithm such that a YES answer is right with

certainty but a NO answer is right with probability; RP is a subset of NP).

The above findings motivate to search for Monte Carlo approximation algo-

rithms. Generally, most successful approximation algorithms of #P-complete

counting problems are randomized schemes. To be more specific, suppose that

`(n) is the exact counting number of some instance of the problem of size n; for

instance, `(n) is the number of vertex covers of a graph G = G(V,E) with n = |V |

vertices. For convenience we do not include the instance G in the notation, but

clearly, `(n) also depends on it. A randomized algorithm produces a random out-

put ̂̀(n) as estimate of `(n), for instance by a Monte Carlo simulation method.

A randomized algorithm is an (ε, δ)-approximation algorithm if

P
(
(1− ε)`(n) < ̂̀(n) < (1 + ε)`(n)

)
> 1− δ

for all 0 < δ, ε < 1. We allow ε and δ to be part of the input of the estima-

tor, which we might denote by ̂̀(n, ε, δ). Then, a randomized algorithm is a

randomized approximation scheme (RAS) if for every triple (n, ε, δ) the output

satifies

P
(
(1− ε)`(n) < ̂̀(n, ε, δ) < (1 + ε)`(n)

)
> 1− δ.

Finally, a RAS is called fully polynomial if its running time is polynomial in

ε−1, log δ−1 and n. This concept of fully polynomial randomized approximation

4



scheme (FPRAS) was introduced in Karp and Luby [17]. For example, FPRAS

has been successfully developed in

• Karp et al. [18] for counting the number of satisfying assignments to a

boolean formula in disjunctive normal form.

• Jerrum and Sinclair [13] for counting the number of matchings (of all sizes)

in a graph.

• Cryan and Dyer [6] for the number of contingency tables when the number

of rows is constant.

• Jerrum et al. [14] for counting the permanent of a matrix with nonnegative

entries.

• Dyer [8] for counting the number of solutions to a 0-1 knapsack problem.

There are two Monte Carlo statistical approaches to tackle these difficult

counting problems. The first is Markov Chain Monte Carlo (MCMC) and the

second is sequential importance sampling (SIS). Both approaches exploit the find-

ing of Jerrum et al. [15] that counting is equivalent to uniform sampling over a

suitably restricted set.

MCMC methods sample from such restricted regions by constructing an er-

godic Markov Chain with stationary and limiting distribution equal to the de-

sired uniform distribution. A number of MCMC approaches with good empirical

performance have been proposed [4, 13, 22, 24] for counting problems such as sat-

isfiability, knapsack, matching, permanent, but to our knowledge not for vertex

cover.

In this article we focus on the SIS approach in much the same spirit as Ras-

mussen [21] and Chen at al. [5]. In addition to [5], there are many examples of

5



successful SIS implementations on various counting problems, see, for example,

[2, 17, 23]. The motivation of this article is to find a successful application of

SIS to yet another important counting problem — counting the number of vertex

covers of a graph.

The rest of the paper is organized as follows. Section 2 describes the im-

portance sampling method for approximate counting, specifically the sequential

version of importance sampling (SIS) and its associated algorithm for vertex cover

counting. A large body of this section is devoted to derive the exact expressions

of the optimal proposal distribution for executing SIS, also known as the zero-

variance proposal distribution. In Section 3 we present our first algoritm for

executing SIS using a proposal distribution that approximates the zero-variance.

The approximation is based on the classic probabilistic model of random graphs.

The conditional distributions of the proposal are computed using the expected

number of vertex covers of specific random subgraphs in this probability model.

We then show how the resulting SIS Algorithm A corresponds with a randomized

algorithm for counting cliques developed in [21]. As a consequence, Algorithm

A shows FPRAS for random graphs. Section 4 considers a new randomization

technique for constructing a proposal SIS distribution as approximation of the

zero-variance. The randomization is based on a probabilistic relaxation to the

vertex cover problem. The expected number of vertex covers of random graphs

in this probability model is computed efficiently by dynamic programming. The

resulting SIS Algorithm B is shown in Section 5 to outperform Algorithm A in

terms of statistical properties of the associated estimators. Also, we provide nu-

merical support for the accuracy of our method by comparing its performance

with existing procedures. Overall, the proposed method is more efficient than

available alternatives. Finally, in Section 6 we summarize our findings and dis-

6



cuss possible directions for future research.

2 Importance Sampling

Given is an undirected graph G = G(V,E), with vertex set |V | = n consisting

of n labeled vertices v1, . . . , vn, and edge set E. We consider simple graphs only:

no loops and no more than one edge between different vertices. Denote by XG

the set of all vertex covers of the given graph G. The goal is to compute its

cardinality |XG|.

Consider the binary n-space {0, 1}n of all binary n-tuples x = (x1, . . . , xn), xi ∈

{0, 1}. With any n-tuple x ∈ {0, 1}n we associate a subset V (x) ⊂ V of vertices

by letting vi ∈ V (x) if and only if xi = 1. Clearly, this subset may or may not

be a vertex cover of the given graph G. Thus we can say that

|XG| =
∑

x∈{0,1}n
I{V (x) ∈ XG}.

Suppose that we introduce a randomization on the binary n-space, meaning that

n-tuple x is generated with probability f(x), where f(x) ≥ 0 and
∑

x∈{0,1}n f(x) =

1. We denote the random n-tuple by X, the associated probabilities and expec-

tations by Pf and Ef , and we call f(·) a probability mass function (PMF).

In this section we consider estimating the number of vertex covers |XG| by im-

portance sampling simulations using a proposal PMF f(·) of the random n-tuple.

For that purpose, we restrict the class of proposal PMF’s by requiring positive

probability of all n-tuples for which the associated vertex subset is a vertex cover:

F =
{
f : {0, 1}n → [0, 1];

∑
x∈{0,1}n

f(x) = 1; V (x) ∈ XG ⇒ f(x) > 0
}
. (1)

7



Using a proposal PMF f ∈ F , the corresponding single-run importance sampling

estimator is

Zf =
I{V (X) ∈ XG}

f(X)
. (2)

Clearly, this estimator is unbiased:

Ef [Zf ] = Ef

[
I{V (X) ∈ XG}

f(X)

]
=

∑
x∈{0,1}n:V (x)∈XG

1

f(x)
× f(x) = |XG| .

This identity suggests the importance sampling estimator by running the algo-

rithm independently many times:

|̂XG| =
1

N

N∑
i=1

Z
(i)
f =

1

N

N∑
i=1

I{V (X i) ∈ XG}
f(X i)

, (3)

where X1, . . . ,XN are IID random n-tuples generated by PMF f(·), and V (X1),

. . . , V (XN) are their associated (random) vertex subsets.

A measure of efficiency of an estimator is its coefficient of variation (CV)

defined as the ratio of the variance to the square of the first moment [5]. Hence,

the CV of the single-run estimator is

cv2 =
Var[Zf ]

|XG|2
,

which is estimated simply by

ĉv2 =

1
N−1

∑N
i=1

(
Z

(i)
f − |̂XG|

)2

|̂XG|
2 .

By Slutsky’s theorem it follows that ĉv2 is asymptotically consistent. The CV

of the importance sampling estimator |̂XG| equals cv2/N . The square root of the

8



CV is commonly known as the relative error (RE). In our numerical tests we will

estimate RE by

R̂E = ĉv/
√
N. (4)

2.1 Sequential Importance Sampling

An importance sampling simulation is implemented more efficiently by a sequen-

tial procedure. We now proceed with the details of a sequential importance

sampling simulation (SIS) procedure for the vertex cover problem. First, recall

that f(x) can be decomposed as a product of conditional PMF’s:

f(x) = f1(x1)f2(x2|x1) . . . fn(xn|x1, . . . , xn−1) , (5)

where

fi(xi|x1, · · · , xi−1) =

∑
xi+1∈{0,1},...,xn∈{0,1} f(x1, . . . , xi, xi+1, . . . , xn)∑
xi∈{0,1},...,xn∈{0,1} f(x1, . . . , xi−1, xi, . . . , xn)

This decomposition allows us to sample vertex subsets in a sequential manner,

ensuring that only valid vertex covers are sampled. In particular, suppose we start

adding vertices vi for i ∈ {1, 2, · · · } to the vertex cover one by one with probability

fi(xi|x1, · · · , xi−1) and consider step i. We start this step with vertices vj, j < i

for which xj = 1 form a vertex cover in the subgraph induced by all vertices

v1, . . . , vi−1.

