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Abstract

We use standard general relativity to clarify common misconceptions about funda-

mental aspects of the expansion of the Universe. In the context of the new standard

ΛCDM cosmology we resolve conflicts in the literature regarding cosmic horizons

and the Hubble sphere (distance at which recession velocity = c) and we link these

concepts to observational tests. We derive the dynamics of a non-comoving galaxy

and generalize previous analyses to arbitrary FRW universes. We also derive the

counter-intuitive result that objects at constant proper distance have a non-zero

redshift. Receding galaxies can be blueshifted and approaching galaxies can be red-

shifted, even in an empty universe for which one might expect special relativity to

apply. Using the empty universe model we demonstrate the relationship between

special relativity and Friedmann-Robertson-Walker cosmology.

We test the generalized second law of thermodynamics (GSL) and its extension

to incorporate cosmological event horizons. In spite of the fact that cosmological

horizons do not generally have well-defined thermal properties, we find that the

GSL is satisfied for a wide range of models. We explore in particular the relative

entropic ‘worth’ of black hole versus cosmological horizon area. An intriguing set of

models show an apparent entropy decrease but we anticipate this apparent violation

of the GSL will disappear when solutions are available for black holes embedded in

arbitrary backgrounds.

Recent evidence suggests a slow increase in the fine structure constant α = e2/h̄c

over cosmological time scales. This raises the question of which fundamental quan-

tities are truly constant and which might vary. We show that black hole thermody-

namics may provide a means to discriminate between alternative theories invoking

varying constants, because some variations in the fundamental ‘constants’ could

lead to a violation of the generalized second law of thermodynamics.
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Preface

The material in this thesis comes from research I have had published over the

course of my PhD. Each Chapter is loosely based on the publications as follows:

• Davis and Lineweaver, 2001, “Superluminal recession velocities”, (AIP con-

ference proceedings, 555, New York, p. 348), provides some background for

Chapter 1.

• Davis and Lineweaver, 2004, “Expanding confusion: common misconcep-

tions of cosmological horizons and the superluminal expansion of the Universe”,

(Publications of the Astronomical Society of Australia, in press), forms the basis

of Chapter 2.

• Davis, Lineweaver and Webb, 2003, “Solutions to the tethered galaxy

problem in an expanding Universe and the observation of receding blueshifted

objects”, (American Journal of Physics, 71, 358), forms the basis of Chapter 3.

• Davis, Davies and Lineweaver, 2003, “Black hole versus cosmological hori-

zon entropy”, (Classical and Quantum Gravity, 20, 2753), along with,

• Davies and Davis, 2002, “How far can the generalized second law be gener-

alized”, (Foundations of Physics, 32, 1877), form the basis of Chapter 5.

• Davies, Davis and Lineweaver, 2002, “Black holes constrain varying con-

stants”, (Nature, 418, 602), forms the basis of Chapter 6.

Although I have used the first person plural throughout, the work presented in

this thesis is my own. The work was largely carried out in close contact between

myself and one or both of my two primary collaborators, Charles H. Lineweaver

and Paul C. W. Davies. They are both fountains of ideas, and much of the work I

completed arose from investigating their insights.

Charles Lineweaver initiated my investigation into the topics in Part I when he

asked “Can recession velocities exceed the speed of light?”. This evolved into a
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research program to elucidate some of the common misconceptions that surround

the expansion of the Universe, and turned up some suprising new implications of

the general relativistic picture of cosmology. In this research I was also supported

by John Webb.

Paul Davies offered his vast knowledge of event horizon physics, initiating in turn

the bulk of Part II. Paul is largely responsible for the theoretical derivations of the

“Small departures from de Sitter space” criterion in Sections 5-3.1 and 5-4.1. It was

Paul’s initial insight that led to our investigation, and the subsequent lively debate,

of how black hole event horizons may provide constraints on varying contants.

For this we are also endebted to the pioneering observational work of John Webb,

Michael Murphy and collaborators. Sharing an office with Michael and watching

the observational data supporting a variation in the fine structure constant unfold,

undoubtably fueled my interest in this area.

During the course of my PhD I was also involved in another line of research, in

the field of Astrobiology, that does not appear in this thesis. Papers resulting from

this work are:

• Lineweaver and Davis, 2002, “Does the rapid appearance of life on Earth

suggest that life is common in the Universe?”, (Astrobiology, 2, 293).

• Lineweaver and Davis, 2003, “On the non-observability of recent biogene-

sis”, (Astrobiology, 3, 241).

This thesis itself appears in the preprint archive with reference: astro-ph/0402278.

Throughout this thesis I endeavour to lay credit where credit is due, and pro-

vide the background references demonstrating the work of the giants upon whose

shoulders we stand.



Part I

Detailed Examination of

Cosmological Expansion





Most people prefer certainty

to truth.

Fortune cookie

Chapter 1

Introduction

The Big Bang model and the expansion of the Universe are now well established.

Yet there remain many fundamental points that are still under examination. It

is less than a decade ago that the first evidence arrived suggesting the Universe is

accelerating, and the nature of the dark energy remains uncertain. The many unan-

swered questions, and the precision observational tools emerging to study them,

make modern cosmology an exciting and vibrant field of study.

This thesis has two parts. Throughout we follow the theme of achieving a better

understanding of the expansion of the Universe and cosmic horizons. Part I ad-

dresses a variety of fundamental questions regarding the expansion of the Universe,

recession velocities and the extent of our observable Universe. We resolve some

key conflicts in the literature, derive some counter-intuitive new results and link

theoretical concepts to observational tests. Part II looks into the details of hori-

zon entropy. Firstly, we examine horizon entropy in the cosmological context, and

test the generalized second law of thermodynamics as it applies to the cosmological

event horizon. Secondly, we assess whether black hole thermodynamics can be used

to place any constraints on theories in which the constants of nature vary.

Part I begins with an analysis of conflicting views in the literature regarding the



4 Chapter 1. Introduction

Big Bang model of the Universe. This analysis reveals a wide range of misconcep-

tions, the most important of which we discuss in Chapter 2. The misconceptions we

clarify appear not only in text books, but also in the scientific literature, and they

are often being expressed by the researchers making the most significant advances

in modern cosmology1. These misconceptions can be dangerous, because once a

feature has become common knowledge, little thought is put into questioning it.

Having dealt with several fundamental misconceptions, we use Chapter 3 to

elucidate the effect of the expansion of the Universe on non-comoving objects. As a

result of this analysis we demonstrate that receding objects can appear blueshifted

and approaching objects can appear redshifted. In general zero velocity does not

give zero redshift in the expanding Universe.

Many of the misconceptions and conflicts in the literature arise from misappli-

cations of special relativity (SR) to situations in which general relativity is appro-

priate. We therefore spend some time in Chapter 4 to detail how SR fits into the

general relativistic description of the expansion of the Universe. Most importantly

we show how special relativistic velocities and the Doppler shift relate to recession

velocities and the cosmological redshift. Many of the aspects discussed are concep-

tual, so we have included observational consequences of these concepts wherever

possible. In Sect. 2-2 we provide a new analysis of supernovae data providing ob-

servational evidence against the special relativistic interpretation of cosmological

redshifts. This analysis has only recently become possible thanks to the pioneering

observations of the two supernovae teams: the Supernova Cosmology Project and

the High-redshift Supernova team.

In Part II the detailed knowledge of the expansion of the Universe developed in

Part I is used to further investigate properties of event horizons, and in particular

1This view is expressed in Peebles (1993), preface: “The full extent and richness of [the hot

big bang model of the expanding Universe] is not as well understood as I think it ought to be,

even among those making some of the most stimulating contributions to the flow of ideas. In part

this is because the framework has grown so slowly, over the course of some seven decades, and

sometimes in quite erratic ways...”
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their associated entropy. In Chapter 5, we question whether the cosmological event

horizon has an entropy proportional to its area, as suggested by an extension of

the generalized second law of thermodynamics. We compare the entropic worth of

competing event horizons by calculating the trade off in event horizon area as black

holes disappear over the cosmological event horizon. In all but a few cases the total

horizon area increases, upholding the generalized second law of thermodynamics.

However, there are cases in which a total entropy decrease occurs. We believe that

this apparent violation of the generalized second law of thermodynamics is a limita-

tion of our current understanding of black holes and will disappear when black hole

solutions are available in an arbitrary, evolving background. We provide analytical

solutions for small departures from de Sitter space and use numerical results to

investigate a wide range of cosmological models. Using the same calculation for a

radiation filled universe we find that entropy always increases in all models tested.

In Chapter 6 we use black hole entropy to suggest possible constraints on varying

constant theories.

Throughout we assume basic knowledge of the general relativistic description of

the expansion of the Universe. To provide a firm foundation from which to proceed

we use the remainder of this chapter to review some of the key results, and to

introduce our notation. To further clarify notation and usage we provide a more

detailed mathematical summary in Appendix A.
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1-1 Standard general relativistic cosmology

We assume a homogeneous, isotropic universe and use the standard Robertson-

Walker metric,

ds2 = −c2dt2 +R(t)2[dχ2 + S2
k(χ)dψ2]. (1.1)

Observers with a constant comoving coordinate, χ, recede with the expansion of

the Universe and are known as comoving observers. The time, t, is the proper

time of a comoving observer, also known as cosmic time (see Section 4-1). The

proper distance, D = Rχ, is the distance (along a constant time surface, dt = 0)

between us and a galaxy with comoving coordinate, χ. This is the distance a

series of comoving observers would measure if they each lay their rulers end to end

at the same cosmic instant (Weinberg 1972; Rindler 1977). The evolution of the

scalefactor, R, is determined by the rate of expansion, density and composition

of the Universe according to Friedmann’s equation, Eq. A.17, as summarized in

Appendix A. Friedmann’s equation together with the Robertson-Walker metric

define Friedmann-Robertson-Walker (FRW) cosmology. Present day quantities are

given the subscript zero. We use two expressions for the scalefactor. When denoted

by R, the scalefactor has dimensions of distance. The dimensionless scalefactor,

normalized to 1 at the present day, is denoted by a = R/R0. Our analysis centres

around the behaviour of the Universe after inflation. We defer a discussion of

inflation to Sect. 2-1.2.

We define total velocity to be the derivative of proper distance with respect to

proper time, vtot = Ḋ,

Ḋ = Ṙχ+Rχ̇, (1.2)

vtot = vrec + vpec. (1.3)

Peculiar velocity, vpec, is measured with respect to comoving observers coincident

with the object in question. Peculiar velocity vpec = Rχ̇ corresponds to our nor-

mal, local notion of velocity and must be less than the speed of light. The re-

cession velocity vrec is the velocity of the Hubble flow at proper distance D and
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can be arbitrarily large (Murdoch 1977; Stuckey 1992a; Harrison 1993; Kiang 1997;

Gudmundsson & Björnsson 2002). With the standard definition of Hubble’s con-

stant, H = Ṙ/R, Eq. 1.2 above gives Hubble’s law, vrec = HD.

Since this thesis deals frequently with recession velocities and the expansion of

the Universe it is worth taking a moment to assess their observational status. Even

though distances are notoriously hard to measure in astronomy, modern cosmol-

ogy has developed an impressive model of the Universe as an expanding, evolving

structure. That model has been developed through an extensive set of observations,

combining to give a consistent picture of the expanding Universe, and ever more

precise estimates of its rate of expansion and acceleration. We can now put error

bars of about ±6% on our calculations of distant recession velocities2. However,

all this has been done without ever measuring a recession velocity directly. It is

not possible to send out a single observer with a stopwatch to watch distant galax-

ies rush past3. Even our indirect distance measures are not yet accurate enough

to observe galaxies receding over human timescales. (Although, in a few hundred

years it is likely we will be able to measure a change in redshift, and thus directly

measure cosmic acceleration, see Sect. 2-2.3). So despite the fact that expansion is

crucial to our modern conception of the Universe, we have never directly measured

a recession velocity. This does not remove the conceptual utility of the expansion

picture, nor the accuracy of the description.

2Based on the H0 = 71+4
−3 kms−1Mpc−1 accuracy of the Hubble constant quoted by WMAP

(Bennett et al. 2003), but neglecting peculiar velocities (whose relative effect diminishes with

distance).
3This is not just a limitation of our spaceships, it is an intrinsic limitation because we cannot

define an extended inertial frame in which both us, and the distant observer, could sit. The

required procedure is an infinite set of infinitesimal observers set up along the line of sight to take

a synchronized measurement (Weinberg, 1972, p. 415; Rindler, 1977, p. 218). This is therefore a

measurement we are not likely to make in the foreseeable future.
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Figure 1.1. Spacetime diagrams for the (ΩM,ΩΛ) = (0.3, 0.7) universe with H0 =

70 km s−1Mpc−1. Dotted lines show the worldlines of comoving objects. The current

redshifts of the comoving galaxies shown (Eq. A.9) appear labeled on each comoving

worldline. The normalized scalefactor, a = R/R0, is drawn as an alternate vertical axis.

Our comoving coordinate is the central vertical worldline. All events that we currently

observe are on our past light cone (cone or “teardrop” with apex at t = now, Eq. A.8).

All comoving objects beyond the Hubble sphere (thin solid line) are receding faster than

the speed of light. The speed of photons on our past light cone relative to us (the slope

of the light cone) is not constant, but is rather vrec − c. Photons we receive that were

emitted by objects beyond the Hubble sphere were initially receding from us (outward

sloping lightcone at t <∼ 5 Gyr, upper panel). Caption continues on next page.



1-1. Standard general relativistic cosmology 9

Figure 1.1 caption, continued:

Only when they passed from the region of superluminal recession vrec > c (yellow crosshatch-

ing and beyond) to the region of subluminal recession (no shading) could the photons

approach us. More detail about early times and the horizons is visible in comoving co-

ordinates (middle panel) and conformal coordinates (lower panel). Our past light cone

in comoving coordinates appears to approach the horizontal (t = 0) axis asymptotically,

however it is clear in the lower panel that the past light cone reaches only a finite distance

at t = 0 (about 46Glyr, the current distance to the particle horizon). Light that has been

travelling since the beginning of the Universe was emitted from comoving positions which

are now 46Glyr from us. The distance to the particle horizon as a function of time is

represented by the dashed green line, (Eq. A.19). Our event horizon is our past light cone

at the end of time, t = ∞ in this case. It asymptotically approaches χ = 0 as t → ∞.