We either add vi to the vertex cover, or we do not. While adding vi to the

cover is always feasible, not adding vi is only feasible if there is no vertex vj,

j < i, that is not chosen (xj = 0) and that is a neigbor of vi ((vj, vi) ∈ E). This

leads to the following SIS algorithm.

9



Algorithm 2.1 Sequential Sampling of Valid Covers

Input: Graph G = G(V,E) and proposal PMF f(·).

Output: Importance weight of the generated vertex cover.

1: Z ← 1, x← (0, . . . , 0), so that V (x) = ∅.

2: for i = 1→ n do . Note that at stage i, V (x) ⊆ {v1, . . . , vi−1}

3: if vi must be added to the cover then

4: xi ← 1

5: else

6: U ∼ U(0, 1)

7: if U ≤ fi(1|x1, . . . , xi−1) then

8: xi ← 1, Z ← Z × 1
fi(1|x1,...,xi−1)

9: else

10: Z ← Z × 1
fi(0|x1,...,xi−1)

11: end if

12: end if

13: end for

14: Z ← Z × I{V (x) ∈ XG}

15: return Repeat the above procedure N times to generate Z1, . . . , ZN , and de-

liver the average 1
N

∑N
i=1 Zi.

2.2 Zero-Variance Importance Sampling

The main issue in importance sampling simulations is to construct a good or

optimal change of measure. In our setting this means to use an optimal PMF

f(·) for generating the binary n-tuples x. Clearly, optimal would be that the

associated importance sampling estimator has zero variance. It suffices that this

hold for the single-run importance sampling estimator; i.e., a PMF f(·) for which

10



Var[Zf ] = 0 is called a zero-variance PMF, and it is an optimal importance

sampling PMF, see [1, 25].

Miraculously, we can obtain such a zero-variance PMF. The next lemma shows

that the uniform distribution on the space of vertex covers is the zero-variance

pmf.

Lemma 2.1 The PMF

f ∗(x) =
1

|XG|
I{V (x) ∈ XG} (6)

is a zero-variance PMF.

Proof. Clearly f ∗ ∈ F , thus f ∗ is a feasible PMF. The associated importance

sampling estimator Zf∗ is by (2)

Zf∗ = |XG| I{V (x) ∈ XG}

Hence, the second moment equals |XG|2. For additional information about zero-

variance PMF’s, see [1, 25]. 2

Because we execute the importance sampling simulation through the implementa-

tion of the sequential procedure of Section 2.1, we will analyse also the conditional

PMF’s of the zero-variance distribution. For that purpose, we need to introduce

subgraphs G[i] and G[−i] (i = 1, . . . , n− 1).

Definition 2.1 Let be given binary x1, . . . , xi−1 indicating whether nodes vj, j <

i, are part of a vertex subset V (x).

1. i = 1.

11



• G[1] = G(V1, E1) where V1 = {v2, . . . , vn}, and E1 = {(vj, vk)|vj, vk ∈

V1} ∩ E;

• G[−1] = G(V2, E2) where V2 = V1 \ {vk|k ≥ 2, (v1, vk) ∈ E}, and E2 =

{(vj, vk)|vj, vk ∈ V2} ∩ E.

2. i = 2, . . . , n− 1.

• G[i] = G(V1, E1) where

V1 = {vi+1, . . . , vn}\{vk|k ≥ i+1, and ∃ j ≤ i−1with xj = 0, (vj, vk) ∈ E},

(7)

and E1 = {(vj, vk)|vj, vk ∈ V1} ∩ E;

• G[−i] = G(V2, E2) where

V2 = V1 \ {vk|k ≥ i+ 1, (vi, vk) ∈ E}, (8)

and E2 = {(vj, vk)|vj, vk ∈ V2} ∩ E.

Note that these subgraphs depend on the given variables x1, . . . , xi−1. For con-

venience we do not denote this explicitly. Note also that a subgraph can be the

empty set.

Example 2.1 Consider the bridge graph depicted in Figure 2.

12



v1

v3

v2

v4

Figure 2: A bridge graph.

The G[1] and G[−1] graphs are depicted in Figure 3.

v3

v2

v4 v4

Figure 3: Left panel: G[1] graph. Right panel: G[−1] graph.

Consider x1 = 1 and i = 2. Then,

• G[2] has vertex set V1 = {v3, v4} and edge set E2 = {(v3, v4)}.

• G[−2] has vertex set V2 = V1 \ {v3, v4} = ∅.

Consider x1 = 1, x2 = 1 and i = 3. Then,

• G[3] has vertex set V1 = {v4}.

• G[−3] has vertex set V2 = V1 \ {v4} = ∅.

13



2

Lemma 2.2 Let be given binary variables x1, . . . , xi−1, and denote the number of

vertex covers in the associated G[i] and G[−i] graphs by |XG[i]| and |XG[−i]|, where

|X∅| = 1. Then the zero-variance conditional PMF is as follows.

(a). Case i = 1.

f ∗1 (1) =
|XG[1] |

|XG[1] |+ |XG[−1] |

f ∗1 (0) = 1− f ∗1 (1)

(9)

(b). Case i = 2, . . . , n, and there is a node vj, j < i, such that xj = 0, and

(xj, xi) ∈ E.

f ∗i (1|x1, . . . , xi−1) = 1

f ∗i (0|x1, . . . , xi−1) = 0

(c). Case i = 2, . . . , n− 1, and for all nodes vj, j < i, that have xj = 0, it holds

that (xj, xi) 6∈ E.

f ∗i (1|x1, . . . , xi−1) =
|XG[i]|

|XG[i]|+ |XG[−i] |

f ∗i (0|x1, . . . , xi−1) = 1− f ∗i (1|x1, . . . , xi−1)

(10)

(d). Case i = n, and for all nodes vj, j < n, that have xj = 0, it holds that

(xj, xn) 6∈ E.

f ∗n(1|x1, . . . , xn−1) = f ∗n(0|x1, . . . , xn−1) =
1

2

14



Proof. We elaborate on case (c). Case (a) follows similarly, while cases (b)

and (d) are straightforward. Because the (unconditional) zero-variance PMF

f ∗(·) is the uniform distribution on the space XG of vertex covers, we get for the

conditional PMF

f ∗i (1|x1, . . . , xi−1) =
|{V (y) ∈ XG : y1 = x1, . . . , yi−1 = xi−1, yi = 1}|
|{V (y) ∈ XG : y1 = x1, . . . , yi−1 = xi−1}|

. (11)

The variables x1, . . . , xi−1 have assigned values 0 or 1 in such a manner that all

edges (vj, vk) ∩ E, j, k ≤ i − 1 are covered. Consider any node vk, k ≥ i + 1,

and suppose that there is a node vj, j ≤ i − 1 such that xj = 0 and that edge

(vj, vk) ∈ E. This means that vj is not part of the vertex cover. Hence, to cover

the edge (vj, vk), node vk is assigned xk = 1 for certain.

• If we would include vi in the cover by setting xi = 1, we obtain the subgraph

G[i] with vertex set V1 ⊂ {vi+1, . . . , vn} given in (7). Clearly, we can map

the vertex covers of G[i] one-to-one on those covers of G that are given by

the variables x1, . . . , xi−1 and xi = 1. This means that,

|{V (y) ∈ XG : y1 = x1, . . . , yi−1 = xi−1, yi = 1}| = |XG[i]|. (12)

• Suppose that we do not include vi in the cover, by setting xi = 0. To cover

an edge (vi, vk) ∈ E, k ≥ i+ 1, node vk is assigned xk = 1 for sure. In this

way we obtain the subgraph G[−i] with vertex set V2 given in (8). Now we

can map the vertex covers of G[−i] one-to-one on those covers of G that are

given by the variables x1, . . . , xi−1 and xi = 0. That means that

|{V (y) ∈ XG : y1 = x1, . . . , yi−1 = xi−1, yi = 0}| = |XG[−i]|. (13)

15



The conclusion that (10) and (11) are equivalent, follows immediately. 2

Example 2.2 Consider the bridge example graph in Figure 2.