Many of the events beyond our event horizon (shaded solid gray) occur on galaxies we

have seen before the event occurred (the galaxies are within our particle horizon). We see

them by light they emitted billions of years ago but we will never see those galaxies as

they are today. The vertical axis of the lower panel shows conformal time (Eq. A.11). An

infinite proper time is transformed into a finite conformal time so this diagram is complete

on the vertical axis. The aspect ratio of ∼ 3/1 in the top two panels represents the ratio

between the size of the Universe and the age of the Universe, 46Glyr/13.5Gyr (c.f. Kiang

1997).
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1-2 Features of general relativistic expansion

Figure 1.1 shows three spacetime diagrams drawn using the standard general rel-

ativistic formulae for an homogeneous, isotropic universe based on the Robertson-

Walker metric, and Friedmann’s equation, as summarized in Appendix A. They

show the relationship between comoving objects, light, the Hubble sphere and cos-

mological horizons. These spacetime diagrams are based on the observationally

favoured ΛCDM concordance model of the universe: (ΩM,ΩΛ) = (0.3, 0.7) and use

H0 = 70 kms−1Mpc−1 (Bennett et al. 2003, to one significant figure). The upper

diagram plots time versus proper distance, D. The middle diagram plots time ver-

sus comoving distance, R0χ. The lower diagram plots conformal time dτ = dt/R(t)

(Eq. A.11) versus comoving distance.

Two types of horizon are shown in Fig. 1.1. The particle horizon is the distance

light can have travelled from t = 0 to a given time t (Eq. A.19), whereas the event

horizon is the distance light can travel from a given time t to t = ∞ (Eq. A.20).

Using Hubble’s law (vrec = HD), the Hubble sphere is defined to be the distance

beyond which the recession velocity exceeds the speed of light, DH = c/H . As

we will see, the Hubble sphere is not an horizon. Redshift does not go to infinity

for objects on our Hubble sphere (in general) and for many cosmological models,

including ΛCDM, we can see beyond it.

Recession velocities are given by the slopes of the worldlines in the upper diagram.

At any given time, the slopes of these world lines are proportional to their distance

from us according to Hubble’s law, vrec = HD = Ṙχ. One of the clearest aspects of

the proper distance diagram is that the slope of comoving worldlines can be greater

than 45 degrees from vertical. That is, their recession velocities can be greater than

the speed of light. This does not contradict special relativity because the motion is

not in the observer’s inertial frame. No observer ever overtakes a light beam and

all observers measure light locally to be travelling at c.

The second diagram is drawn using comoving distance so recession velocities

have been removed. Any slopes (χ̇) are due to peculiar velocities, vpec = Rχ̇. The
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peculiar velocity of light is constant, vpec = Rχ̇ = c, but the peculiar velocity of

light through comoving coordinates decreases as the Universe expands, χ̇ = c/R.

The cosmological event horizon separates events we are able to see at some

time, from events we will never be able to see. At any particular time the event

horizon forms a sphere around us beyond which events are forever inaccessible. An

event horizon exists if light can only travel a finite distance during the lifetime of

the universe. This can occur if the universe has a finite age, or if the universe

accelerates such that light can travel only a finite distance given infinite time. This

second criterion is satisfied for all eternally expanding universes with a cosmological

constant, so most observationally viable cosmological models have event horizons

(see Fig. 1.2). The acceleration history of a universe is recorded by the deceleration

parameter q = −R̈R/Ṙ2, where negative q corresponds to acceleration (see Fig. 1.3).

In the (ΩM,ΩΛ) = (0.3, 0.7) model shown in Fig. 1.1 galaxies we currently observe at

redshift z ∼ 1.8 are just passing over our event horizon. Thus these galaxies are the

most distant objects from which we will ever receive information about the present

day. The comoving distance to the event horizon (Eq. A.20) always decreases since

the distance light can travel in the time remaining before the end of the universe

(at t → ∞), always decreases. (Event horizons can also exist in universes that

collapse to a big crunch, but we do not discuss those here.) Like objects falling

across the event horizon of a black hole, objects crossing our cosmological event

horizon appear time dilated (from our perspective) as they approach the horizon.

However, unlike an observer crossing the event horizon of a black hole, the galaxy

crossing our cosmological event horizon does not see all distant clocks speeding up.

This asymmetry in the analogy reflects the fact that the location of the cosmological

event horizon is observer dependent.

The cosmological particle horizon separates comoving distances (particles) we can

currently see from those we cannot currently see. At any particular time the particle

horizon forms a sphere around us beyond which we cannot yet see. The comoving

distance to the particle horizon always increases since the distance light has travelled

since the beginning of the Universe always increases. The particle horizon can be
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Figure 1.2. The region in the ΩM–ΩΛ plane for which the Universe expands forever

and has an event horizon (q → −1 as a → ∞) is shaded gray. Open and flat universes

with no cosmological constant (0 ≤ ΩM ≤ 1.0, ΩΛ = 0) expand forever but have no event

horizon. Collapsing universes (non-shaded regions) can have an event horizon because

light travels a finite distance in the finite age of the universe. These differ from the event

horizons in universes that expand forever because in the latter case light can only travel

a finite distance even given infinite time.
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Figure 1.3. The deceleration parameter is plotted against time for four model uni-

verses. Both the (ΩM,ΩΛ) = (0, 0) and (ΩM,ΩΛ) = (1, 0) models have constant de-

celeration parameters, but in general the deceleration parameter of a universe changes

with time. The (ΩM,ΩΛ) = (0.3, 0.7) universe initially has a positive q (decelerates) but

tends towards q = −1 from above as a → ∞. This behaviour is typical of flat and open

(ΩM + ΩΛ ≤ 0) eternally expanding universes with a positive cosmological constant. The

(ΩM,ΩΛ) = (0.3, 1.4) model tends toward q = −1 from below as a→ ∞. This behaviour

is typical of closed (ΩM+ΩΛ > 0) eternally expanding universes with a positive cosmolog-

ical constant. The proper distance to the event horizon decreases while q < −1. During

inflation and in a pure de Sitter model, (ΩM ,ΩΛ) = (0, 1), the deceleration parameter

stays constant at q = −1. The present day deceleration parameter for each model is

marked with a circle.
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larger than the event horizon because although we cannot see events that occur

beyond our event horizon, we can still see many galaxies that are beyond our current

event horizon by light they emitted long ago. That is, we can see some galaxies as

they were when they were young, but we will never be able to watch them grow up.

In the comoving distance diagrams, it is clear that at R0χ0 ∼ 47Glyr(∼ 3ct0) lies

the most distant comoving object that we can currently observe (i.e. intersects our

past light cone at t ∼ 0). This is the current distance to the particle horizon and is

sometimes referred to as the size of the observable Universe. Note that no photons

have actually travelled 47Glyr, our particle horizon is at 47Glyr simply because

the objects that emitted those photons in the early Universe have moved that far

away as the Universe expanded. When we use the recent limits on the cosmological

parameters from the WMAP project (Bennett et al. 2003) we can constrain the

current distance to the particle horizon to be 47.3+5.4
−5.0Glyr. Note that all galaxies

become increasingly redshifted as we watch them approach the cosmological event

horizon (z → ∞ as t→ ∞). However, objects with z = ∞ now (and at any t <∞)

lie on our particle horizon.

The Hubble sphere is the surface on which comoving objects are receding at the

speed of light. It is a sphere around us with radius D = c/H . It is not an horizon

of any kind since both objects and light can cross it in both directions. Note that

objects that recede at the speed of light do not have an infinite redshift (Eq. A.10

for χ = c/Ṙ).

Our past light cone traces the events in the Universe that we can currently see. It

is shaped like a cone in the conformal diagram (bottom diagram) however in proper

distance (top diagram) our past light cone is shaped like a teardrop. Starting at

t = 0, the outward curving part of the teardrop shows photons which were initially

outside our Hubble sphere but eventually managed to reach us. This shows that

objects receding faster than the speed of light are observable, as we discuss in

Sect. 2-1.3. During the outward curving part of the light cone these photons were

receding from us, even as they propagated towards us at what local observers would

have measured to be the speed of light. The turning point between receding photons
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and approaching photons occurs when the Hubble sphere expands beyond our past

light cone leaving the past-light-cone photons in a subluminally receding region of

space. Our past light cone (Eq. A.8) approaches the event horizon (Eq. A.20) as

t0 → ∞.

In conformal coordinates it is straightforward to determine causality because

light, and thus all the horizons, follow straight lines with |slope| = 1 (Eq. A.12). The

conformal transformation transforms an infinite proper time to a finite conformal

time. This diagram is therefore complete on the time axis. The horizontal axis

could extend further because the comoving distance can be infinite in extent, but

we will never see any objects at any time from beyond the maximum comoving

distance of the particle and event horizons (∼ 62Glyr in the ΛCDM model shown in

Fig. 1.1). This is not to be confused with a Penrose diagram, which is drawn using

“null coordinates”. Like a spacetime diagram in conformal coordinates, Penrose

diagrams are useful to determine causality because light follows straight lines with

|slope| = 1. However in a Penrose diagram surfaces of constant time and constant

distance are not straight lines.

One final feature we need to discuss is the decay of peculiar velocity in FRW uni-

verses. This is a standard result recognised soon after the expansion of the Universe

was discovered and clear derivations can be found in the recent works of Peacock

(1999, Sect. 15.3) and Padmanabhan (1996, Sect. 6.2(c)). A non-relativistic “test

galaxy” with initial peculiar velocity vpec,0 will later find itself with a reduced pecu-

liar velocity according to vpec = vpec,0/a. Often peculiar velocity decay is explained

in the following manner: since peculiar velocities are measured with respect to

the local comoving frame, they decrease as the test galaxy catches up to galaxies

that were initially receding from it. This description is pedagogically useful, but

not entirely correct, because not all peculiar velocities decay at the same 1/a rate.

Photons for example, are not slowed down as they travel. They maintain a peculiar

velocity of c in all comoving frames. However, their momentum decays as their

wavelength is redshifted. Since λ ∝ a the momentum of photons, p = hc/λ, decays

as 1/a. An analogous process can be said to apply to massive particles. Their de
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Broglie wavelength is given by λdeBroglie = h/p. Applying λdeBroglie ∝ a results in

momentum decreasing as 1/a. For non-relativistic particles, p = mv, so v ∝ 1/a.

However, the rate of decay decreases as particles become more relativistic. A deriva-

tion of this effect is given in Appendix A and some implications are discussed in

Sections. 3-1 and 3-2.



Chapter 2

Expanding confusion

In this chapter we resolve conflicting views in the literature regarding the general

relativistic (GR) description of the expanding universe, and provide observational

evidence against the special relativistic interpretation of recession velocities that is

the basis of many of the misconceptions. In Section 2-1 we clarify common miscon-

ceptions about superluminal recession velocities and horizons. Firstly, we show that

recession velocities can exceed the speed of light and that inflationary expansion

and the current expansion both have superluminal and non-superluminal regions.

Secondly, we show that we can observe galaxies that are receding faster than the

speed of light, contrary to special relativistic calculations in which a velocity of c

corresponds to an infinite redshift. This is a point that even the most knowledgable

researchers on this subject frequently misrepresent. We also develop a more in-

formative way to depict the particle horizon on spacetime diagrams. Examples of

misconceptions occurring in the literature are given in Appendix B.

In Section 2-2 we provide an explicit observational test demonstrating that spe-

cial relativistic concepts applied to the expanding Universe are in conflict with

observations. In particular, using data taken by Perlmutter et al. (1999) we show

the SR interpretation of cosmological redshifts is inconsistent with the supernovae

magnitude-redshift relation at the ∼ 23σ level. We discuss the relevance of distance

and velocity in cosmology in Section 2-3.

This chapter is based on the work published in Davis & Lineweaver (2004).
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2-1 Clarifying Misconceptions

For more than half a century the redshifts of galaxies have been almost universally

accepted to be a result of the expansion of the Universe. The expansion has become

fundamental to our understanding of the cosmos. However, this interpretation leads

to several concepts that are widely misunderstood. Since the expansion of the Uni-

verse is the basis of the big bang model, these misunderstandings are fundamental.

Not only popular science books and text books written by astrophysicists, but also

professional astronomical literature addressing the expansion of the Universe, con-

tain misleading, or easily misinterpreted, statements concerning recession velocities,

horizons and the “observable universe”.

Probably the most common misconceptions surround the expansion of the Uni-

verse at distances beyond which Hubble’s law predicts recession velocities faster

than the speed of light [Appendix B: 1–8], despite efforts to clarify the issue

(Murdoch 1977; Silverman 1986; Stuckey 1992a; Ellis & Rothman 1993; Harrison

1993; Kiang 1997; Harrison 2000; Davis & Lineweaver 2001; Gudmundsson & Björnsson

2002; Kiang 2001; Davis & Lineweaver 2004). Misconceptions include mislead-

ing comments suggesting we cannot observe galaxies that are receding faster than

light [App. B: 9–13] and related, but more subtle, confusions surrounding cosmolog-

ical event horizons [App. B: 14–15]. The concept of the expansion of the Universe

is so fundamental to our understanding of cosmology and the misconceptions so

abundant that it is important to clarify these issues and make the connection with

observational tests as explicit as possible.

2-1.1 Misconception #1: Recession velocities cannot ex-

ceed the speed of light

A common misconception is that the expansion of the Universe cannot be faster than

the speed of light. Since Hubble’s law predicts superluminal recession at large dis-

tances (D > c/H) it is sometimes stated that Hubble’s law needs special relativistic



2-1. Clarifying Misconceptions 19

corrections when the recession velocity approaches the speed of light [App. B: 6–7].

However, it is well-accepted that general relativity, not special relativity, is necessary

to describe cosmological observations. Supernovae surveys calculating cosmological

parameters, galaxy-redshift surveys and cosmic microwave background anisotropy

tests, all use general relativity to explain their observations. When observables are

calculated using special relativity, contradictions with observations quickly arise

(Section 2-2). Moreover, we know there is no contradiction with special relativity

when faster than light motion occurs in a non-inertial reference frame. General

relativity was derived to be able to predict motion when global inertial frames were

not available (Rindler 1977, Ch. 1). Galaxies that are receding from us superlumi-

nally are at rest locally (when their peculiar velocity, vpec = 0) and motion in their

local inertial frames remains well described by special relativity. They are in no

sense catching up with photons (vpec = c). Rather, the galaxies and the photons

(that are directed away from us) are both receding from us at recession velocities

greater than the speed of light.

In special relativity, redshifts arise directly from velocities. It was this idea that

led Hubble in 1929 to convert the redshifts of the “nebulae” he observed into ve-

locities, and predict the expansion of the Universe with the linear velocity-distance

law that now bears his name. The general relativistic interpretation of the expan-

sion interprets cosmological redshifts as an indication of velocity since the proper

distance between comoving objects increases. However, the velocity is due to the

rate of expansion of space, not movement through space, and therefore cannot be

calculated with the special relativistic Doppler shift formula. Hubble & Humason’s

calculation of velocity therefore should not be given special relativistic corrections

at high redshift, contrary to their suggestion [App. B: 16].

The general relativistic and special relativistic relations between velocity and

cosmological redshift are (e.g. Davis & Lineweaver 2001):

GR vrec(t, z) =
c

R0

Ṙ(t)
∫ z

0

dz′

H(z′)
, (2.1)
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SR vpec(z) = c
(1 + z)2 − 1

(1 + z)2 + 1
. (2.2)

These velocities are with respect to the comoving observer who observes the receding

object to have redshift, z. The GR description is written explicitly as a function

of time because when we observe an object with redshift, z, we must specify the

epoch at which we wish to calculate its recession velocity. For example, setting

t = t0 yields the recession velocity today of the object that emitted the observed

photons at tem. Setting t = tem yields the recession velocity at the time the photons

were emitted (see Eqs. A.3 & A.10). The changing recession velocity of a comoving

object is reflected in the changing slope of its worldline in the top panel of Fig. 1.1.

There is no such time dependence in the SR relation.

Despite the fact that special relativity incorrectly describes cosmological redshifts

it has been used for decades to convert cosmological redshifts into velocity because

the special relativistic Doppler shift formula (Eq. 2.2), shares the same low redshift

approximation, v = cz, as Hubble’s Law (Fig. 2.1). It has only been in the last

decade that routine observations have been deep enough that the distinction has

become significant. Figure 2.1 shows a snapshot of the GR velocity-redshift relation

for various models as well as the SR velocity-redshift relation and their common low

redshift approximation, v = cz. Present day recession velocities exceed the speed

of light in all viable cosmological models for objects with redshifts greater than

z ∼ 1.5. At higher redshifts special relativistic “corrections” can be more incorrect

than the simple linear approximation (Fig. 2.4).

Some of the most common misleading applications of relativity arise from the

misconception that nothing can recede faster than the speed of light. These include

texts asking students to calculate the velocity of a high redshift receding galaxy

using the special relativistic Doppler shift equation [App. B: 17–21], as well as

the comment that galaxies recede from us at speeds “approaching the speed of

light” [App. B: 4–5, 8], or that quasars recede at a certain percentage of the speed

of light1 [App. B: 3, 18–21].

1Redshifts are usually converted into velocities using v = cz, which is a good approximation
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Although velocities of distant galaxies are in principle observable, the set of

synchronized comoving observers required to measure proper distance (Weinberg,

1972, p. 415; Rindler, 1977, p. 218) is not practical. Instead, more direct observables

such as the redshifts of standard candles can be used to observationally rule out

the special relativistic interpretation of cosmological redshifts (Section 2-2).

2-1.2 Misconception #2: Inflation results in superluminal

expansion but the normal expansion of the universe

does not

Inflation is sometimes described as “superluminal expansion” [App. B: 22–23]. This

is misleading because it implies that non-inflationary expansion is not superlumi-

nal. However, any expansion described by Hubble’s law has superluminal recession

velocities for sufficiently distant objects. Even during inflation, objects within the

Hubble sphere (D < c/H) recede at less than the speed of light, while objects be-

yond the Hubble sphere (D > c/H) recede faster than the speed of light. This is

identical to the situation during non-inflationary expansion, except the Hubble con-

stant during inflation was much larger than subsequent values. Thus the distance

to the Hubble sphere was much smaller. During inflation the proper distance to

the Hubble sphere stays constant and is coincident with the event horizon – this is

also identical to the asymptotic behaviour of an eternally expanding universe with

a cosmological constant ΩΛ > 0 (Fig. 1.1, top panel).

The oft-mentioned concept of structures “leaving the horizon” during the infla-

tionary period refers to structures once smaller than the Hubble sphere becoming

larger than the Hubble sphere. If the exponentially expanding regime, R = R0e
Ht,

were extended to the end of time, the Hubble sphere would be the event horizon.

for z <
∼ 0.3 (see Fig. 2.1) but inappropriate for today’s high redshift measurements. When a

“correction” is made for high redshifts, the formula used is almost invariably the inappropriate

special relativistic Doppler shift equation (Eq. 2.2).
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Figure 2.1. Velocity as a function of redshift under various assumptions. The linear

approximation, v = cz, is the low redshift approximation of both the GR and SR results.

The SR result is calculated using Eq. 2.2 while the GR result uses Eq. 2.1. The upper panel

shows recession velocities at the time of observation (present day), i.e., uses Ṙ(t) = Ṙ0.

The lower panel shows recession velocities at the time of emission, i.e., uses Ṙ(t) = Ṙ(tem).

The region shaded gray shows a range of Friedmann-Robertson-Walker (FRW) models as

labeled in the legend. These include the observationally favoured cosmological model

(ΩM,ΩΛ) = (0.3, 0.7). The recession velocity of all galaxies with z >∼ 1.5 currently exceeds

the speed of light in all viable cosmological models. Observations now routinely probe

regions that are receding faster than the speed of light.
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However, in the context of inflation the Hubble sphere is not a true event horizon

because structures that have crossed the horizon can “re-enter the horizon” after

inflation stops. The horizon they “re-enter” is the revised event horizon determined

by how far light can travel in the FRW universe that remains after inflation. This

revised event horizon is larger than the event horizon that would have existed if

inflation had continued forever.

It would be more appropriate to describe inflation as superluminal expansion if

all distances down to the Planck length, lpl ∼ 10−35m, were receding faster than

the speed of light. Solving DH = c/H = lpl gives H = 1043s−1 (inverse Planck

time) which is equivalent to H = 1062 kms−1Mpc−1. If Hubble’s constant during

inflation exceeded this value it would justify describing inflation as “superluminal

expansion”.

2-1.3 Misconception #3: Galaxies with recession velocities

exceeding the speed of light exist but we cannot see

them

Amongst those who acknowledge that recession velocities can exceed the speed of

light, the claim is sometimes made that objects with recession velocities faster than

the speed of light are not observable [App. B: 9–13]. We have seen that the speed of

photons propagating towards us (the slope of our past light cone in the upper panel

of Fig. 1.1) is not constant, but is rather vrec − c. Therefore all photons beyond the

Hubble sphere, even those photons propagating in our direction (vpec = −c), have

a total velocity away from us. How is it then that light from beyond the Hubble

sphere can ever reach us? Although the photons are in the superluminal region

and therefore recede from us (in proper distance), the Hubble sphere also recedes.

In decelerating universes H decreases as Ṙ decreases (causing the Hubble sphere

to recede). In accelerating universes H also tends to decrease since Ṙ increases

more slowly than R. As long as the Hubble sphere recedes faster than the photons

immediately outside it, ḊH > vrec − c, the photons end up in a subluminal region
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and approach us2 (the photons we are referring to are those with vpec = −c). Thus

photons near the Hubble sphere that are receding slowly are overtaken by the more

rapidly receding Hubble sphere3.

Our teardrop shaped past light cone in the top panel of Fig. 1.1 shows that

any photons we now observe that were emitted in the first ∼ five billion years

were emitted in regions that were receding superluminally, vrec > c. Thus their

total velocity was away from us. Only when the Hubble sphere expands past these

photons do they move into the region of subluminal recession and approach us.

The most distant objects that we can see now were outside the Hubble sphere

when their comoving coordinates intersected our past light cone. Thus, they were

receding superluminally when they emitted the photons we see now. Since their

worldlines have always been beyond the Hubble sphere these objects were, are, and

always have been, receding from us faster than the speed of light.

An example of an object that has always been receding faster than the speed of

light is the object with redshift z = 3 in the middle (comoving) panel of Fig. 1.1.

On the same diagram the object with redshift z = 1 is initially beyond the Hubble

sphere, but as the Universe decelerates the z = 1 galaxy finds itself within the

Hubble sphere and it is currently receding subluminally. At around t = 7.4Gyr the

2The behaviour of the Hubble sphere is model dependent. The Hubble sphere recedes as long

as the deceleration parameter q = −R̈R/Ṙ2 > −1. In some closed eternally accelerating universes

(specifically ΩM + ΩΛ > 1 and ΩΛ > 0) the deceleration parameter can be less than minus one

in which case we see faster-than-exponential expansion and some subluminally expanding regions

can be beyond the event horizon (light that was initially in subluminal regions can end up in

superluminal regions and never reach us). Exponential expansion, such as that found in inflation,

has q = −1. Therefore the Hubble sphere is at a constant proper distance and coincident with

the event horizon. This is also the late time asymptotic behaviour of eternally expanding FRW

models with ΩΛ > 0 (see Fig. 1.1, upper panel).
3The myth that superluminally receding galaxies are beyond our view, may have propagated

through some historical preconceptions. Firstly, objects on our particle horizon do have infinite

redshift, tempting us to apply our SR knowledge that infinite redshift corresponds to a velocity of

c. Secondly, the once popular steady state theory predicts exponential expansion, for which the

Hubble sphere and event horizon are coincident.
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Universe began to accelerate and the Hubble sphere began to contract (in comoving

coordinates). At about 19Gyr the z = 1 galaxy will again find itself outside the

Hubble sphere. Note that we label the galaxy z = 1 because that is its current

redshift. However, the redshift we observe that galaxy to have will evolve over

time.

Evaluating Eq. 2.1 for the observationally favoured (ΩM,ΩΛ) = (0.3, 0.7) universe

shows that all galaxies beyond a redshift of z = 1.46 are currently receding faster

than the speed of light (Fig. 2.1). Hundreds of galaxies with z > 1.46 have been

observed. The highest spectroscopic redshift observed in the Hubble deep field is

z = 6.68 (Chen et al. 1999) and the Sloan digital sky survey has identified four

galaxies at z > 6 (Fan et al. 2003). All of these galaxies were, are and always will

be receding superluminally, and yet we see them. The particle horizon, not the

Hubble sphere, marks the size of our observable Universe because we cannot have

received light from, or sent light to, anything beyond the particle horizon4. Our

effective particle horizon is the cosmic microwave background (CMB), at redshift

z ∼ 1100, because we cannot see beyond the surface of last scattering. Although the

last scattering surface is not at any fixed comoving coordinate, the current recession

velocity of the points from which the CMB was emitted is 3.2c (Fig. 2.1). At the

time of emission their speed was 58.1c, assuming (ΩM,ΩΛ) = (0.3, 0.7). Thus we

routinely observe objects that are receding faster than the speed of light and the

Hubble sphere is not an horizon5.

4The current distance to our particle horizon and its velocity are difficult to determine due to

the unknown duration of inflation. The particle horizon depicted in Fig. 1.1 assumes no inflation.
5Except in the special cases when the expansion is exponential, R = R0e

Ht, such as the de

Sitter universe (ΩM = 0,ΩΛ > 0), during inflation or in the asymptotic limit of eternally expanding

FRW universes.
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2-1.4 Ambiguity: The depiction of particle horizons on space-

time diagrams

Here we identify an inconvenient feature of the most common depiction of the

particle horizon on spacetime diagrams and provide a useful alternative (Fig. 2.2).

The particle horizon at any particular time is a sphere around us whose radius

equals the distance to the most distant object we can see. The particle horizon

has traditionally been depicted as the worldline or comoving coordinate of the

most distant particle that we can currently see (Rindler 1956; Ellis & Rothman

1993). The only information this gives is contained in a single point: the current

radius of the particle horizon, and this indicates the current radius of the observable

Universe. The rest of the worldline can be misleading as it does not represent a

boundary between events we can see and events we cannot see, nor does it represent

the radius of the particle horizon at different times. An alternative way to represent

the particle horizon is to plot the radius of the particle horizon as a function of time

(Kiang 1991). The particle horizon at any particular time defines a unique distance

which appears as a single point on a spacetime diagram. Connecting the points

gives the radius of the particle horizon vs time. It is this time dependent series of

particle horizons that we plot in Fig. 1.1. (Rindler (1956) calls this the boundary

of our creation light cone – an outgoing light cone starting at the big bang.) Drawn

this way, one can read from the spacetime diagram the radius of the particle horizon

at any time. There is no need to draw another worldline.

Specifically, what we plot as the particle horizon is χph(t) from Eq. A.19 rather

than the traditional χph(t0). To calculate the distance to the particle horizon at an

arbitrary time t it is not sufficient to multiply χph(t0) by R(t) since the comoving

distance to the particle horizon also changes with time.

The particle horizon is sometimes distinguished from the event horizon by de-

scribing the particle horizon as a “barrier in space” and the event horizon as a

“barrier in spacetime”. This is not a useful distinction because both the particle

horizon and event horizon are surfaces in spacetime – they both form a sphere
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Figure 2.2. The traditional depiction of the particle horizon on spacetime diagrams is

the worldline of the object currently on our particle horizon (thick solid line). All the

information in this depiction is contained in a single point, the current distance to the

particle horizon. An alternative way to plot the particle horizon is to plot the distance to

the particle horizon as a function of time (thick dashed line and Fig. 1.1). This alleviates

the need to draw a new worldline when we need to determine the particle horizon at

another time (for example the worldline of the object on our particle horizon when the

scalefactor a = 0.5).
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around us whose radius varies with time. When viewed in comoving coordinates

the particle horizon and event horizon are mirror images of each other (symmetry

about z ∼ 10 in the middle and lower panels of Fig. 1.1). The traditional depiction

of the particle horizon would appear as a straight vertical line in comoving coor-

dinates, i.e., the comoving coordinate of the present day particle horizon (Fig. 2.2,

lower panel).

The proper distance to the particle horizon is not DPH = ct0. Rather, it is

the proper distance to the most distant object we can observe, and is therefore

related to how much the universe has expanded, i.e. how far away the emitting

object has become, since the beginning of time. In general this is ∼ 3ct0. The

relationship between the particle horizon and light travel time arises because the

comoving coordinate of the most distant object we can see is determined by the

comoving distance light has travelled during the lifetime of the Universe (Eq. A.19).

2-2 Observational evidence for the GR interpre-

tation of cosmological redshifts

2-2.1 Duration-redshift relation for Type Ia Supernovae

Many misconceptions arise from the idea that recession velocities are limited by SR

to less than the speed of light so in Section 2-2.2 we present an analysis of super-

novae observations yielding evidence against the SR interpretation of cosmological

redshifts. But first we would like to present an observational test that cannot distin-

guish between special relativistic and general relativistic expansion of the Universe.

General relativistic cosmology predicts that events occurring on a receding emit-

ter will appear time dilated by a factor,

γGR(z) = 1 + z. (2.3)

A process that takes ∆t0 as measured by the emitter appears to take ∆t = γGR∆t0

as measured by the observer when the light emitted by that process reaches them.
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Wilson (1939) suggested measuring this cosmological time dilation to test whether

the expansion of the Universe was the cause of cosmological redshifts. Type Ia su-

pernovae (SNe Ia) lightcurves provide convenient standard clocks with which to test

cosmological time dilation. Recent evidence from supernovae includes Leibundgut

et al. (1996) who gave evidence for 1 + z time dilation using a single high-z super-

nova and Riess et al. (1997) who showed 1+z time dilation for a single SN Ia at the

96.4% confidence level using the time variation of spectral features. Goldhaber et

al. (1997) show five data points of lightcurve width consistent with 1 + z broaden-

ing and extend this analysis in Goldhaber et al. (2001) to rule out any theory that

predicts zero time dilation (for example “tired light” scenarios (see Wright, 2001)),

at a confidence level of 18σ. All of these tests show that γ = (1 + z) time dilation

is preferred over models that predict no time dilation.