1. i = 1. The subgraphs G[1] and G[−1] are shown in Figure 3. Clearly we get

|XG[1] | = 4 and |XG[−1]| = 2. Thus by (a) in Lemma 2.2,

f ∗1 (1) =
4

6
=

2

3
; f ∗1 (0) =

1

3
.

2. i = 2.

• Case x1 = 1. See Example 2.1 for G[2] =
(
{v3, v4}, {(v3, v4)}

)
and G[−2] =

∅. Thus, |XG[2] | = 3, |XG[−2] | = 1, and by (c) in Lemma 2.2,

f ∗2 (1|1) =
3

4
; f ∗2 (0|1) =

1

4
.

• Case x1 = 0. By (b) in Lemma 2.2

f ∗2 (1|0) = 1; f ∗2 (0|1) = 0.

3. i = 3.

• Case x1 = 1, x2 = 1. See Example 2.1 for G[3] =
(
{v4}, ∅

)
and G[−3] = ∅.

Thus, |XG[3] | = 2, |XG[−3] | = 1, and by (c) in Lemma 2.2,

f ∗3 (1|1, 1) =
2

3
; f ∗3 (0|1, 1) =

1

3
.

• Case x1 = 1, x2 = 0. By (b) in Lemma 2.2

f ∗3 (1|1, 0) = 1; f ∗3 (0|1, 0) = 0.

16



• Case x1 = 0, x2 = 1. By (b) in Lemma 2.2

f ∗3 (1|0, 1) = 1; f ∗3 (0|0, 1) = 0.

4. i = 4.

• Case x1 = 1, x2 = 1, x3 = 1. By (d) in Lemma 2.2,

f ∗4 (1|1, 1, 1) = f ∗4 (0|1, 1, 1) =
1

2
.

• Case x1 = 1, x2 = 1, x3 = 0. By (b) in Lemma 2.2

f ∗4 (1|1, 1, 0) = 1; f ∗4 (0|1, 1, 0) = 0.

• Case x1 = 1, x2 = 0, x3 = 1. By (b) in Lemma 2.2

f ∗4 (1|1, 0, 1) = 1; f ∗4 (0|1, 0, 1) = 0.

• Case x1 = 0, x2 = 1, x3 = 1. By (d) in Lemma 2.2,

f ∗4 (1|0, 1, 1) = f ∗4 (0|0, 1, 1) =
1

2
.

Note that the product (5) of these conditional PMF’s indeed gives the uniform

17



distribution on the space of all vertex covers:

f ∗(1, 1, 1, 1) = f ∗1 (1)f ∗2 (1|1)f ∗3 (1|1, 1)f ∗4 (1|1, 1, 1) =
2

3

3

4

2

3

1

2
=

1

6

f ∗(1, 1, 1, 0) = f ∗1 (1)f ∗2 (1|1)f ∗3 (1|1, 1)f ∗4 (0|1, 1, 1) =
2

3

3

4

2

3

1

2
=

1

6

f ∗(1, 1, 0, 1) = f ∗1 (1)f ∗2 (1|1)f ∗3 (0|1, 1)f ∗4 (1|1, 1, 0) =
2

3

3

4

1

3
1 =

1

6

f ∗(1, 0, 1, 1) = f ∗1 (1)f ∗2 (0|1)f ∗3 (1|1, 0)f ∗4 (1|1, 0, 1) =
2

3

1

4
1 1 =

1

6

f ∗(0, 1, 1, 1) = f ∗1 (0)f ∗2 (1|0)f ∗3 (1|0, 1)f ∗4 (1|0, 1, 1) =
1

3
1 1

1

2
=

1

6

f ∗(0, 1, 1, 0) = f ∗1 (0)f ∗2 (1|0)f ∗3 (1|0, 1)f ∗4 (0|0, 1, 1) =
1

3
1 1

1

2
=

1

6

2

Since we can not calculate generally the zero-variance conditional PMF f ∗i (xi|x1, . . . , xi−1)

exactly for the (a) and (c) cases in Lemma 2.2, we shall consider in the following

sections two proposal PMF’s f(·) as approximations of f ∗(·). Recall that the ulti-

mate goal is that the associated randomized scheme has polynomially complexity

(FPRAS).

3 Algorithm A

Our first algorithm is inspired by a randomization idea. Recall that our given

graph is G = G(V,E) with |V | = n vertices. In this section we shall consider

next to vertex covers other subsets of the vertex set V . Therefore, X vc
G denotes

the set of vertex covers.

18



Definition 3.1 For any subgraph H ⊂ G containing k vertices we let

Ek =
k∑

i=0

(
k

i

)
2−(i

2). (14)

The quantity Ek has the following probabilistic interpretation. Suppose that we

generate a random graph with k vertices according to the Edgar Gilbert model,

see [3]. This means that each edge from the
(
k
2

)
possible edges is present with

probability 1/2. We denote a random graph in this model by G . The cardinality

of the set of all vertex covers of the random graph is the random variable |XG |.

Probabilities and expectations in this random model are denoted by PEG and EEG

to make the distinction with the probability model associated with the importance

sampling PMF f(·) that we considered in the previous section. EG referd to the

Edgar Gilbert model.

Lemma 3.1 Let G be a random graph of k vertices. Then,

EEG

[
|X vc

G |
]

= Ek . (15)

In words, Ek equals the expected number of vertex covers in the random graph.

Proof. Denote the number of vertex covers of size i (where i = 0, . . . , k) by

|X vc
G (i)|. Thus,

EEG|X vc
G | =

k∑
i=0

EEG|X vc
G (i)|.

Let G = G(V,E) be an instance of the random graph. A subset S ⊂ V of

vertices is an independent set in G if no two vertices of S are adjacent. It is well

known that a subset T ⊂ V of vertices is a vertex cover if and only if S = V \ T

is an independent set. Thus in the random graph model we clearly have that

19



the expected number of vertex covers of size i equals the expected number of

independent sets of size k − i:

EEG|X vc
G (i)| = EEG|X is

G (k − i)|.

However, the latter is easily to compute by reasoning that

(i). there are
(

k
k−i

)
distinct subsets of size k − i;

(ii). a subset of size k− i is independent with probability 2−(k−i
2 ) as none of the

edges between the k − i vertices may be present.

Summarizing we get for the number of expected vertex covers in the random

graph with k vertices

EEG|X vc
G | =

k∑
i=0

EEG|X vc
G (i)|

=
k∑

i=0

EEG|X is
G (k − i)|

=
k∑

i=0

(
k

k − i

)
2−(k−i

2 )

=
k∑

i=0

(
k

i

)
2−(i

2) = Ek.

2

Our first randomized algorithm for counting vertex covers in a given graph

G = G(V,E) with |V | = n vertices is the SIS Algorithm 2.1 with the follow-

ing specially designed proposal PMF f(·). It suffices to specify the conditional

PMF’s fi(1|x1, . . . , xi−1) for any binary tuple (x1, . . . , xi−1). Let be given such a

tuple. Suppose that node vi may or may not be included in the vertex cover (oth-

20



erwise xi = 1 with probability 1). Then we determine the associated subgraphs

G[i] and G[−i] from Definition 2.1. Let these graphs have k+ and k− vertices,

respectively. Then we let

fi(1|x1, . . . , xi−1) =
Ek+

Ek+ + Ek−

. (16)

This choice is argued by considering expression (10) for the corresponding zero-

variance conditional PMF. The values |XG[i]| and |XG[−i] | are approximated by

randomization and taking expectations. Note, similarly we approximate f ∗1 (1),

as given in (9).