We want to know whether the same observational test can show that GR time

dilation is preferred over SR time dilation as the explanation for cosmological red-

shifts. When we talk about SR expansion of the universe we are assuming that we

have an inertial frame that extends to infinity (impossible in the GR picture) and

that the expansion involves objects moving through this inertial frame. The time

dilation factor in SR is,

γSR(z) = (1 − v2
pec/c

2)−1/2, (2.4)

=
1

2
(1 + z +

1

1 + z
) ≈ 1 + z2/2. (2.5)

This time dilation factor relates the proper time in the moving emitter’s inertial

frame (∆t0) to the proper time in the observer’s inertial frame (∆t1). To measure

this time dilation the observer has to set up a set of synchronized clocks (each at

rest in the observer’s inertial frame) and take readings of the emitter’s proper time

as the emitter moves past each synchronized clock. The readings show that the

emitter’s clock is time dilated such that ∆t1 = γSR∆t0.

We do not have this set of synchronized clocks at our disposal when we measure

time dilation of supernovae and therefore Eq. 2.5 is not the time dilation we observe.

For the observed time dilation of supernovae we have to take into account an extra
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time dilation factor that occurs because the distance to the emitter (and thus the

distance light has to propagate to reach us) is increasing. In the time ∆t1 the

emitter moves a distance v∆t1 away from us. The total proper time we observe

(∆t) is ∆t1 plus an extra factor describing how long light takes to traverse this

extra distance (v∆t1/c),

∆t = ∆t1(1 + v/c). (2.6)

The relationship between proper time at the emitter and proper time at the observer

is thus,

∆t = ∆t0γSR(1 + v/c), (2.7)

= ∆t0

√

√

√

√

1 + v/c

1 − v/c
, (2.8)

= ∆t0(1 + z). (2.9)

This is identical to the GR time dilation equation. Therefore using time dilation to

distinguish between GR and SR expansion is impossible.

Leibundgut et al. (1996), Riess et al. (1997) and Goldhaber et al. (1997, 2001)

do provide excellent evidence that expansion is a good explanation for cosmological

redshifts. What they cannot show is that GR is a better description of the expansion

than SR. Nevertheless, other observational tests provide strong evidence against the

SR interpretation of cosmological redshifts, and we demonstrate one such test in

the next section.

2-2.2 Magnitude-redshift relationship for SNe Ia

Another observational confirmation of the GR interpretation that is able to rule out

the SR interpretation is the curve in the magnitude-redshift relation. SNe Ia are

being used as standard candles to fit the magnitude-redshift relation out to redshifts

close to one (Perlmutter et al. 1999; Riess et al. 1998). Recent measurements are

accurate enough to put restrictions on the cosmological parameters (ΩM,ΩΛ). We

perform a simple analysis of the supernovae magnitude-redshift data to show that

it also strongly excludes an SR interpretation of cosmological redshifts (Fig. 2.4).
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Figure 2.3. Supernovae time dilation factor vs redshift. The solid line is the time

dilation factor predicted by both general relativity and special relativity. The thick dashed

line is the special relativistic time dilation factor that a set of synchronized clocks spread

throughout our inertial frame would observe, without taking into account the changing

distance light has to travel to reach us. Once the change in the emitter’s distance is taken

into account SR predicts the same time dilation effect as GR, γ = (1+z). The thin dotted

line represents any theory that predicts no time dilation (e.g. tired light). The 35 data

points are from Goldhaber et al. (2001). They rule out no time dilation at a confidence

level of 18σ.

Figure 2.4 shows the theoretical curves for several GR models accompanied by the

observed SNe Ia data from Perlmutter et al. (1999) [their Fig. 2(a)]. The conversion

between luminosity distance, DL (Eq. 2.18), and effective magnitude in the B-

band given in Perlmutter et al. (1999), is mB(z) = 5 logH0DL + MB where MB is

the absolute magnitude in the B-band at the maximum of the light curve. They

marginalize over MB in their statistical analyses. We have taken MB = −3.45 which

closely approximates their plotted curves.

We superpose the curve deduced by interpreting Hubble’s law special relativis-

tically. One of the strongest arguments against using SR to interpret cosmological

redshifts is the difficulty in interpreting observational features such as magnitude.

We calculate D(z) special relativistically by assuming the velocity in v = HD is
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Figure 2.4. Magnitude-redshift relation for several models with data taken from Perl-

mutter et al. 1999 [Fig. 2(a)]. The SR prediction has been added (as described in text),

as has the prediction assuming a linear v = cz relationship. The interpretation of the

cosmological redshift as an SR Doppler effect is ruled out at more than 23σ compared

with the ΛCDM concordance model. The linear v = cz model is a better approximation

than SR, but is still ruled out at 12σ.

related to redshift via Eq. 2.2, so,

D(z) =
c

H

(1 + z)2 − 1

(1 + z)2 + 1
. (2.10)

Special relativity does not provide a technique for incorporating acceleration into

our calculations for the expansion of the Universe, so the best we can do is assume

that the recession velocity, and thus Hubble’s constant, are approximately the same

at the time of emission as they are now6. We then convert D(z) to DL(z) using

Eq. 2.18, so DL(z) = D(z)(1 + z). This version of luminosity distance has been

used to calculate m(z) for the SR case in Fig. 2.4.

Special relativity fails this observational test dramatically being 23σ from the

general relativistic ΛCDM model (ΩM,ΩΛ) = (0.3, 0.7). We also include the result

of assuming v = cz. Equating this to Hubble’s law gives, DL(z) = cz(1 + z)/H .

6There are several complications that this analysis does not address. (1) SR could be manipu-

lated to give an evolving Hubble’s constant and (2) SR could be manipulated to give a non-trivial

relationship between luminosity distance, DL, and proper distance, D. However, it is not clear

how one would justify these ad hoc corrections.
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For this observational test the linear prediction is closer to the GR prediction (and

to the data) than SR is. Nevertheless the linear result lies 12σ from the ΛCDM

concordance result.

2-2.3 Cosmological redshift evolution

Current instrumentation is not accurate enough to perform some other observational

tests of GR. For example Sandage (1962) showed that the evolution in redshift of

distant galaxies due to the acceleration or deceleration of the universe is a direct

way to measure the cosmological parameters. The change in redshift with time is

given by,

1 + z =
R0

Re

=
∆t0
∆te

(2.11)

dz

dt0
=

Re
dR0

dt0
− R0

dRe

dt0

R2
e

(2.12)

=
Ṙ0

Re

− R0

R2
e

dRe

dte

dte
dt0

(2.13)

=
R0

Re

(

Ṙ0

R0

− Ṙe

Re

1

(1 + z)

)

(2.14)

= H0(1 + z) −He, (2.15)

(c.f. Loeb 1998, Eq. 3) where He = Ṙe/Re is Hubble’s constant at the time of

emission,

He =
Ṙe

Re

= H0

[

1 + ΩMz + ΩΛ

(

1

(1 + z)2
− 1

)]1/2

. (2.16)

Unfortunately the magnitude of the redshift variation is small over human timescales.

Ebert & Trümper (1975), Lake (1981) and references therein each reconfirmed that

the technology of the day did not yet provide precise enough redshifts to make such

an observation viable. Figure 2.5 shows the expected change in redshift due to cos-

mological acceleration or deceleration is only ∆z ∼ 10−8 over 100 years. Current

Keck/HIRES spectra can measure quasar absorption line redshifts to an accuracy of

∆z ∼ 10−5 (Outram et al. 1999). Observations of many sources’ redshifts, treated

statistically, could improve this limit. Loeb (1998) concludes that the evolution

in redshift may be marginally detectable between two observations of 100 quasars
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Figure 2.5. The change in the redshift of a comoving object as predicted by FRW

cosmology for various cosmological models. The horizontal axis represents the initial

redshifts. The timescale taken for the change is 100 years. The changes predicted are too

small for current instrumentation to detect.

set a decade apart. However, to compete in accuracy with current cosmological

constraints this observational test must wait for future technology.

2-3 Discussion

Recession velocities of individual galaxies are of limited use in observational cosmol-

ogy because they are not directly observable. For this reason some of the physics

community considers recession velocities meaningless and would like to see the issue

swept under the rug [App. B: 24–26]. It is arguable that we should refrain from

quoting our observables in terms of velocity or distance, and stick to the observable,

redshift. This avoids any complications with superluminal recession and avoids any

confusion between the variety of observationally-motivated definitions of distance

commonly used in cosmology7.

7

Proper Distance D = Rχ (2.17)

Luminosity Distance DL = RSk(χ)(1 + z) (2.18)

Angular Diameter Distance Dθ = RSk(χ)(1 + z)−1 (2.19)
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However, redshift is not the only observable that indicates distance and velocity.

The host of low redshift distance measures and the multitude of available evidence

for the Big Bang model all suggest that higher redshift galaxies are more distant

from us and receding faster than lower redshift galaxies. Moreover, we cannot

currently sweep distance and velocity under the rug if we want to explain the cos-

mological redshift itself. Expansion has no meaning without velocity and distance.

If recession velocity were meaningless we could not refer to an “expanding Uni-

verse” and would have to restrict ourselves to some operational description such

as “fainter objects have larger redshifts”. However, using general relativity the re-

lationship between cosmological redshift and recession velocity is straightforward.

Data such as the time-dilation effect seen in SNe Ia light curves provide indepen-

dent evidence that cosmological redshifts are due to the expansion of the Universe.

Since the expansion of the Universe is so fundamental to our modern world view,

we consider the concepts of distance and velocity pertinent to an understanding of

our Universe.

When distances are large enough that light has taken a substantial fraction of

the age of the Universe to reach us there are more observationally convenient dis-

tance measures than proper distance, such as luminosity distance (Eq. 2.18) and

angular-diameter distance (Eq. 2.19). The most convenient distance measure de-

pends on the method of observation. Nevertheless, all distance measures can be

converted between each other, and so collectively define a unique concept. In this

chapter and for the rest of this thesis we take proper distance to be the fundamental

radial distance measure. Proper distance is the spatial geodesic measured along a

hypersurface of constant cosmic time (as defined in the Robertson-Walker metric).

It is the distance measured along a line of sight by a series of infinitesimal comoving

rulers at a particular time, t (Weinberg, 1972, p. 415; Rindler, 1977, p. 218). Both

luminosity and angular diameter distances are calculated from observables involv-

ing distance perpendicular to the line of sight and so contain the angular coefficient

Sk(χ). They parametrize radial distances but are not geodesic distances along the
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three dimensional spatial manifold8. They are therefore not relevant for the cal-

culation of recession velocity9 (Murdoch 1977). Nevertheless, if they were used,

our results would be similar. Only angular size distance can avoid superluminal

velocities (Murdoch 1977) because Dθ = 0 for both z = 0 and z → ∞. Even then

the rate of change of angular size distance does not approach c for z → ∞.

Throughout this thesis we use proper time, t, as the temporal measure. This

is the time that appears in the RW metric and the Friedmann equations. This is

a convenient time measure because it is the proper time of comoving observers.

Moreover, the homogeneity of the Universe is dependent on this choice of time

coordinate — if any other time coordinate were chosen (that is not a trivial multiple

of t) the density of the Universe would be distance dependent. Time can be defined

differently, for example to make the SR Doppler shift formula (Eq. 2.2) correctly

calculate recession velocities from observed redshifts (Page 1993). However, to do

this we would have to sacrifice the homogeneity of the universe and the synchronous

proper time of comoving objects (Chapter 4).

2-4 Conclusion

We have clarified some common misconceptions surrounding the expansion of the

Universe, and shown with numerous references how abundant these misconceptions

are. Superluminal recession is a feature of all expanding cosmological models that

are homogeneous and isotropic and therefore obey Hubble’s law. This does not

contradict special relativity because the superluminal motion does not occur in any

8Note also that the standard definition of angular size distance is purported to be the physical

size of an object, divided by the angle it subtends on the sky. The physical size used in this

equation is not actually a length along a spatial geodesic, but rather along a line of constant χ

(Liske 2000). The correction is negligible for the small angles usually measured in astronomy.
9Murdoch, H. S. 1977, “[McVittie] regards as equally valid other definitions of distance such as

luminosity distance and distance by apparent size. But while these are extremely useful concepts,

they are really only definitions of observational convenience which extrapolate results such as the

inverse square law beyond their range of validity in an expanding universe”
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observer’s inertial frame. All observers measure light locally to be travelling at c

and nothing ever overtakes a photon. Inflation is often called “superluminal reces-

sion” but even during inflation objects with D < c/H recede subluminally while

objects with D > c/H recede superluminally. Precisely the same relationship holds

for non-inflationary expansion. We showed that the Hubble sphere is not an hori-

zon — we routinely observe galaxies that have, and always have had, superluminal

recession velocities. All galaxies at redshifts greater than z ∼ 1.45 today are re-

ceding superluminally in the ΛCDM concordance model. We have also provided

a more informative way of depicting the particle horizon on a spacetime diagram

than the traditional worldline method. An abundance of observational evidence

supports the general relativistic big bang model of the universe. The observed

duration of supernovae light curves (Goldhaber et al. 2001) shows that cosmolog-

ical redshifts are well explained by the expansion of the Universe, but does not

distinguish between GR and SR expansion. Using magnitude-redshift data from

supernovae (Perlmutter et al. 1999) we were able to rule out the SR interpretation

of cosmological redshifts at the ∼ 23σ level. These observations provide strong

evidence that the general relativistic interpretation of the cosmological redshifts is

preferred over tired light and special relativistic interpretations. The general rela-

tivistic description of the expansion of the Universe agrees with observations, and

does not need any modifications for vrec > c.





Chapter 3

The effect of the expansion of

space on non-comoving systems

In Chapter 2 we addressed misconceptions surrounding the expansion of the Uni-

verse. In this chapter we address the question of what effect the expansion of the

Universe has on local systems that are not expanding with the Hubble flow.

Debate persists over what spatial scales participate in the expansion of the Uni-

verse (Munley 1995; Shi & Turner 1998; Tipler 1999; Chiueh & He 2002; Dumin, Y. V.

2002), and the effect of the expansion of the Universe on local systems is a topic

of current research (Lahav et al. 1991; Anderson 1995; Cooperstock et al. 1998;

Hamilton 2001; Baker, Jr. 2002). A persistent confusion is that galaxies set up

at rest with respect to us and then released will start to recede as they pick up the

Hubble flow. This is similar to the assumption that, without a force to hold them

together, galaxies (or even our bodies) would be stretched as the Universe expands.

In this chapter we clarify the nature of the expansion of the Universe, by looking at

the effect of the expansion on objects that are not receding with the Hubble flow.

This is an extension of previous discussions (e.g. Silverman 1986; Stuckey 1992a,b;

Ellis & Rothman 1993; Tipler 1996; Munley 1995).

To clarify the influence of the expansion of the universe we consider the ‘tethered

galaxy’ problem (Harrison 1995; Peacock 2001). We set up a distant galaxy at a
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constant distance from us and then allow it to move freely. The essence of the

question is, once it has been removed from the Hubble flow and then let go, what

effect, if any, does the expansion of the Universe have on its movement? In the

next section we derive and illustrate solutions to the tethered galaxy problem for

arbitrary values of the density of the universe ΩM and the cosmological constant

ΩΛ. We show that the untethered galaxy’s behaviour depends upon the model

universe used. In all cases the untethered galaxy rejoins the Hubble flow – but

the untethered galaxy does not always start to recede from us. In decelerating

universes the untethered galaxy, initially at rest, falls through our position and

joins the Hubble flow on the opposite side of the sky. This does not argue against

the concept of expanding space (Peacock 1999, 2001), but highlights the common

false assumption that there is a force or drag associated with the expansion of space.

We show that an object that is not participating in the expansion does rejoin the

Hubble flow in all eternally expanding universes, but does not feel any force causing

it to rejoin the Hubble flow. This qualitative result extends to all objects with a

peculiar velocity. Our calculations agree with and generalize the results obtained by

Peacock (2001) however we also point out an interesting interpretational difference.

In Section 3-2 we extend the analysis to relativistic peculiar velocities. Further

general relativistic details can be found in Whiting (2004), which follows up on the

results in this thesis.

The cosmological redshift is important because it is the most readily observable

evidence of the expansion of the Universe. In Section 3-3 we point out a conse-

quence of the fact that the cosmological redshift is not a special relativistic Doppler

shift; we derive the counter-intuitive result that our tethered galaxy, constrained to

have zero total velocity, does not have zero redshift. To our knowledge this is the

first explicit derivation of this counter-intuitive behaviour. The approaching jet of

some active galactic nuclei (AGN) provide examples of receding blueshifted objects

(Sect. 3-4). We show that a total velocity of zero does not result in zero redshift

even in the empty universe case. This is particularly surprising because we would

expect an empty FRW universe to be well described by special relativity in flat
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Minkowski spacetime. In Chapter 4 we examine the empty universe case and use it

to demonstrate the relationship between special relativity and FRW cosmology.

This chapter is primarily based on the work published in Davis et al. (2003).

3-1 The tethered galaxy problem

Figure 3.1 illustrates the tethered galaxy problem. Suppose we separate a small

test galaxy from the Hubble flow by tethering it to an observer’s galaxy such that

the proper distance between them remains constant. We neglect all practical con-

siderations of such a tether since we can think of the tethered galaxy as one that

has received a peculiar velocity boost towards the observer that exactly matches

its recession velocity. We then remove the tether (or turn off the boosting rocket).

This satisfies the initial condition of constant proper distance, Ḋ0 = 0, and the idea

of tethering is incidental. For simplicity we will refer to this as the untethered or

test galaxy. Note that this is an artificial setup; we have had to arrange for the

galaxy to be moved out of the Hubble flow in order to apply this zero total veloc-

ity condition. Thus it is not necessarily a primordial condition, merely an initial

condition we have arranged for our experiment. Nevertheless, the discussion can be

generalized to any object that has obtained a peculiar velocity and in Sect 3-4 we

describe a similar situation that is found to occur naturally.

Recall that total velocity is vtot = Ḋ = Ṙχ + Rχ̇ = vrec + vpec. We define

“approach” and “recede” as Ḋ < 0 and Ḋ > 0 respectively. The motion of this

test galaxy reveals the effect the expansion of the Universe has on local dynamics.

To enable us to isolate the effect of the expansion of the Universe we assume that

the galaxies have negligible mass. By construction the tethered galaxy at an initial

time t0 has zero total velocity, Ḋ0 = 0. In other words, its initial peculiar velocity

exactly cancels its initial recession velocity,

vpec0 = −vrec0, (3.1)

R0χ̇0 = −Ṙ0χ0. (3.2)
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Figure 3.1. (a) A small distant galaxy (considered to be a massless test particle) is

tethered to an observer in a large galaxy. The proper distance to the small galaxy, D,

remains fixed; the small galaxy does not share the recession velocity of the other galaxies

at the same distance. The tethered galaxy problem is “What path does the small galaxy

follow when we unhook the tether?” (b) Drawn from the perspective of the local comoving

frame (out of which the test galaxy was boosted), the test galaxy has a peculiar velocity

equal to the recession velocity of the large galaxy. Thus, the tethered galaxy problem

can be reduced to “How far does an object, with an initial peculiar velocity, travel in an

expanding universe?”
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With this initial condition established we untether the galaxy and let it coast freely.

The question is then: Does the test galaxy approach, recede or stay at the same

distance?

The momentum with respect to the local comoving frame, p, decays as 1/a

(Weinberg 1972; Misner et al. 1973; Peebles 1993; Padmanabhan 1996), see Sec-

tion. A-1.4. This scale factor dependent decrease in momentum is an important

basis for many of the results that follow. For non-relativistic velocities p = mvpec.

This means,

vpec =
vpec0

a
, (3.3)

Rχ̇ =
−Ṙ0χ0

a
, (3.4)

χ = χo

[

1 −H0

∫ t

to

dt

a2

]

, (3.5)

D = Rχo

[

1 −H0

∫ t

to

dt

a2

]

. (3.6)

(For the relativistic solution see Section 3-2.) The integral in Eqs. (3.5) & (3.6) can

be performed numerically by using dt = da/ȧ where we obtain ȧ directly from the

Friedmann equation,

ȧ =
da

dt
= H0

[

1 + ΩM

(

1

a
− 1

)

+ ΩΛ(a2 − 1)
]1/2

. (3.7)

The normalized matter density ΩM = 8πGρ0/3H
2
0 and cosmological constant ΩΛ =

Λ/3H2
0 are constants calculated at the present day. The scale factor a(t) is derived

by integrating the Friedmann equation (Felten & Isaacman 1986). In Davis et al.

(2003) the constants look slightly different, because we attributed to χ the dimen-

sions of distance. The formalism used here is more explicit and hopefully clearer.

We define both χ and a = R/R0 to be dimensionless and use R and R0 to explicitly

track the dimension of distance.

Equation (3.6) provides the general solution to the tethered galaxy problem.

Figure 3.2 shows this solution for four different models. In the currently favoured,

(ΩM,ΩΛ) = (0.3, 0.7), model the untethered galaxy recedes. In the empty, (ΩM,ΩΛ) =

(0, 0) universe, it stays at the same distance while in the previously favoured
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Figure 3.2. Solutions to the tethered galaxy problem (Eq. 3.6). For four cosmological

models we untether a galaxy at a distance of D0 = 100 Mpc with an initial peculiar veloc-

ity equal to its recession velocity (total initial velocity is zero) and plot its path. In each

case the peculiar velocity decays as 1/a. Its final position depends on the model. In the

(ΩM,ΩΛ) = (0.3, 0.7) accelerating universe, the untethered galaxy recedes from us as it

joins the Hubble flow, while in the decelerating examples, (ΩM,ΩΛ) = (1, 0) and (0.3, 0),

the untethered galaxy approaches us, passes through our position and joins the Hubble

flow in the opposite side of the sky. In the (ΩM,ΩΛ) = (0, 0) model the galaxy experi-

ences no acceleration and stays at a constant proper distance as it joins the Hubble flow

(Eq. 3.14). In Sec. 3-3 and Fig. 3.6 we derive and illustrate the counter-intuitive result

that such a galaxy will be blueshifted. We are the comoving galaxy represented by the

thick dashed line labeled “us.” There is a range of values labeled “now,” because the

current age of the Universe is different in each model.
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Figure 3.3. Solutions to the tethered galaxy problem in comoving coordinates (Eq. 3.5)

for five cosmological models. In all the models the comoving coordinate of the untethered

galaxy decreases (our initial condition specified a negative peculiar velocity). In models

that do not recollapse the untethered galaxy coasts and approaches an asymptote as it

joins the Hubble flow. The rate of increase of the scale factor determines how quickly

an object with a peculiar velocity joins the Hubble flow. In the accelerating universe

(ΩM,ΩΛ) = (0.3, 0.7), the perturbed galaxy joins the Hubble flow more quickly than in

the decelerating universes (1, 0) and (0.3, 0), with the (0, 0) universe in between. The

(ΩM,ΩΛ) = (2, 0) model is the only model shown that recollapses. In the recollapsing

phase of this model the galaxy’s peculiar velocity increases as a decreases and the galaxy

does not join the Hubble flow (Eq. 3.9). In the (0,0) model the proper distance, D, to

the untethered galaxy is constant, and therefore its comoving distance χ = D/R tends

toward zero (our position) as R tends toward infinity. The different models have different

starting points in time because the current age of the Universe is different in each model.
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Einstein-de Sitter model, (ΩM,ΩΛ) = (1, 0), and the (ΩM,ΩΛ) = (0.3, 0) model,

it approaches. The different behaviours in each model ultimately stem from the

different compositions of the universes, since the composition dictates the accel-

eration. When the cosmological constant is large enough to cause the expansion

of the universe to accelerate, the test galaxy will also accelerate away. When the

attractive force of gravity dominates, decelerating the expansion, the test galaxy

approaches. This may not seem surprising, but it is surprising when you have a

preconceived notion that the expansion is a “stretching of space” and therefore

should be dragging all points in the universe apart. We consider stretching of space

a useful concept, but warn that we should not follow the analogy too closely.

General solutions in comoving coordinates of the tethered galaxy problem are

given by Equation 3.5 and are plotted in Fig. 3.3 for the same four models shown

in Fig. 3.2, as well as for a recollapsing model, (ΩM,ΩΛ) = (2, 0).

3-1.1 Expansion makes galaxies join the Hubble flow

As demonstrated in Fig. 3.3, the untethered galaxy asymptotically joins the Hubble

flow in every cosmological model that expands forever. When we think of the

Hubble flow we automatically think of galaxies receding from us. So it is natural

to assume that as an object starts to join the Hubble flow, it starts to recede.

However, Fig. 3.2 shows that whether the untethered galaxy joins the Hubble flow

by approaching or receding from us is a different, model dependent issue. The

untethered galaxy asymptotically joins the Hubble flow for all cosmological models

that expand forever since,

Ḋ = vrec + vpec (3.8)

= vrec + vpeco/a. (3.9)

As a → ∞ we have Ḋ = vrec = HD; pure Hubble flow. Note that this is entirely

due to the expansion of the universe (a increasing).

We further see that the expansion does not affect dynamics since when we cal-
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culate the acceleration of the comoving galaxy, all terms in Ṙ (or ȧ) cancel out,

D̈ = v̇rec −
vpec0

a

ȧ

a
, (3.10)

= v̇rec − vpec

Ṙ

R
, (3.11)

= (R̈χ+ Ṙχ̇) − Ṙχ̇, (3.12)

= R̈χ, (3.13)

= −q H2D, (3.14)

where the deceleration parameter q(t) = −R̈R/Ṙ2. Notice that the second term

in Eq. (3.12) owes its existence to χ̇ 6= 0 (which is only true if vpec 6= 0) and

here represents the galaxy moving to lower comoving coordinates. The resulting

reduction in recession velocity is exactly canceled by the third term which is the

decay of peculiar velocity. Thus all terms in Ṙ cancel and we conclude that the

expansion, Ṙ > 0, does not cause acceleration, D̈ > 0. Thus, the expansion does

not cause the untethered galaxy to recede (or to approach) but does result in the

untethered galaxy joining the Hubble flow (vpec → 0).

An alternative way to obtain Eq. (3.14) is to differentiate Hubble’s Law, Ḋ =

HD. This method ignores vpec and therefore does not include the explicit cancel-

lation of the two terms in Eq. (3.12) of the more general calculation. The fact that

the results are the same emphasizes that the acceleration of the test galaxy is the

same as that of comoving galaxies and there is no additional acceleration on our

test galaxy pulling it into the Hubble flow.

3-1.2 Definition of “joining the Hubble flow”

We have defined “joining the Hubble flow” to mean that an object’s peculiar velocity

tends towards zero. We show in Fig. 3.3 several objects with an initial non-zero

peculiar velocity and also show the comoving objects they asymptotically approach.

However, this simple definition can be deceptive. Although in all cases the peculiar

velocity of these unchained galaxies tends towards zero, and although they approach

well defined asymptotes in comoving coordinates, they do not necessarily approach

these asymptotes in physical coordinates (proper distance). The distance between



48
Chapter 3. The effect of the expansion of space on non-comoving

systems

an unchained galaxy and its asymptote is given by R∆χasymptote. As ∆χasymptote

tends towards zero, R increases. In some universes R diverges faster than ∆χasymptote

converges. In such cases “joining the Hubble flow” can be considered a misnomer

because the distance between an unchained galaxy and its ‘asymptote’ is always

increasing1.

As an example take the flat (ΩM,ΩΛ) = (1, 0) universe. According to Eq. 3.5 the

comoving coordinate of the unchained galaxy in this universe is,

χ = χ0(2a
−1/2 − 1). (3.15)

So as a → ∞ the unchained galaxy asymptotically approaches −χ0. The comov-

ing distance between the unchained galaxy and its asymptote is ∆χasymptote =

χ0(2a
−1/2). Recall, R = R0a. The proper distance between the unchained galaxy

and its asymptote is therefore,

R∆χasymptote = R0χ02a
1/2, (3.16)

which diverges as a→ ∞. Thus the proper distance between the unchained galaxy

and its comoving asymptote always increases in this universe.

3-1.3 Acceleration of the expansion makes the untethered

galaxy approach or recede

Since we start with the initial condition Ḋ0 = 0, whether the galaxy approaches

or recedes from us is determined by whether it is accelerated towards us (D̈ < 0)

or away from us (D̈ > 0). Equation (3.14) shows that, in an expanding universe,

1Whiting (2004), written in response to Davis et al. (2003), is critical of our analysis because

we did not discuss this issue. The effect appears in our numerical simulations but it was a subtlety

we chose not to address. He also claims, “Davis et al conclude that it is not the motion of the

background universe which causes the decay of peculiar velocity...”, which is not our conclusion.

We even have a section entitled “Expansion makes the untethered galaxy join the Hubble flow”.