3.1 Complexity Analysis

We claim that the SIS algorithm with conditional PMF’s computed according to

(16) is FPRAS for random graphs. To justify our claim, we first discuss a related

problem, counting the number of cliques in a given graph G = G(V,E) with

|V | = n. A subset of vertices C ⊂ V is a clique if every two vertices in the subset

are connected by an edge. Rasmussen [21] developed a randomized algorithm for

counting cliques that is FPRAS for random graphs. Below we shall argue

(i). that the number of vertex covers and the number of cliques in a random

graph are statistically the same;

(ii). and that our algorithm translates one-to-one to Rasmussen’s algorithm.

These two arguments justify that our algorithm for counting vertex covers is

FPRAS for random graphs.

Argument (i).

Let G be a random graph with n vertices and edges chosen according to the Edgar

21



Gilbert model. Consider an instance (or realisation) G = G(V,E) of the random

graph, and let T ⊂ V be a vertex cover in G. Then we know that S = V \ T

is an independent set in G. And we see immediately that S is a clique in the

complement graph G = G(V,E) (an edge e ∈ E iff e 6∈ E). Reversely, let C ⊂ V

be a clique in G. Then, C is an independent set in G, and thus V \ C a vertex

cover in G. Hence, for every fixed graph G it holds that the number of vertex

covers in G equals the number of cliques in G:

|X vc
G | = |X cl

G
|.

Furthermore, in the randomization model every edge is chosen or not (to be

present in the graph) with equal probability 1/2. That means that the random

graph G and its complement G have the same distribution, which we express by

G
D
= G . Consequently, this holds also for the associated number of vertex covers

and cliques:

|X vc
G | = |X cl

G
| D= |X cl

G |.

Argument (ii).

First we describe the algorithm of Rasmussen [21] for counting cliques in a graph

G = G(V,E) with |V | = n. It is an importance sampling algorithm producing a

binary n-tuple x ∈ {0, 1}n with probability g(x). Similarly as for vertex covers,

the output of the algorithm is Zcl = I{V (X) ∈ X cl
G}/g(x) so that this estima-

tor is unbiased. Furthermore, although the algorithm in [21] is presented as a

recursive method, it is easy to see that it can be considered as being a sequential

method like our SIS Algorithm 2.1 for vertex covers. In fact, it is exactly the

same as our algorithm (obviously with probabilities gi(xi|x1, . . . , xi−1) in stead of

22



fi(xi|x1, . . . , xi−1)), except for the rule with the if statement on lines 3-4. This

should be replaced by checking that vi cannot be added to the clique in which

case xi = 0. The entire algorithm is given in Appendix A.

Now, let us be more specific on the conditional probabilities gi(xi|x1, . . . , xi−1) in

Rasmussen’s algorithm. For that purpose we introduce subgraphs H [i] and H [−i]

(i = 1, . . . , n− 1).

Definition 3.2 Let be given binary x1, . . . , xi−1 indicating whether nodes vj, j <

i, are part of a vertex subset V (x).

1. i = 1.

• H [−1] = G(V1, E1) where V1 = {v2, . . . , vn}, and E1 = {(vj, vk)|vj, vk ∈

V1} ∩ E.

• H [1] = G(V2, E2) where V2 = {vk ∈ V1|(v1, vk) ∈ E}, and E2 = {(vj, vk)|vj, vk ∈

V2} ∩ E;

2. i = 2, . . . , n− 1.

• H [−i] = G(V1, E1) where

V1 = {vi+1, . . . , vn}\{vk|k ≥ i+1, and ∃ j ≤ i−1with xj = 1, (vj, vk) 6∈ E},

and E1 = {(vj, vk)|vj, vk ∈ V1} ∩ E;

• H [i] = G(V2, E2) where

V2 = {vk ∈ V1|(vi, vk) ∈ E},

and E2 = {(vj, vk)|vj, vk ∈ V2} ∩ E.

23



The proposal PMF g(·) in the algorithm is obtained by specifying the conditional

PMF’s gi(1|x1, . . . , xi−1) for any binary tuple (x1, . . . , xi−1). Let be given such a

tuple. Suppose that node vi may or may not be included in the clique (otherwise

xi = 0 with probability 1). Then we determine the associated subgraphsH [−i] and

H [i] from Definition 3.2. Let these graphs have k− and k+ vertices, respectively.

Then we let

gi(1|x1, . . . , xi−1) =
Ek+

Ek+ + Ek−

, (17)

where Ek is defined in (14).

Finally we have to show the equivalence between the two algorithms (Algorithm

2.1 and A.1). First, denote by xi = 1 − xi and by x = (x1, . . . , xn), called the

complement binary n-tuple. Let be given a graph G = G(V,E) with |V | = n, and

let G be its complement. For any binary n-tuple x ∈ {0, 1}n we have

V (x) ∈ X vc
G ⇔ V (x) ∈ X cl

G
.

Now we claim the following.

(a). Apply our Algorithm 2.1 to G with the proposal f(·) given by (16), resulting

in a binary n-tuple x with probability f(x) for which holds that the asso-

ciated vertex set T = V (x) is a vertex cover; i.e., T ∈ X vc
G . The vertex set

C = V (x) of the complement tuple is a clique in the complement graph; i.e.,

C ∈ X cl
G

. We shall show that g(x) = f(x), meaning that when we would

have applied Rasmussen’s Algorithm A.1 to G with the proposal g(·) given

by (17), we would have generated the clique C with the same probability as

generating vertex cover T in graph G. Note that C ∩T = ∅ and C ∪T = V .

(b). Apply Rasmussen’s Algorithm A.1 to G with the proposal g(·) given by (17),

24



resulting in a binary n-tuple x with probability g(x) for which holds that

the associated vertex set C = V (x) is a clique; i.e., C ∈ X cl
G . The vertex

set T = V (x) of the complement tuple is a vertex cover in the complement

graph; i.e., T ∈ X vc
G

. We shall show that f(x) = g(x), meaning that when we

would have applied our Algorithm 2.1 to G with the proposal f(·) given by

(16), we would have generated the vertex cover T with the same probability

as generating clique C in graph G.

Claims (a) and (b) establish the one-to-one property of the two algorithms.

Proofs of claims (a) and (b).

In Appendix B.

4 Algorithm B

In this section we shall develop an improved proposal PMF for executing SIS for

counting vertex covers. Denoting this proposal by f̃(·) we mean that it improves

the proposal f(·) because the the associated importance sampling estimator has

lower variance:

Var[Zf̃ ] ≤ Var[Zf ].

The idea is the same as getting expression (16) by approximating the values in

the expression of the zero-variance conditional probabilities by randomization

and taking expectations. First we shall introduce the new probability model for

random graphs.

25



4.1 Vertex Cover Relaxation

In this section we introduce the vertex cover relaxation method. This is a ran-

domization technique for which the expected number of vertex covers can be

computed efficiently.

Recall that we consider a given graph G = G(V,E), with |V | = n, and that

we have labeled the vertices v1, . . . , vn in some order. We keep the order fixed,

and thus we can define the set of downstream neigbours of vertex vi:

Di = {vj ∈ V |j ≥ i+ 1, and (vi, vj) ∈ E}, i = 1, . . . , n− 1.

Let di = |Di| be the cardinality of this set. Note that di ≤ n − i because the

graph is simple. Therefore we can define a vector of probabilities as follows.

Definition 4.1 The vector of downstream probabilities is p = (p1, . . . , pn), where

pi =
di

n− 1
, i = 1, . . . , n− 1; pn = 0.

Note that p is not a probability vector!

Consider now a probability space ΩG of all graphs G′ = G(V,E ′) with the same

vertex set V , but where each possible edge (vi, vj), j > i is present in E ′ with

probability pi. Note that

pi = 0 ⇒ (vi, vj) 6∈ E ′ ∀j > i,

pi = 1 ⇒ (vi, vj) ∈ E ′ ∀j > i.

Example 4.1 Two simple examples are the bridge graph and the star graph.

They are depicted in Figure 4.

26



v1

v3

v2

v4 v1

v2

v3

v4

v5

v6

v7

Figure 4: Left panel: bridge graph. Right panel: star graph.

Concerning the bridge graph, one can easily observe that v1 is connected to v2 and

v3, v2 is connected to v3 and v4 and, finally, v3 is connected only to v4, so that we

have d1 = 2, d2 = 2, d3 = 1, respectively. The last vertex v4 has zero connections

under our relaxation, so d4 = 0 and p = (2
3
, 2

2
, 1

1
, 0). For the star graph we get

p = (1, 0, 0, 0, 0, 0, 0). 2

In what follows it will be convenient to consider also the vector of complementary

downstream probabilities q = (q1, · · · , qn), where

qi = 1− pi = 1− di
n− 1

, i = 1, . . . , n− 1; qn = 1. (18)

In the probability model, qi is the probability that the edge (vi, vj) (j > i) is

not present in G′. Given a graph G = G(V,E), the calculation of vector q is

straightforward.

Denote by G a random graph in ΩG, with probability law PG given above,

and with associated expectation EG. Clearly, for any realization G′ ∈ ΩG

PG(G = G′) =
n−1∏
i=1

p
d′i
i q

n−i−d′i
i ,

27



where 00 = 1 and d′i is defined in the same way as di; that is, the cardinality of

the set of downstream neigbors in the graph G′.

4.2 Expected Number of Relaxed Vertex Covers

Let XG be the set of all vertex covers of the given graph G = G(V,E) and |XG|

be its cardinality. Similarly, for any graph G′ ∈ ΩG the set of vertex covers is

XG′ . In this section we are interested in the expected number of vertex covers of

the random graph G :

EG|XG | =
∑

G′∈ΩG

PG(G = G′)|XG′| .

Example 4.2 Consider the bridge graph given in Example 4.1 with the vector of

probabilities p = (2
3
, 2

2
, 1

1
, 0). The set of 8 possible graphs in the probability space

ΩG is summarized in Figure 5. Note that p2 = 1, hence each graph must contain

both edges (v2, v3) and (v2, v4). Similarly, because p3 = 1, edge (v3, v4) is always

present.

28



�
�

�
� �

�

�
�

�� �

�
�

�
� �

�

�
�

���

�
�

�
� �

�

�
�

���

�
�

�
� �

�

�
�

�� �

�
�

�
� �

�

�
�

���

�
�

�
� �

�

�
�

� � �

�
�

�
� �

�

�
�

�� �

�
�

�
� �

�

�
�

�	�

Figure 5: Sample space associated with the bridge graph.

Graph (a) is generated with probability (1
3
)3; graphs (b), (c), (d) with probability

2
3
(1

3
)2; graphs (e), (f), (g) with probability 1

3
(2

3
)2, and graph (h) with probability

(2
3
)3. The corresponding number of vertex covers for graphs (a), (b), . . . , (h) is

8, 7, 7, 7, 6, 6, 6, 5. For instance, consider graph (a), and its subgraph of nodes

v2, v3, v4 (with their incident edges). The vertex covers of this subgraph are

{v2, v3}, {v2, v4}, {v3, v4}, {v2, v3, v4}. Because node v1 has no incident edge,

these four sets are also covers for the whole graph. Of course, with node v1

added, these sets remain vertex covers giving a total of eight covers. Hence, we

can compute the expected number of vertex covers

EG|XG | =
(

1

3

)3

8 + 3
2

3

(
1

3

)2

7 + 3
1

3

(
2

3

)2

6 +

(
2

3

)3

5 = 6 .

29



2

A crucial property of the proposed relaxation is summarized next.

Proposition 4.1 There exists a deterministic polynomial time algorithm that

computes EG|XG | analytically.

To prove this proposition we first establish some auxiliary results. Suppose that

a subset of vertices S ⊂ V has size k. Then we denote the ordered vertices of S

by vi1 , vi2 , . . . , vik ; that is, ij < ij+1 for all j = 1, 2, . . . , k − 1.

Lemma 4.1 Given the vector of complementary downstream probabilities q of

(18), we have

EG|XG | =
n∑

k=0

∑
S⊂V
|S|=k

k−1∏
j=1

q
k−ij
ij

.

Proof. Define, for k = 0, . . . , n, A(n, k) to be the expected number of vertex

covers of size n − k in the random graph G . Again we use the property that,

when T ⊂ V forms a vertex cover of a graph, its complement S = V \ T forms

an independent set. Thus,

A(n, k) =
∑
T⊂V
|T |=n−k

PG(T forms a vertex cover)

=
∑
S⊂V
|S|=k

PG(S forms an independent set)

Let S = {vi1 , . . . , vik}. Then, S is an independent set if and only if none of the

edges (vij , vi`) is chosen for all j = 1, . . . , k − 1 and all ` = j + 1, . . . , k. This

happens exactly with probability
∏k−1

j=1 q
k−ij
ij

. The proof is complete by noting

30



that

EG|XG | =
n∑

k=0

A(n, k). (19)

2

If, for example, the vector of probabilities q satisfies qi ≡ q ∈ (0, 1) for all i, we

obtain

A(n, k) =

(
n

k

)
q(

k
2) .

Since the last simplification is not valid for general graphs, we next explain how

to calculate A(n, k) analytically using a dynamic programming type of recursion.

Consider, for m = 1, 2, . . . , n, the subgraph Gm = G(Vm, Em) of G consist-

ing of the vertices Vm = {vn−m+1, . . . , vn} and their incident edges Em ⊂ E.

Similarly, we define the random graph Gm having Vm as vertex set, and edges

chosen randomly according to the vector of probabilities p (of the original graph

G). Finally, we define A(m, k) to be the expected number of vertex covers of

size m − k, k ≤ m, in the random graph Gm for m = 1, . . . , n. The idea is to

compute the A(m, k) numbers via a recursion by considering iteratively vertex

covers in V1, V2, . . .. Furthermore, the vertex covers of size m+ 1− k in Vm+1 can

be decomposed into vertex covers of size m + 1 − k in Vm, and in vertex covers

of size m− k in Vm. The precise recursion is formulated in the following.

Lemma 4.2 For m = 1, 2, . . . , n−1 and k = 1, . . . ,m+1, we have the recursion

A(m+ 1, k) = qk−1
n−mA(m, k − 1) + A(m, k) , (20)

where A(m, 0) = 1 for m = 1, . . . , n, and A(1, 1) = 1.

31



Proof. Again we will use the property that, when T ⊂ Vm forms a vertex cover

of a graph, its complement S = Vm \ T forms an independent set. Let S be an

independent set, and #{U} stand for the size of set U .

A(m+ 1, k) = EG[#{S of size k in {vn−m, vn−m+1, . . . , vn}}]

= EG[#{S of size k in {vn−m, . . . , vn}} and vn−m ∈ S]

+ E[#{S of size k in {vn−m, . . . , vn}} and vn−m 6∈ S]

The two terms of the decomposition are computed as follows.

• First term: the remaining nodes S \{vn−m} form an independent set of size

k− 1 in {vn−m+1, . . . , vn}, and none of these k− 1 nodes is connected with

vn−m. Since A(m, k − 1) is the expected number of such independent sets,

and since choosing edges between nodes is independent of anything else,

the first term yields qk−1
n−mA(m, k − 1).

• Second term: the remaining nodes S \ {vn−m} form an independent set

of size k in {vn−m+1, . . . , vn}, thus it does not matter whether any of these

nodes is connected with vn−m or not. Hence, the second term yields A(m, k).

2

The algorithm for calculating EG|XG | for a given graph G = G(V,E), |V | = n,

can be summarized as follows.

Algorithm 4.1 Calculating Number of Relaxed Covers

Input: G = G(V,E)

Output: EG|XG |

1: q ← calculate the vector of probabilities as in (18);

32



2: ∀k ∈ {0, · · · , n} calculate A(n, k) using recursion (20);

3: return EG|XG | as in (19).