In extension to our work Whiting (2004) includes a general relativistic derivation of free parti-

cle motion, which we do not cover. Note: Whiting (2004) was published after this thesis was

submitted, this section has been added as a postscript.
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Figure 3.4. Upper panels: The deceleration parameter q(t) determines the acceleration

of the untethered galaxy (Eq. 3.14) and can change sign. This particular model shows the

effect of q (right panel) on the position of the untethered galaxy (left panel). Initially q > 0

and the proper distance to the untethered galaxy decreases (as in an (ΩM,ΩΛ) = (1, 0)

universe), but q subsequently evolves and becomes negative, reflecting the fact that the

cosmological constant begins to dominate the dynamics of the Universe. With q < 0,

the acceleration D̈ changes sign. This makes the approaching galaxy slow down, stop,

and eventually recede. The dotted lines are fixed comoving coordinates. Lower panels:

The (ΩM,ΩΛ) = (2, 0) universe expands and then recollapses (ȧ changes sign), and the

peculiar velocity increases and approaches c as R→ 0 (Eq. 3.18).
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whether the galaxy approaches us or recedes from us does not depend on the velocity

of the Hubble flow (since H > 0), or the distance of the untethered galaxy (since

D > 0), but on the sign of q. When the universe accelerates (q < 0) the galaxy

recedes from us. When the universe decelerates (q > 0) the galaxy approaches us.

Finally, when q = 0 the proper distance stays the same as the galaxy joins the

Hubble flow. Thus the expansion does not ‘drag’ the untethered galaxy away from

us, even though the untethered galaxy does end up joining the Hubble flow. Only

the acceleration of the expansion can result in a change in distance between us and

the untethered galaxy. We have shown that the direction of that change is not

always outwards.

Notice that in Eq. (3.14), q = q(t) = q(a(t)) is a function of scale factor,

q(a) =
(

ΩM

2a
− ΩΛa

2

) [

1 + ΩM(
1

a
− 1) + ΩΛ(a2 − 1)

]−1

, (3.17)

which for a(t0) = 1 becomes the current deceleration parameter q0 = ΩM/2 − ΩΛ.

Thus, for example, an (ΩM,ΩΛ) = (0.66, 0.33) model has q0 = 0, but q decreases

with time; therefore the untethered galaxy recedes. The upper panels of Figure 3.4

show how a changing deceleration parameter affects the untethered galaxy. There

is a time-lag between the onset of acceleration (q < 0) and the galaxy beginning

to recede (vtot > 0) as is usual when accelerations and velocities are in different

directions.

The example of an expanding universe in which an untethered galaxy approaches

us exposes the common fallacy that “expanding space” is in some sense trying to

drag all pairs of points apart. The fact that in an (ΩM,ΩΛ) = (1, 0) universe the

untethered galaxy, initially at rest, falls through our position and joins the Hubble

flow on the other side of us does not argue against the idea of the expansion of space

(Peacock 1999, 2001). It does however highlight the common false assumption of a

force or drag associated with the expansion of space. We have shown that an object

with a peculiar velocity does rejoin the Hubble flow in eternally expanding universes

but feels no extra force causing it to rejoin the Hubble flow. This qualitative result

extends to all objects with a peculiar velocity.
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Figure 3.5. The decay of velocity as the Universe expands is shown for relativistic

particles when (1) peculiar velocity is assumed to decay as 1/a (dotted line) and (2) when

peculiar velocity is treated special relativistically (solid lines). The initial scalefactor is

arbitrarily set to a = 0.02. Each line is labeled with the initial velocity except the non-

relativistic (1/a) decay which begins with vinit = c. Relativistic velocities decay more

slowly than they would if 1/a decay was assumed. For all but the relativistic vinit = c

case the peculiar velocities tend towards zero, so the particles tend towards comoving

with the Hubble flow. The extreme case of vinit = c does not decay in the relativistic

case, reflecting the fact that photon velocity does not decay. (The initial scalefactor for

the v = 0.9c and v = 0.6c lines are a = 0.11 and a = 0.167 respectively so their starting

points lie on the 1/a decay curve for easy comparison.) This graph shows the continuum

in behaviour between 1/a velocity decay for massive particles, and no velocity decay for

photons.
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3-2 Relativistic peculiar velocity decay

When a universe collapses, the scale factor a decreases. Thus vpec ∝ 1/a means

that the peculiar velocity increases with time. In collapsing universes, untethered

galaxies do not “join the Hubble flow,” they diverge from the Hubble flow. This

behaviour is shown for the (ΩM,ΩΛ) = (2, 0) model in Fig. 3.3. Collapsing universes

require the relativistic formula for peculiar velocity decay to avoid the infinite pecu-

liar velocities that result from vpec ∝ 1/a as a→ 0. The special relativistic formula

for momentum is p = γmvpec, where γ = (1−v2
pec/c

2)−1/2. Since momentum decays

as 1/a (p = p0a0/a), we obtain,

vpec =
γ0vpec0

√

a2 + γ2
0v

2
pec0

/c2
. (3.18)

Therefore, as a → 0, vpec → c. Equation (3.18) was used to produce the lower

panels of Fig. 3.4.

The relativistic formula for momentum should also be used in eternally expanding

universes if relativistic velocities are set as the initial condition in Eq. 3.1. Using

Eq. 3.18 in Eq. 3.9 results in a residual dependence on Ṙ in Eq. 3.13. The residual

is negligible for v << c, and becomes negligible for v ∼ c as a → ∞. Note that

Eq. 3.21 is relativistic and therefore the results of Section 3-3 hold for vpec ∼ c.

Using this relativistic formula for peculiar velocity decay also removes an appar-

ent discontinuity. It may seem strange that momentum decaying as 1/a means the

peculiar velocities of massive objects decay until the objects are comoving, and yet

the peculiar velocities of photons always stay at c. It seems that photons are getting

some velocity boost that massive particles miss out on. However, when we treat

the momentum decay relativistically we find that the velocity decay gets slower and

slower as the particles become more relativistic. In the limit of an initial peculiar

velocity of c, Eq. 3.18 shows that peculiar velocities do not decay at all2. Therefore

2

lim
vpec,0→c

vpec = lim
vpec,0→c

vpec,0
√

(a2/γ2
0) + (v2

pec,0/c
2)

=
c

√

(a2/∞) + 1
= c (3.19)
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this formula, which we illustrate in Fig. 3.5, shows the continuum in behaviour

between non-relativistic particles and photons.

3-3 Zero velocity corresponds to non-zero red-

shift

In the context of special relativity (Minkowski space), objects at rest with respect to

an observer have zero redshift. However, in an expanding universe special relativistic

concepts do not generally apply. “At rest” is defined to be “at constant proper

distance” (vtot = Ḋ = 0), so our untethered galaxy with Ḋ0 = 0 satisfies the

condition for being at rest. Will it therefore have zero redshift? Do objects with

vtot = 0 have ztot = 0? Although radial recession and peculiar velocities add

vectorially, their corresponding redshift components combine3 as (1 + ztot) = (1 +

zrec)(1 + zpec) (Kiang 2001). The condition that ztot = 0 gives,

(1 + zpec) =
1

(1 + zrec)
. (3.20)

The special relativistic relation between peculiar velocity and Doppler redshift is,

vpec(zpec) = c
[

(1 + zpec)
2 − 1

(1 + zpec)2 + 1

]

, (3.21)

while the general relativistic relation between recession velocity (at emission4) and

cosmological redshift is (Harrison 1993, Eq. 13),

vrec(zrec) = c
H(zrec)

1 + zrec

∫ zrec

0

dz

H(z)
, (3.22)

where H(zrec) = H(tem) is Hubble’s constant at the time of emission (Eq. A.18).

In Fig. 3.6 we plot the vtot = 0 and the ztot = 0 solutions to show they are not

3Light is emitted by the tethered galaxy. Let λobserved be the wavelength we observe, λemitted

be the wavelength measured in the comoving frame of the emitter (the frame with respect to

which it has a peculiar velocity vpec) and λrest be the wavelength of light in the rest frame of the

emitter. Then 1 + ztot = λobserved

λrest
= λobserved

λemitted

λemitted

λrest
= (1 + zrec)(1 + zpec).

4To calculate the current recession velocity (as opposed to the recession velocity at the time of

emission) replace zrec with z = 0 in Eq. (3.22) (except in the upper limit of the integral).
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coincident. To obtain the ztot = 0 curve, we do the following: For a given vrec we use

Eq. (3.22) to calculate zrec (for a particular cosmological model). Equation (3.20)

then gives us a corresponding zpec and we can solve for vpec using Eq. (3.21). The

result is the combination of peculiar velocity and recession velocity required to give

a total redshift of zero. The fact that the ztot = 0 curves are different from the

vtot = 0 line in all models shows that ztot = 0 is not equivalent to vtot = 0. When

vtot = 0 the blueshift due to the approaching peculiar velocity does not balance the

redshift due to the expansion of the Universe.

That the ztot = 0 line is not the same as the vtot = 0 line even in the q = 0,

(ΩM,ΩΛ) = (0, 0) model (upper right Fig. 3.6) is particularly surprising because we

might expect an empty expanding FRW universe to be well-described by special

relativity in flat Minkowski spacetime. Zero velocity approximately corresponds to

zero redshift only for vrec
<
∼ 0.3c or zrec <∼ 0.3, even in the (ΩM,ΩΛ) = (0, 0) model.

Therefore an empty FRW universe does not trivially reduce to Minkowski space.

We discuss this in depth in Chapter 4. We find that in the (ΩM,ΩΛ) = (0, 0)

model, a galaxy with zero total velocity (Ḋ = 0) will be blueshifted. An analytical

derivation of the solution for the empty universe is given in Section 4-2.

The fact that approaching galaxies can be redshifted and receding galaxies can

be blueshifted is an interesting illustration of the fact that cosmological redshifts are

not Doppler shifts. The expectation that when vtot = 0, ztot = 0, comes from special

relativity and does not apply to galaxies in the general relativistic description of an

expanding universe, even an empty one.

3-4 Observational consequences

The result for the tethered galaxy can be applied to the related case of active

galactic nuclei outflows. Some compact extragalactic radio sources at high redshift

are seen to have bipolar outflows of relativistic jets of plasma. Jets directed toward

us (and in particular the occasional ‘knots’ in them) are analogs of a tethered (or

boosted) galaxy. These knots have peculiar velocities in our direction, but their



3-4. Observational consequences 55

0.2c

0.4c

0.6c

0.8c

1.0c

P
ec

ul
ia

r 
V

el
oc

ity
 (

v pe
c 
) blueshifted

redshifted

ap
pr

oa
ch

in
g

re
ce

di
ng

ap
pr

oa
ch

in
g

ap
pr

oa
ch

in
g

re
ce

di
ng

blueshifted

redshifted

0c 1c 2c
Recession Velocity (vrec)

0.2c

0.4c

0.6c

0.8c

1.0c

P
ec

ul
ia

r 
V

el
oc

ity
 (

v pe
c 

)

ap
pr

oa
ch

in
g

re
ce

di
ng

re
ds

hi
fte

d

bl
ue

sh
ift

ed

v
tot

=0

z
tot

=0

0c 1c 2c
Recession Velocity (vrec)

(ΩΜ,ΩΛ)=(0.3,0.7)

(ΩΜ,ΩΛ)=(0,1)

(ΩΜ,ΩΛ)=(0,0)

re
ce

di
ng

blueshifted

(ΩΜ,ΩΛ)=(1,0)

redshifted

Figure 3.6. These graphs show the combination of recession velocity and peculiar

velocity that result in a redshift of zero, for four cosmological models. The purpose of these

graphs is to display the counter-intuitive result that in an expanding universe a redshift

of zero does not correspond to zero total velocity (Ḋ = 0). Gray striped areas show the

surprising situations where receding galaxies appear blueshifted or approaching galaxies

appear redshifted. Other models (e.g. (ΩM,ΩΛ) = (0.05, 0.95), Fig. 3.4, top panel)

can have both approaching redshifted and receding blueshifted regions simultaneously.

Recession velocities are calculated at the time of emission; the results are qualitatively

the same when recession velocities are calculated at the time of observation. Thus galaxies

that were receding at emission and are still receding, can be blueshifted. Notice that in

each panel for low velocities (nearby galaxies) the ztot = 0 line asymptotes to the vtot = 0

line. See Section 3-4 for a discussion of the AGN jet data point in the upper left panel.
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recession velocities are in the opposite direction and can be larger. Thus the proper

distance between us and the knot can be increasing. They are receding from us (in

the sense that Ḋ > 0), yet, as we have shown here, the radiation from the knot can

be blueshifted. In Fig. 3.7 the zero-total-velocity condition is plotted in terms of

the observable redshifts of a central-source and jet system.

We can predict which radio sources have receding blueshifted jets. The radio

source 1146+531, for example, has a redshift zrec = 1.629±0.005 (Vermeulen & Taylor

1995). In an (ΩM,ΩΛ) = (0.3, 0.7) universe, its recession velocity at the time of emis-

sion was vrec ≈ c. Therefore the relativistic jet (vpec < c) it emits in our direction

was (and is) receding from us and yet, if the parsec scale jet has a peculiar velocity

within the typical estimated range 0.8 <
∼ vpec/c <∼ 0.99, it will be blueshifted. This

example is the point plotted in the upper left panel of Fig. 3.6.

Collapsing universes also provide the possibility of approaching-redshifted ob-

jects, but without involving peculiar velocities. In the collapsing phase all galaxies

are approaching us. However, if the galaxy is distant enough, it may have been

receding for the majority of the time its light took to propagate to us. In this case

the galaxy appears redshifted even though it may be approaching at the time of

observation. This well known example differs from the active galactic nuclei jet ex-

ample because the active galactic nuclei jet may appear blueshifted even though the

jet never approaches us. Therefore approaching redshifted objects in a collapsing

universe are not examples of the effect we discuss here.

3-5 Summary

We have pointed out and interpreted some counter-intuitive results of the general

relativistic description of our Universe. We have shown that the unaccelerated

expansion of the Universe has no effect on whether an untethered galaxy approaches

or recedes from us. In a decelerating universe the galaxy approaches us, while in

an accelerating universe the galaxy recedes from us. The expansion, however, is

responsible for the galaxy joining the Hubble flow, and we have shown that this
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Figure 3.7. This graph expresses the same information as Fig. 3.6 but in terms of

observables. An AGN with the central source of redshift zrec, is assumed to be comov-

ing. The observed redshift of a knot in a jet, ztot, is the total redshift resulting from

the special relativistic Doppler shift, due to its peculiar velocity, combined with the cos-

mological redshift. The ztot = 0 boundary separates the redshifted region (upper) from

the blueshifted region (lower). The curves correspond to a total velocity of zero (Ḋ = 0)

for different models, (ΩM,ΩΛ), as labeled. The regions representing receding objects and

approaching objects are indicated for the (ΩM,ΩΛ) = (0.05, 0.95) and (ΩM,ΩΛ) = (0, 1)

models as examples (recession or approach at emission is plotted). In contrast with ex-

pectations based on special relativity, receding objects are not necessarily redshifted, nor

are blueshifted objects necessarily approaching us.
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happens whether the untethered galaxy approaches or recedes from us.