Proof of Proposition 4.1. Step (1) of the algorithm takes O(n) time (see

Remark 4.1); step (2) can be completed in O(n2), and step (3) takes only linear

time O(n). Since all those steps are governed by (2) conclude that the overall

complexity of Algorithm 4.1 is O(n2) and Proposition 4.1 follows. 2

Remark 4.1 In order to get an efficient implementation of the above algorithm,

the graph should use the following data structure.

v1 → {va11 , . . . , va1k1}
...

vi → {vai1 , . . . , vaiki}
...

vn → ∅

Each entry vi shell have a list of adjacent vertices {vai1 , . . . , vaiki} such that each

adjacent vertex index ai1, . . . , a
i
ki

is greater than i. Having in mind the above

structure, step (1) of the algorithm can be calculated in O(n) time. This data

structure is also very helpful during the execution of the main Sequential Impor-

tance Sampling procedure due to the fact that a vertex removal can be implemented

in O(n log(n)) time provided that the adjacent indexes are ordered.

Algorithm 4.1 can also count vertex covers exactly in some cases. As an example

consider the star graph on the right panel of Figure 4, with n nodes. It is not

33



difficult to determine the exact number of vertex covers in this case. If the

central vertex participates in the cover, then there are 2n−1 covers, because any

combination of the remaining n − 1 vertices yields a valid cover. If the central

vertex it is not in the cover, then all the remaining vertices must be part of one

cover and we conclude that the exact number of vertex covers in the star graph

is 2n−1 + 1. If we take the ordering of nodes such that v1 is the central vertex,

then the induced vector of probabilities will be p = (1, 0, . . . , 0). Now, running

Algorithm 4.1 with a star graph as an input will result in 2n−1 + 1. In general,

we have the following result.

Proposition 4.2 Given that an instance G = G(V,E) induces a vector of down-

stream probabilities p = (p1, . . . , pn) where each pi ∈ {0, 1}, Algorithm 4.1 pro-

vides the exact number of vertex covers, that is, EG|XG | = |XG|.

Proof. One way to proceed is by induction on the number of vertex covers

combined with equation (20). However, it is much simpler to notice that given a

vector of probabilities p = (p1, . . . , pn) where each pi ∈ {0, 1}, there is only one

graph G with p as its vector of downstream probabilities. This observation follows

easily from the construction process of the random graph using this particular p.

For |ΩG| = 1 we obtain EG|XG | = |XG|. 2

It follows from Proposition 4.2 and from Algorithm 4.1 that if there is an ordering

in G = G(V,E) such that the vector of complementary downstream probabilities

q satisfies qi ∈ {0, 1}, then the number of vertex covers is available analytically

and can be calculated in O(|V |2) time.

34



4.3 The Proposal PMF for SIS

Finally, we return to the common issue in our study of importance sampling

for counting vertex covers in a graph. We specify the conditional probabilities

fi(x1, . . . , xi−1) of the proposal PMF for any binary tuple (x1, . . . , xi−1). Let be

given such a tuple. Suppose that node vi may or may not be included in the vertex

cover (otherwise xi = 1 with probability 1). Then we determine the associated

subgraphs G[i] and G[−i] from Definition 2.1, and we let

fi(1|x1, . . . , xi−1) =
EG|XG [i]|

EG|XG [−i]|+ EG|XG [i]|
, (21)

Thus, in essence, we approximate the values |XG[i]| and |XG[−i]| in the expression

of the zero-variance probability (10) again by randomization and taking expecta-

tions. The difference with the proposal (16) in Section 3 is the implementeation of

the probability model. Note that both expectations in(21) are readily computed

using Algorithm 4.1.

The performance of Algorithm B will be studied in the next section.

5 Numerical Results

Summarizing, we introduced two algorithms, A and B; both apply the SIS algo-

rithm 2.1. Algorithm A uses proposal PMF with conditional probabilities given

in (16); whereas in Algorithm B these probabilities are given in (21).

In this section we consider the performances of Algorithms A and B on differ-

ent models. We performed all computation on Core i5 laptop with 4GB RAM.

The reported CPU time is measured in seconds. For smaller problems we are

able to compute the exact count. In that case we report the numerical relative

35



error of the estimates; in the other cases we report the statistical relative error

estimated according to (4).

To our knowledge, no randomized algorithms have been developed dedicated to

the vertex cover counting problem. Thus to compare our algorithm we have

considered the following more generally applicable methods which have shown to

produce good performance.

• Cachet is exact model counting software introduced by Sang et al. in [26].

This method uses the well known SAT solver Chaff [20] and combines com-

ponent caching with traditional clause learning within the setup of model

counting.

• SampleSearch is a probabilistic model counting technique proposed by Gogate

and Dechter in [7, 10]. The method can deliver upper and lower bounds

on counting problems and is based on sampling from the search space of

a Boolean formula. Similarly to Cachet, it also uses a DPLL-based SAT

solvers during the execution in order to construct the sampling search space.

5.1 Random Graphs

In order to test the FPRAS property of Algorithm A that was discussed in Sec-

tion 3.1 we performed the following experiment. For each n = 5, 10, 15, . . . , 100,

we generated 40 random graphs from the Edgar Gilbert model. Next, we ran Al-

gorithm B with N = 1000 on each graph. Also we ran Algorithm B with sample

size of N = 100. Our conjecture that the proposal (21) used in Algorithm B is

more delicate in the sense that it is closer to the zero variance PMF, is verified

numerically. For each n, we report the average cv and the average Relative Time

Variance (RTV). The latter is used to compare different algorithms; it is defined

36



as the simulation time in seconds multiplied by the squared relative error. Fig-

ures 6 and 7 summarize the obtained results. One can clearly observe that even

with this favorable settings, for which Algorithm A is FPRAS, the proposal (21)

has clear superiority.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

n

cv

 

 
Alg. A
Alg. B

Figure 6: cv as a function of n.

37



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

n

R
T

V

 

 
Alg. A

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

n

R
T

V

 

 
Alg. B

Figure 7: RTV as a function of n.

5.2 Model 1

A graph with |V | = 100. The edge set E was constructed according to an adapted

Edgar Gilbert random graph model, as follows. For each edge (vi, vj) from all(|V |
2

)
possible edges we first generated a random number from the uniform (0,1)

distribution, say p; then the edge was included in the graph with probability p,

namely by generating u from the uniform (0,1) distribution and checking u < p.

All random drawings were executed independently The instance that we obtained

in this way contained |E| = 2, 432 edges. Then we executed our Algorithm B

with sample size N = 100. We report the computed estimate |̂XG|, the required

computing time CPU, standard error, and the numerical relative error because

the cachet method delivered the exact count. In order to check stability and

robustness of the algorithm, we repeated ten times the estimation procedure

with the same graph. The following table summarizes the results.

38



Table 1: Performance of 10 runs of Algorithm B on Model 1 with sample size
N = 100.

Run ̂|XG| R̂E error CPU

1 2.481× 105 1.29× 10−2 1.62× 10−2 2.065

2 2.437× 105 4.87× 10−3 1.73× 10−2 2.213

3 2.431× 105 7.38× 10−3 1.62× 10−2 2.054

4 2.419× 105 1.24× 10−2 1.65× 10−2 1.984

5 2.468× 105 7.55× 10−3 1.49× 10−2 1.878

6 2.463× 105 5.49× 10−3 1.71× 10−2 1.826

7 2.412× 105 1.52× 10−2 1.81× 10−2 1.995

8 2.517× 105 2.75× 10−2 1.31× 10−2 2.143

9 2.443× 105 2.54× 10−3 1.53× 10−2 1.935

10 2.372× 105 3.18× 10−2 1.55× 10−2 2.212

Average 2.444× 105 1.28× 10−2 1.60× 10−2 2.031

For comparison:

• Running cachet delivers an exact solution of 244941 in 0.75 seconds.

• Running SampleSearch 10 times provides an average of 196277 in 60 seconds

with estimated relative error of about 20%.

For this example cachet provides the exact solution in the fastest time. Sample-

Search provides a good lower bound, but at a high CPU time cost, and Algorithm

B performs as second best.

5.3 Model 2

A graph with |V | = 300 and |E| = 21, 094, generated in the same manner as

Model 1. The SIS performance is given in the following table.

39



Table 2: Performance of 10 runs of Algorithm B for Model 2 with N = 100.

Run ̂|XG| R̂E error CPU

1 1.360× 1014 4.29× 10−2 4.06× 10−2 69.33

2 1.298× 1014 4.64× 10−2 6.98× 10−3 78.36

3 1.308× 1014 4.22× 10−2 1.33× 10−3 102.46

4 1.277× 1014 4.23× 10−2 2.23× 10−2 98.04

5 1.327× 1014 3.76× 10−2 1.56× 10−2 103.36

6 1.241× 1014 3.86× 10−2 5.01× 10−2 112.55

7 1.270× 1014 3.92× 10−2 2.78× 10−2 117.71

8 1.293× 1014 4.40× 10−2 1.06× 10−2 84.02

9 1.258× 1014 3.83× 10−2 3.72× 10−2 97.73

10 1.279× 1014 3.97× 10−2 2.16× 10−2 91.81

Average 1.291× 1014 4.11× 10−2 2.34× 10−2 95.54

For comparison:

• Running cachet delivers an exact solution of 1.306× 1014 in about 17 min-

utes.

• Running SampleSearch ten times provides an average of 5.791× 1013 in

1, 200 seconds with estimated relative error of about 55%.

5.4 Model 3

A graph with |V | = 1, 000. In this model, edges were again randomly included

one by one according to u < p, but now p ∈ (0, 1) was generated from a truncated

normal distribution on the interval [0, 1] with µ = 0.1 and σ = 0.1; as before, u

came from the uniform (0,1) distribution. We obtained an instance with |E| =

64, 251. The instance size is too large for an exact solution, therefore we give the

(estimated) relative error of the estimator, denoted R̂E, and computed as in (4).

The results are summarized bellow.

40



Table 3: Performance of 10 runs of Algorithm B on Model 3 with N = 100.

Run N0
̂|XG| R̂E CPU

1 4.384× 1032 4.450× 10−2 661.5

2 4.058× 1032 4.151× 10−2 703.1

3 4.014× 1032 4.814× 10−2 691.9

4 4.137× 1032 4.215× 10−2 721.3

5 4.220× 1032 4.437× 10−2 691.0

6 4.124× 1032 4.555× 10−2 688.6

7 4.422× 1032 4.788× 10−2 667.0

8 4.184× 1032 4.563× 10−2 682.0

9 4.234× 1032 4.103× 10−2 698.9

10 4.261× 1032 4.813× 10−2 648.6

Average 4.204× 1032 4.489× 10−2 685.4

For comparison:

• cachet was unable to deliver a solution within 2 days of CPU time. The

lower bound of 3.439× 109 was only supplied.

• SampleSearch failed to initialize possibly due to the large size of the prob-

lem.

5.5 Model 4

A graph with |V | = 1, 000 and |E| = 249, 870. This time p was generated from

a truncated Normal distribution with µ = 0.5 and σ = 0.3. The results are

summarized bellow.

41



Table 4: 10 runs of Algorithm B Model 4 with N = 100.

Run N0
̂|XG| R̂E CPU

1 2.749× 1011 1.608× 10−2 1841

2 2.762× 1011 1.531× 10−2 1847

3 2.848× 1011 1.720× 10−2 1658

4 2.737× 1011 1.274× 10−2 1562

5 2.795× 1011 1.521× 10−2 1642

6 2.819× 1011 1.591× 10−2 1853

7 2.764× 1011 1.701× 10−2 1756

8 2.776× 1011 1.768× 10−2 1544

9 2.698× 1011 1.468× 10−2 1767

10 2.778× 1011 1.605× 10−2 1708

Average 2.773× 1011 1.579× 10−2 1718

For comparison:

• cachet was timed out after 2 days and was unable to deliver a solution. The

lower bound of 9.601× 1010 was supplied.

• SampleSearch failed to initialize. We speculate that the reason for this is

that the problem is too large.

5.6 Nonrandom graphs

Finally, consider nonrandom graphs, namely the hypercube graphs Hn, n =

4, 5, 6, 7 with 2n vertices and n2n−1 edges, see [12]. In graph theory, the hyper-

cube graph Hn is a regular graph with 2n vertices and n2n−1 edges. In order

to construct a hypercube graph, label every 2n vertices with n-bit binary num-

bers and connect two vertices by an edge whenever the Hamming distance of

their labels is 1. For nonrandom graphs, we expect our algorithm’s performance

to deteriorate. While dealing with random graphs, the distribution of adjacent

vertices of some given vertex is some that “uniform” so hopefully our dynamic

42



programming will provide a good approximation because it is also based on ran-

dom model. For nonuniform graphs, we can not hope to enjoy the same behavior.

The exact number of vertex covers forH4, H5 andH6 is know to be 743, 254475

and 1.976 × 1010, respectively. The following table summarizes the empirical

performance, where we set the sample size N to be 50, 250, 1500 and 104 for

H4, H5, H6 and H7, respectively, so that the estimated relative error was kept

below 3%.

Table 5: Performance of the Algorithm B for the Hypercube graphs.

Instance |̂XG| R̂E CPU

H4 745.9 2.87× 10−2 0.008
H5 2.550× 105 2.86× 10−2 0.157
H6 1.983× 1010 2.67× 10−2 4.841
H7 7.819× 1019 2.89× 10−2 199.8

6 Concluding Remarks

In this article we studied the problem of counting the number of vertex covers

in a simple graph. This problem has #P-complete complixity classification as

a function of the number vertices. We considered the application of sequential

importance sampling (SIS) as a randomized approximation method to produce

estimates of the counting number. The importance sampling simulation is exe-

cuted by a proposal probability mass function (PMF) on the vertex covers. The

crucial result was that we determined the expressions of the conditional densities

of the zero-variance proposal PMF. These expressions refer to the number of ver-

tex covers in specific subgraphs. Although this PMF is not implementable, by

constructing a probability model on random graphs we replaced the expressions

43



in the zero-variance proposal PMF by corresponding expectations of the number

of vertex covers of these random graphs. Moreover, these expectations were easily

computed.

In fact, we introduced two of these probability models and analysed the re-

sulting SIS algorithms. The first probability model is based on a classic model for

random graphs, resulting in Algorithm A. We proved that this algorithm shows

polynomial complexity (FPRAS) for random graphs. The analysis of this result

was based on a similar result for counting cliques in simple graphs. Algorithm B

resulted from the second randomization model that used a probabilistic relaxation

of vertex covers. By numerical experiments we compared the two Algorithms in

terms of statistical performances of the associated estimators. Our findings were

that Algorithm B outperforms Algorithm A. Algorithm B is easy to implement

and the numerical results suggest that the practical performance is comparable

with and sometimes significantly better than currently existing methods. For

example, with a sample size as little as 100, we observed low relative errors on

problems with large dimensionality, for which alternative methods fail.

Of interest as future research is to theoretically investigate how closely the

proposal distribution described in this article approximates the zero-variance

measure. In addition, of interest will be the development of similar relaxation

techniques to other important graph counting problems.

ACKNOWLEDGMENT

We are thoroughly grateful to the anonymous reviewers for their valuable and

constructive remarks and suggestions.

44



References

[1] Soren Asmussen and Peter W. Glynn. Stochastic Simulation: Algorithms

and Analysis. Applications of Mathematics. Springer Science and Business

Media, LLC, 2007.

[2] Joseph Blitzstein and Persi Diaconis. A sequential importance sampling

algorithm for generating random graphs with prescribed degrees. Internet

Mathematics, 6:487–520, 2010.

[3] Bella Bollobás. Random Graphs. Cambridge Studies in Advanced Mathe-

matics. Cambridge University Press, 2001.

[4] Zdravko Botev and Dirk Kroese. Efficient Monte Carlo simulation via the

generalized splitting method. Statistics and Computing, 22:1–16, 2012.

[5] Yuguo Chen, Persi Diaconis, Susan P. Holmes, and Jun S. Liu. Sequen-

tial Monte Carlo methods for statistical analysis of tables. Journal of the

American Statistical Association, 100:109–120, March 2005.

[6] Mary Cryan and Martin Dyer. A polynomial-time algorithm to approxi-

mately count contingency tables when the number of rows is constant. Jour-

nal of Computer and System Sciences, 67:291–310, 2003.

[7] Rina Dechter and Vibhav Gogate. A new algorithm for sampling CSP so-

lutions uniformly at random. In Principles and Practice of Constraint Pro-

gramming, May 2006.