The expansion of the Universe is a natural feature of general relativity that also

allows us to unambiguously convert observed redshifts into proper distances and

recession velocities, and to unambiguously define approach and recede. We have

used this foundation to predict the existence of receding blueshifted and approaching

redshifted objects. To our knowledge this is the first explicit derivation of this

counter-intuitive behaviour.

Concepts such as “recede” or “approach” and quantities such as Ḋ are of limited

use in observational cosmology because all our observations come to us via the back-

ward pointing null cone. This limitation will remain the case until a very patient

observer organizes a synchronized set of comoving observers to measure proper dis-

tance (Weinberg 1972; Rindler 1977). However, the issue we are addressing — the

relationship between observed redshifts and expansion — is a conceptual one and

is closely related to the important conceptual distinction between the theoretical

and empirical Hubble laws (Harrison 1993).



Time is defined so that mo-

tion looks simple.

Misner, Thorne and

Wheeler, 1970

Chapter 4

The empty universe

We have shown in Sect. 3-3 that the SR velocity-redshift relation does not hold

even in the limit of an empty FRW universe. Yet the empty universe is the one

case in which our SR concepts should apply. Moreover, we have seen in Chapter 2

that many misconceptions about the expansion of the Universe arise from the mis-

application of special relativistic concepts. If we are to understand the expansion of

the Universe, and in particular the concept of “stretching space”, it is important to

understand the relationship between the FRW concept of recession velocities and

velocities as they appear in special relativity.

An alternative description of the empty FRW universe is the Milne universe.

Edward Milne proposed what is now known as the Milne universe as an alternative

to expanding space (Milne 1935). His theory was named kinematic relativity. The

Milne universe is an expanding universe, but one that is based on special relativity

and occurs in flat Minkowski spacetime1. In the Milne universe the big bang is

an explosion, particles emanate from the origin at t = 0 with all possible speeds

less than the speed of light. These particles move outwards through pre-existing

Minkowski space. Importantly, the Milne universe obeys the cosmological principle:

it looks the same to every observer. For a derivation of this feature and a more

1Minkowski spacetime is simply the flat spacetime of special relativity.
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detailed description of the Milne universe we refer the reader to Rindler (1977)

Sect. 9.4 and Ellis (1988) Sect. 4.8.

The Milne universe is unable to explain the acceleration and deceleration of

expansion that occurs in a non-empty universe. However, for an empty universe

the Milne model is as appropriate as the FRW description. A simple coordinate

transformation (Rindler, 1977, Sect. 9.4; Peacock, 1999, Sect. 3.3) converts the

Robertson-Walker metric in the empty universe case to the Minkowski metric of

special relativity (see Eqs. 4.4 – 4.7). This makes the Milne universe an excellent

testing ground to demonstrate how SR concepts fit into the FRW picture.

In Sect. 4-1 we review the well known transformation between FRW and Mi-

nowski space in the empty universe case. We then use this transformation in

Sect. 4-2 to show how the SR Doppler shift is related to the cosmological redshift

in FRW models.

4-1 Transformation from FRW to Minkowski space

Here we show the transformation between the Minkowski metric and the Robsertson-

Walker metric in the empty universe case. This derivation follows a similar one by

Peacock (1999, Sect. 3.3). In the empty universe R = R0H0t (from integrating

Eq. A.17). So the Robertson-Walker metric for an empty universe is,

ds2 = −c2dt2 +R2
0H

2
0 t

2[dχ2 + sinh2(χ)dψ2], (4.1)

with symbols as defined in Appendix A. Radial distance (dψ = 0) along a hyper-

surface of constant time (dt = 0) is given by D = R0H0tχ, so recession velocity is

vrec = R0H0χ. Minkowski space has the metric,

ds2 = −c2dT 2 + dl2 + l2dψ2. (4.2)

Fundamental particles in the Milne universe emanate from the origin of Minkowski

space at T = 0 and travel with a constant velocity vM = l/T . (To qualify as an

empty universe these fundamental particles must be massless test particles.) Fun-

damental observers ride on fundamental particles. These fundamental observers
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each have an inertial frame that extends throughout Minkowski space and their co-

ordinates can be converted to any other fundamental observers frame using Lorentz

transformations. Therefore, using Lorentz transformations we can write the metric

from the point of view of any fundamental observer,

ds2 = −c2(dT ′)2 + (dl′)2 + l2dψ2, (4.3)

where this observer’s coordinates are time dilated and length contracted (along the

radial direction) with respect to the stationary observer at the origin,

dT = γMdT
′, (4.4)

dl = γMdl
′, (4.5)

with γM = (1 − v2
M/c

2)−1/2. The infinitesimal distances perpendicular to the radial

axis of motion are not length contracted, so the angular part of the metric, l2dψ2

remains unchanged. Introducing a velocity parameter χ′ such that vM = c tanhχ′

allows us to simplify, γM = coshχ′. This in turn gives l = cT ′ sinhχ′, which when

differentiated gives,

dl = cT ′ coshχ′dχ′ + c sinhχ′dT ′. (4.6)

Along a surface of constant time, dT ′ = 0, we have dl = cT ′ coshχ′dχ′ thus,

dl′ = cT ′dχ′. (4.7)

Substituting these back into the metric Eq. 4.3 gives,

ds2 = −c2dT ′ 2 + c2T ′ 2[dχ′ 2 + sinh2(χ′) dψ2]. (4.8)

This has the form of the RW metric with T ′ = t, χ′ = χ and R0H0 = c.

This transformation itself is quite revealing. It shows that time, t, in the

Robertson-Walker metric is the proper time of fundamental observers, T ′. In

Fig. 4.1 we show two spacetime diagrams. The first is drawn in Minkowski space,

from the point of view of the stationary observer at the origin whose coordinates are l

and T . The second is drawn in FRW space, using the coordinates D and t. On these

spacetime diagrams we show the trajectories of fundamental (comoving) observers.
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Fundamental observers in Minkowski space have constant χ (vM = c tanhχ = con-

stant) and therefore translate to comoving observers in FRW space.

When the coordinate transformation is made from FRW to Minkowski spacetime

homogeneity is not maintained. On the upper spacetime diagram of Fig. 4.1 it is

evident that density in the Milne universe is not constant along a surface of constant

T (unevenly spaced comoving observers). That is, in any observer’s inertial frame

density increases with distance from the origin. This is one of the main differences

between Minkowski and FRW coordinates. The Milne universe, as measured in any

observer’s inertial frame, is not homogeneous. It is, however, isotropic.

The Milne universe can be made to satisfy the cosmological principle – homogene-

ity and isotropy – under certain conditions (for a concise but thorough summary

see Rindler 1977). Firstly, every fundamental observer believes that they are the

central observer, so the Milne universe has no unique centre2. Moreover, if you

consider the proper time of fundamental (comoving) observers, T ′, as your constant

time surface, dT ′ = 0, then the Milne universe is homogeneous. That is, funda-

mental observers all measure the same density at the same proper time. This is

exactly the choice made in FRW coordinates. The time coordinate, t, is chosen to

be the proper time of comoving observers. When this choice is made the universe

is homogeneous along a surface of constant t (equally spaced comoving observers in

Fig. 4.1, lower panel).

Close to l = 0 and D = 0 the two spacetime diagrams of Fig. 4.1 are very

similar. That is why SR is a good approximation to FRW in an infinitesimal region

surrounding any point. However, far from that point the deviation of SR from the

GR description becomes dramatic. This is why recession velocities in FRW space do

not obey the special relativistic Doppler shift equation, even in the empty universe.

In the next section we extend this to demonstrate how recession velocities and the

SR Doppler shift equation are related.

2The Milne universe does originate from a point in the pre-existing Minkowski spacetime, but

all fundamental observers believe they are the centre of the expansion, so the centre is a frame

dependent feature and no unique centre can be defined
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Figure 4.1. Spacetime diagrams for the Milne universe (upper panel) and the empty

FRW universe (lower panel). The same comoving observers are shown in both cases. The

same surfaces of constant t = T ′ and constant T are also shown in both cases. In the Milne

universe density increases along a surface of constant T . In the FRW universe density

is constant along a surface of constant t. The Milne universe only fills up a quarter of

Minkowski space, but when converted to FRW coordinates the space is complete.
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4-2 Cosmological redshift vs SR Doppler shift

In Section 3-3 we showed that a galaxy with zero total velocity does not have zero

redshift even in the empty universe case. This demonstrates that cosmological

redshifts are not SR Doppler shifts. In this section we go the other way and show

how cosmological redshifts and SR Doppler shifts are linked.

First we need to calculate recession velocity as a function of redshift in the empty

FRW universe. For an empty expanding universe, H(z) = H0(1 + z), so Eq. (3.22)

becomes,

vrec = cH0

∫ zrec

0

dz

H0(1 + z)
. (4.9)

Velocity as a function of redshift in the empty FRW universe is therefore3,

vrec = c ln(1 + zrec). (4.11)

Now we are in a position to show how the SR redshift equation fits into the GR

picture. We observe a distant object to have redshift z. How can we use the

special relativistic Doppler shift equation to accurately calculate velocity from this

redshift? We showed in Sect. 4-1 that vrec = R0H0χ = cχ, therefore Eq. 4.11 yields

χ = ln(1 + zrec). Using vM = c tanhχ and an inverse hyperbolic identity we find,

χ = tanh−1(vM/c), (4.12)

ln(1 + z) =
1

2
ln

(

1 + vM/c

1 − vM/c

)

, (4.13)

1 + z =

√

√

√

√

1 + vM/c

1 − vM/c
. (4.14)

Thus we find the redshift of an object in an empty universe can be described by

the special relativistic Doppler shift equation – only if the velocity used in the

3This allows us to find the analytic solution for the combination of recession and peculiar

velocity that would give a redshift of zero. If we substitute 1 + zrec = evrec/c into Eq. (3.20)

followed by Eq. (3.21), we find,

vpec = c

[

e−2vrec/c − 1

e−2vrec/c + 1

]

. (4.10)

Equation (4.10) shows that only in the limit of small recession velocity does vpec = −vrec give a

total redshift of zero. Equation 4.10 generates the thick black z = 0 line in Fig. 3.6, upper right

panel.
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equation is the velocity in Minkowski space, vM = l/T . This velocity does not obey

vM = HD.

Peacock (1999) claims that using the special relativistic Doppler formula to cal-

culate recession velocity from large cosmological redshifts, although generally in-

correct, is appropriate in the case of an empty universe4. We maintain it is not

appropriate, even in the empty FRW universe. However, if we have made the

change in coordinate systems as outlined in Section 4-1 we can use the special rel-

ativistic formula to calculate vM. This is not the velocity that appears in Hubble’s

law.

For completeness we note that there is another way to relate the SR Doppler

shift, which holds locally, to the cosmological redshift. To calculate the cosmological

redshift one can integrate over a series of infinitesimal SR Doppler shifts between

one observer and the object whose redshift they are measuring. The derivation of

this effect can be found in Padmanabhan (1996), Sect. 6.2(a), and we summarize it

in Appendix A-1.5.

In summary, we have shown that Minkowski coordinates (Milne universe) and

the Robertson-Walker coordinates (FRW universe) are interchangeable descriptions

for the empty universe. However, velocities in the Milne universe are not equivalent

to velocities in the FRW universe because of the different definitions of time and

distance in these two models. A coordinate transform relates velocities in the Milne

universe (which are in the observer’s inertial frame) to velocities in the FRW uni-

verse. Superluminal recession velocities in the FRW universe do not violate special

relativity because they are not in the observer’s inertial frame.

4Peacock, J. A. (1999), p. 87, “For small redshifts, the interpretation of the redshift as a Doppler

shift (z = v/c) is quite clear. What is not so clear is what to do when the redshift becomes large.

A common but incorrect approach is to use the special-relativistic Doppler formula and write

1 + z =

√

1 + v/c

1 − v/c
. (4.15)

This would be appropriate in the case of a model with Ω = 0 (see below), but is wrong in general.”
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Entropy of Event Horizons





Chapter 5

Testing the generalized second law

of thermodynamics

According to the generalized second law of thermodynamics (GSL) entropy never

decreases when all event horizons are attributed with an entropy proportional to

their area. In this chapter we test the GSL as it pertains to cosmological event

horizons. We investigate the change in entropy when dust, radiation and black

holes cross a cosmological event horizon. If the total entropy decreases in any of

these cases then the total entropy of the Universe violates the GSL. We provide

analytic derivations of the entropy variation in these scenarios for small departures

from de Sitter space and use numerical calculations to generalize for flat, open and

closed Friedmann-Robertson-Walker (FRW) universes. In most cases the loss of

entropy from within the cosmological horizon is more than balanced by an increase

in cosmological event horizon entropy, maintaining the validity of the generalized

second law of thermodynamics. However, an intriguing set of open universe models

show an apparent entropy decrease when black holes disappear over the cosmological

event horizon. We anticipate that this apparent violation of the generalized second

law is due to insufficient models of black hole event horizons in evolving backgrounds

and will disappear when solutions are available for black holes embedded in arbitrary

spacetimes.
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This Chapter is based on work published in Davies & Davis (2002) and Davis et al.

(2003).

5-1 Horizon entropy

A significant advance in physical theory was made by Bekenstein with the suggestion

(Bekenstein 1973) that the area of the event horizon of a black hole is a measure

of its entropy. This hinted at a deep link between information, gravitation and

quantum mechanics that remains tantalizingly unresolved today. Bekenstein’s claim

was bolstered by Hawking’s application of quantum field theory to black holes

(Hawking 1976), from which he deduced that these objects emit thermal radiation

with a characteristic temperature,

Tb =
1

8πmb

, (5.1)

for a Schwarzschild hole, where mb is the mass of the black hole, and we use units

G = h̄ = c = k = 1. Hawking’s calculation enabled the entropy of a black hole Sb

to be determined precisely as,

Sb = 16πm2
b, (5.2)

=
Ab

4
, (5.3)

where Ab is the event horizon area. Eq. 5.3 also applies to spinning and charged

black holes. It was then possible to formulate a generalized second law of thermo-

dynamics (GSL),

Ṡenv + Ṡb ≥ 0, (5.4)

where Senv is the entropy of the environment exterior to the black hole and an

overdot represents differentiation with respect to proper time, t. Thus when a

black hole evaporates by Hawking radiation its horizon area shrinks, so its entropy

decreases, but the environment gains at least as much entropy from the emitted

heat radiation (Hawking 1975). Conversely, if a black hole is immersed in heat

radiation at a higher temperature, radiation will flow into the black hole and be
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lost. The corresponding entropy reduction in the environment is offset by the fact

that the black hole gains mass and increases in area and entropy.