[8] Martin Dyer. Approximate counting by dynamic programming. In Proceed-

ings of the 35th ACM Symposium on Theory of Computing, pages 693–699,

2003.

45



[9] Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets

in sparse graphs. In In 40th Annual Symposium on Foundations of Computer

Science, pages 210–217, 1999.

[10] Vibhav Gogate and Rina Dechter. Approximate counting by sampling the

backtrack-free search space. In Proceedings of the 22nd national conference

on Artificial Intelligence - Volume 1, AAAI’07, pages 198–203. AAAI Press,

2007.

[11] Carla P. Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Selman. From

sampling to model counting. In IJCAI, pages 2293–2299, 2007.

[12] Frank Harary, John P. Hayes, and Horng-Jyh Wu. A survey of the theory of

hypercube graphs. Computers & Mathematics with Applications, 15(4):277

– 289, 1988.

[13] Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method:

An approach to approximate counting and integration. In D. Hochbaum, ed-

itor, Approximation Algorithms for NP-hard Problems, pages 482–520. PWS

Publishing, 1996.

[14] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approx-

imation algorithm for the permanent of a matrix with non-negative entries.

Journal of the ACM, pages 671–697, 2004.

[15] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation

of combinatorial structures from a uniform distribution. Theor. Comput.

Sci., 43:169–188, 1986.

46



[16] Richard M. Karp. Reducibility among combinatorial problems. In R.E.

Miller and J.W. Thatcher, editors, Complexity of Computer Computations,

pages 85–103. Plenum, New York, 1972.

[17] Richard M. Karp and Michael Luby. Monte-Carlo algorithms for enumera-

tion and reliability problems. In Proceedings of the 24th Annual Symposium

on Foundations of Computer Science, SFCS ’83, pages 56–64, Washington,

DC, USA, 1983. IEEE Computer Society.

[18] Richard M. Karp, Michael Luby, and Neal Madras. Monte-Carlo approxima-

tion algorithms for enumeration problems. Journal of Algorithms, 10:429–

448, 1989.

[19] Jingcheng Liu and Pinyan Lu. FPTAS for counting monotone CNF. CoRR,

abs/1311.3728, 2013.

[20] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient SAT solver. In Annual ACM

IEEE Design Automation Conference, pages 530–535. ACM, 2001.

[21] Lars E. Rasmussen. Approximately counting cliques. Random Struct. Algo-

rithms, 11(4):395–411, 1997.

[22] Reuven Rubinstein. The Gibbs cloner for combinatorial optimization, count-

ing and sampling. Methodology and Computing in Applied Probability,

11:491–549, 2009.

[23] Reuven Rubinstein. Stochastic enumeration method for counting NP-hard

problems. Methodology and Computing in Applied Probability, 15(2):249–

291, 2013.

47



[24] Reuven Rubinstein, Andrey Dolgin, and Radislav Vaisman. The splitting

method for decision making. Communications in Statistics - Simulation and

Computation, 41(6):905–921, 2012.

[25] Reuven Rubinstein and Dirk Kroese. Simulation and the Monte Carlo

Method, Second Edition. John Wiley and Sons, New York, 2007.

[26] Tian Sang, Fahiem Bacchus, Paul Beame, Henry Kautz, and Toniann Pitassi.

Combining component caching and clause learning for effective model count-

ing. In Seventh International Conference on Theory and Applications of

Satisfiability Testing, 2004.

[27] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar

graphs. SIAM Journal on Computing, 31:398–427, 1997.

[28] Leslie G. Valiant. The complexity of enumeration and reliability problems.

SIAM Journal on Computing, 8(3):410–421, 1979.

48



Appendix A Rasmusen Algorithm for counting

the number of cliques

Algorithm A.1 Sequential Sampling of Cliques

Input: Graph G = G(V,E) and proposal PMF g(·).

Output: Importance weight of the generated clique.

1: Z ← 1, x← (0, . . . , 0), so that C(x) = ∅.

2: for i = 1→ n do . Note that at stage i, C(x) ⊆ {v1, . . . , vi−1} is a clique,

3: if vi can not be added to the clique then

4: xi ← 0

5: else

6: U ∼ U(0, 1)

7: if U ≤ g(1|x1, . . . , xi−1) then

8: xi ← 1, Z ← Z × 1
g(1|x1,...,xi−1)

9: else

10: Z ← Z × 1
g(0|x1,...,xi−1)

11: end if

12: end if

13: end for

14: Z ← Z × I{C(x) ∈ X cl
G}

15: return Repeat the above procedure N times to generate Z1, . . . , ZN , and de-

liver the average 1
N

∑N
i=1 Zi.

49



Appendix B Proofs

Lemma B.1 Given a simple graph G = G(V,E) with |V | = n, and let G =

G(V,E) be its complement. Let x ∈ {0, 1}n be a binary n-tuple such that its

associated vertex set is a vertex cover in G; i.e., V (x) ∈ G vc, and denote its

complement by x. Furthermore, f(·) and g(·) are PMF’s on binary n-tuples

given by (16) and (17), respectively. Then f(x) = g(x).

Proof. Note that V (x) is a clique in the complement graph G.

First we show that f(1) = g(0). This follows directly from their definitions:

f1(1) =
Ek+

Ek+ + Ek−

,

where k+ = n − 1, and k− = d1 (degree of vertex v1 in G), see Definition 2.1.

And

g1(0) =
Em−

Em− + Em+

,

where m− = n− 1 and m+ = d1, see Definition 3.2.

Consider the vertex vi. The following cases are of interest.

1. Suppose that in graph G there exists vj, j < i, such that xj = 0 and

(vj, vi) ∈ E. This means that vi is adjacent to a certain vertex that is not

part of the vertex cover. Thus, vi must be chosen with probability 1; i.e.,

fi(1|x1, . . . , xi−1) = 1. Then, in the complement graph xj = 1 and (vj, vi) 6∈

E. This means vi is not adjacent to a certain vertex that is part of the clique.

Thus, vi is not chosen with probability 1; i.e., gi(0|x1, . . . , xi−1) = 1.

2. Suppose that in graph G all vertices vj, j < i that are are part of the vertex

50



cover, are adjacent to vi. Mathematically:

xj = 1 (j ≤ i− 1) ⇒ (vj, vi) ∈ E.

Thus vi may or may be not part of the vertex cover in G. Let

A = {vk|k ≥ i+ 1; ∃ j ≤ i− 1 xj = 0 and (vj, vk) ∈ E},

B = {vk|k ≥ i+ 1; vk 6∈ A; and (vi, vk) ∈ E}.

Then vi is chosen in the vertex cover with probability

fi(1|x1, . . . , xi−1) =
Ek+

Ek+ + Ek−

,

with, according to Definition 2.1:

k+ = n− i− |A|; k− = n− i− |A| − |B|.

In the complement graph G it holds that

xj = 0 (j ≤ i− 1) ⇒ (vj, vi) 6∈ E.

Thus vi may or may be not part of the clique in G. Let

A = {vk|k ≥ i+ 1; ∃ j ≤ i− 1 xj = 1 and (vj, vk) 6∈ E},

B = {vk|k ≥ i+ 1; vk 6∈ A and (vi, vk) ∈ E}.

51



Then vi is not chosen in the clique with probability

gi(0|x1, . . . , xi−1) =
Em−

Em− + Em+

,

with, according to Definition 3.2:

m− = n− i− |A|; m+ = |B|.

We see immediately that the set A and A are the same, and that B =

{vi+1, . . . , vn} \ (A ∪B). In other words, k+ = m− and k− = m+.

2

Lemma B.2 Given a simple graph G = G(V,E) with |V | = n, and let G =

G(V,E) be its complement. Let x ∈ {0, 1}n be a binary n-tuple such that its

associated vertex set is a clique in G; i.e., V (x) ∈ G cl, and denote its complement

by x. Furthermore, f(·) and g(·) are PMF’s on binary n-tuples given by (16) and

(17), respectively. Then g(x) = f(x).

The proof goes similarly as the proof of the previous Lemma, and therefore it is

omitted.

52