Gibbons & Hawking (1977) conjectured that event horizon area, including cos-

mological event horizons, might quite generally have associated entropy. A promi-

nent example is de Sitter space, a stationary spacetime which possesses a cosmolog-

ical event horizon at a fixed distance, rc = (3/Λ)1/2, from the observer (to conform

with the notation of Davis et al. (2003) and Davies & Davis (2002) we use r in this

chapter to represent proper distance rather than D as was used in Part I). It was

known (see e.g. Birrell & Davies 1982, Sect. 5.4) that a particle detector at rest in

de Sitter space responds to a de Sitter-invariant quantum vacuum state as if it were

a bath of thermal radiation with temperature,

TdeS =
1

2π (3/Λ)1/2
. (5.5)

It thus seemed plausible that the GSL could be extended to de Sitter space. Sub-

sequent work by Davies (1984), and Davies et al. (1986) supported this conclusion.

There were, however, some problems. Although the de Sitter horizon has thermal

properties, the stress-energy-momentum tensor of the de Sitter vacuum state does

not correspond to that of a bath of thermal radiation1 (unlike for the black hole

case). It is given instead by (Dowker & Critchley 1976),

Tµ
ν =

Λ4

8640π2
δµ

ν , (5.6)

(Tµ
ν is used here for the stress-energy-momentum tensor, elsewhere T is used for

temperature). This corresponds to the stress-energy-momentum tensor associated

with a cosmological constant, and so merely renormalizes Λ. Secondly, there is no

asymptotically flat external spacetime region for de Sitter space, which precludes

assigning a mass parameter to the de Sitter horizon. This makes it hard to interpret

trading in energy and entropy, as is conventional in thermodynamic considerations,

between de Sitter space and an environment. A final problem is that in the black

1The stress-energy-momentum tensor for thermal radiation is Tµ
ν =

diag(1,−1/3,−1/3,−1/3) ρr, where ρr is the radiation energy density.
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hole case Bekenstein attributed the entropy of the hole to its total hidden infor-

mation content, which is readily evaluated. For a cosmological horizon, which may

conceal a spatially infinite domain lying beyond, the total hidden entropy would

seem to be ill-defined.

The foregoing concerns are amplified in the case of more general cosmological

horizons that are non-stationary and do not even have an associated well-defined

temperature (a comoving particle detector sees a bath of radiation with a non-

thermal spectrum). For the most general derivations of horizon entropy to date see

the recent pioneering work of Padmanabhan (2002a,b,c).

We consider the general class of Friedmann-Robertson-Walker (FRW) models

with scalefactor R(t). One may define a conformal vacuum state adapted to the

conformally flat geometry2 of these spaces, and consider the response of a quantum

particle detector (Birrell & Davies 1982, Sect. 3.3) to such a state. The response

will generally be non-zero, but the perceived spectrum will not be thermal. This

raises the question: just how far can one extend the GSL to event horizons? Could

it apply even to non-stationary cosmological models in spite of the absence of a

clear thermal association? And if the GSL cannot be thus extended, what are the

criteria that determine the limits of its application?

We consider these questions to be of significance to attempts to link information,

gravitation and thermodynamics (Padmanabhan 2003), and to recent discussions

about the total information content of the universe (Lloyd 2002). They may also

assist in attempts to formulate a concept of gravitational entropy (Padmanabhan

2002a,b,c), and to clarify the status of the holographic principle (Susskind 1995;

Bousso 2002).

In this chapter we explore the range of validity of the GSL. We assume cosmologi-

cal event horizons do have entropy proportional to their area, as Gibbons & Hawking

(1977) proposed. The total entropy of a universe is then given by the entropy of the

2All FRW models are conformally flat. Redefining the time coordinate to be dτ = dt/R(t)

allows us to write the Robertson-Walker metric as, ds2 = R(t)2[−c2dτ2 + dχ2 + S2
k(χ)dψ2]. The

part of the metric inside the square brackets is flat Minkowski spacetime.
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cosmological event horizon plus the entropy of the matter and radiation it encloses.

In Sect. 5-2 and Sect. 5-3 we assess the loss of entropy as matter and radiation

disappear over the cosmological event horizon and show that the loss of entropy

is more than balanced by the increase in the horizon area. We then consider in

Sect. 5-4 the case of an FRW universe filled with a uniform non-relativistic gas of

small black holes. This enables a direct entropic comparison to be made between

black hole and cosmological event horizon area. As the black holes stream across

the cosmological horizon, black hole horizon area is lost, but the cosmological hori-

zon area increases. We may thus assess the relative entropic ‘worth’ of competing

horizon areas.

5-2 Dust crossing the cosmological event horizon

The simplest case to consider is the classic homogeneous, isotropic FRW universe

filled with pressureless dust. The dust in this model is assumed to be comoving.

The dust is therefore in the most ordered state possible and has zero entropy which

allows us to restrict our thermodynamic considerations to the cosmological event

horizon alone.

The time dependence of the scalefactor, R(t), is given by the Friedmann equa-

tions,

ρ̇ = −3H(ρ+ p/c2), (5.7)

3H2 = 8πGρ+ Λ − 3kc2/R2, (5.8)

where ρ and p are the density and pressure of the cosmological fluid respectively (we

have included the constants explicitly for reference). We assume the present day

Hubble’s constant H0 = 70 kms−1Mpc−1 for all quantitative calculations. Eternally

expanding models possess event horizons if light cannot travel more than a finite

distance in an infinite time,

χc(t) =
∫

∞

t

dt′

a(t′)
<∞. (5.9)
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Figure 5.1. The comoving distance, proper distance, area and volume of the cosmolog-

ical event horizon are shown for three different cosmological models. The models’ matter

(energy) density and cosmological constant (ΩM,ΩΛ) is given in the legend. The dimen-

sionless comoving distance is not shown for the (ΩM,ΩΛ) = (0.3, 0.7) case since R0 is

undefined in this model. Note that although the radius and volume within the cosmo-

logical event horizon both decrease for periods in the (ΩM,ΩΛ) = (0.3, 1.4) universe, the

area always increases.
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Figure 5.2. This is a close-up of the region near the origin of Fig. 5.1 for the (ΩM,ΩΛ) =

(0.3, 1.4), k = +1 case, which appears to show a curious rise and fall in event horizon

area at early times. However, this is an artefact of the finite spatial size of closed FRW

universes. When the comoving distance to the event horizon exceeds π, as it does for

t <∼ 1Gyr in this example, it is possible for an observer to see past the antipode. In this

example the event horizon appears out of the antipode at ∼ 1.0Gyr.
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The integral in Eq. 5.9 represents the comoving distance to the cosmological event

horizon, χc, at time t. The proper distance to the cosmological event horizon is

then rc = R(t)χc. The area of the cosmological horizon generalized to curved space

is,

Ac = 4πR2(t)S2
k(χc), (5.10)

which reduces to Ac = 4πr2
c in flat space (again, Sk(χ) = sinχ, χ, sinhχ for k =

1, 0,−1 respectively).

5-2.1 Cosmological event horizon area never decreases

Davies (1988b) showed that the cosmological event horizon area of an eternally

expanding FRW universe never decreases, assuming the dominant energy condi-

tion holds, ρ + p ≥ 0. This is analogous to Hawking’s area theorem for black

holes Hawking (1972). In black holes the dominant energy condition is violated by

quantum effects, allowing black holes to evaporate and shrink. There is no known

analogous shrinking in cosmological horizon area.

It is interesting to note that the area of the cosmological event horizon increases

even in models in which the radius of the event horizon decreases. Closed eternally

expanding universes have a decreasing event horizon radius at late times, but the

effect of curvature (Sk(χ) term) forces the area to increase nevertheless, for example

the (ΩM,ΩΛ) = (0.3, 1.4) model in Fig. 5.1.

5-3 Radiation crossing the cosmological event hori-

zon

To investigate the interplay of entropy exchange between the cosmological event

horizon and an environment we consider an eternally-expanding FRW universe

with a positive cosmological constant, filled with radiation of temperature T (t)

(see Davis et al. 2003). Such a universe has an event horizon radius that tends
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toward the de Sitter value, rdeS = c/H , at late times. Most Λ > 0 universes tend

toward de Sitter at late times except the few that have a large enough matter den-

sity to begin recollapse before they become cosmological constant dominated. We

include constants in this section to provide anchor points from which constants in

other equations may be derived and to explicitly ensure environment and horizon

entropy are being compared in the same units. The entropy of the cosmological

event horizon is,

Sc =

(

kc3

h̄G

)

Ac

4
. (5.11)

Radiation energy density obeys ρrc
2 = σT 4 (where the radiation constant3 σ =

π2k4/15c3h̄3) while entropy density follows sr = (4/3)ρrc
2 T−1. This means the total

entropy within an event horizon volume, Sr = srVc, is given by,

Sr =
4

3
σ1/4 (ρrc

2)3/4 Vc. (5.12)

The volume within a cosmological event horizon for closed, flat and open FRW

universes is given by Eq. A.24. We take p = ρrc
2/3 for radiation in the Friedmann

equations (Eq. 5.7 and Eq. 5.8). The radiation density decays as ρr = ρ0a
−4 (or

T ∝ 1/a) as the universe expands so the radiation entropy within a constant co-

moving volume (V ∝ a3) remains constant. However, the radiation entropy within

the cosmological horizon decreases as the comoving volume of the event horizon

decreases (χc decreases in Eq. A.24) and radiation crosses the cosmological event

horizon.

The evolution of the universe is dependent on the density of radiation, so the

model universe we choose constrains the radiation density according to Ωr = 8πGρ0/3H
2
0 .

(The normalized radiation density, Ωr, replaces ΩM in Friedmann’s equations with

the difference that Ωr decays as a−4.) Allowing for this constraint we replace the

dust of Sect. 5-2 with radiation and calculate the loss of entropy over the cosmo-

logical event horizon as the universe evolves. Although the radiation represents

3The radiation constant is often denoted by a, but since we use a for the scalefactor we denote

the radiation constant by σ. This is not to be confused with Stephan-Boltzmann’s constant σSB,

which is related to the radiation constant by σ = 4σSB/c.
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Figure 5.3. This shows the radiation entropy Sr compared to the cosmological horizon

entropy Sc in three radiation filled FRW universes. Each graph is labeled with the model,

(ΩM,ΩΛ). Only early times are shown because that is the only time that the radiation

entropy is comparable to the horizon entropy. The radiation entropy is not constant but

decreases rapidly. However, the decrease is orders of magnitude slower than the increase

in cosmological event horizon entropy, so does not show up on this scale. Total entropy

Sc + Sr never decreases so the GSL holds for these models.
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much more entropy than dust, in a realistic cosmological model this entropy is mi-

nuscule compared to that of the cosmological event horizon. At the present day

in a (Ωr,ΩΛ) = (0.3, 0.7) radiation dominated FRW universe the radiation entropy

would be 14 orders of magnitude smaller than the entropy of the horizon. At early

times the event horizon was tiny and the radiation was very hot – it is only at

early times that we could expect the radiation entropy to be significant enough to

compete with the increase in event horizon area. Figure 5.3 shows some numerical

solutions typical of a wide class of radiation-filled models. In all cases we find that

the total entropy increases with time (Ṡr + Ṡc > 0) in conformity with the extended

interpretation of the generalized second law of thermodynamics. In the next section

we show analytically that thermal radiation crossing the cosmological event horizon

satisfies the GSL in the limit of small departures from de Sitter space as long as

the radiation temperature is higher than the cosmological horizon temperature. A

rigorous analytical proof for the general FRW case, however, is lacking.

5-3.1 Small departure from de Sitter space

We consider a radiation-Λ FRW cosmology at late times when it represents a small

departure from de Sitter space (see Davies & Davis 2002). The distance to the

cosmological event horizon is approximately equal to the de Sitter horizon radius,

rdeS = 1/H , corresponding to an entropy of Sc ≈ π/H2. Therefore the horizon

entropy increases at a rate,

Ṡc ≈ −2πḢ/H3, (5.13)

= 2π(16πρ)/3H3, (5.14)

where we use Ḣ = −4π(ρ+p) from Eq. 5.7 and Eq. 5.8 with k = 0 and the pressure

and density in this case are, pr = ρr/3. Fill the universe with thermal radiation

at a temperature T > TdeS = H/2π so the typical wavelength of the radiation is

less than the horizon distance. While the radiation temperature remains greater

than the temperature of the de Sitter horizon there is a net flow of energy lost

across the horizon (radiation temperatures cooler than the temperature of the de
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Sitter horizon have a typical wavelength greater than the horizon distance and can

therefore not be localized within the horizon). From Eq. 5.12 this means the total

radiation entropy within a horizon volume is Sr = (16πσ1/4/9) ρ3/4
r H−3. The loss

of radiation as it passes across the cosmological event horizon occurs at the rate,

Ṡr ≈
−16πσ1/4

3
ρ3/4

r H−2, (5.15)

if Ḣ is small. The GSL holds when Ṡc + Ṡr ≥ 0. Comparing Eq. 5.15 with Eq. 5.14

shows that the GSL holds when (ρr/σ)1/4 > H/2π, which is the condition that the

radiation be hotter than the horizon temperature, as assumed.

5-4 Black holes crossing the cosmological event

horizon

A way to directly compare the entropic worth of cosmological horizons and black

hole horizons is to assess the change in entropy as black holes cross the cosmological

horizon. To this end we examine FRW universes containing a dilute pressureless gas

of equal mass black holes. We ignore the Hawking effect which would be negligible

for black holes larger than solar mass over the timescales we address4. We also ignore

interactions between black holes. As the universe expands the density of the black

hole gas decreases (ρb ∝ a−3) and black holes disappear over the cosmological event

horizon, resulting in a decrease in the black hole contribution to the total entropy

within a horizon volume. The area of the cosmological event horizon increases in

turn5. To ascertain whether the GSL is threatened we ask: does the cosmological

event horizon area increase enough to compensate for the loss of black hole entropy?

4Black hole evaporation time ∼ (m/msolar)
3 × 1066yr.

5Cause and effect become confused when we try to assess cosmological event horizons in an

analogous way to black holes. The normal language used for cosmological event horizons would

be to say that the matter density and cosmological constant of the universe determine the rate

of expansion of the universe and thus determine the increase in distance to the event horizon.

Alternatively we can state that the loss of matter (energy) over the cosmological horizon results

in the increase in distance to the event horizon.
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The area of the cosmological event horizon is easy to calculate in arbitrary (eter-

nally expanding) FRW universes, as shown in Sect. 5-2. Not so the event horizon

area of black holes because the solutions require us to deal with an overdensity in

an homogeneous but time-dependent background. The Schwarzschild metric,

ds2 = −
(

1 − 2Gmb

rc2

)

c2dt2 +
(

1 − 2Gmb

rc2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (5.16)

applies for a black hole of mass mb embedded in empty space. The relation-

ship between black hole mass and event horizon radius is mb = rbc
2/2G. The

Schwarzschild-de Sitter solution (Gibbons & Hawking 1977) with metric,

ds2 = −
(

1 − 2Gmb

rc2
− Λr2

3c2

)

c2dt2+

(

1 − 2Gmb

rc2
− Λr2

3c2

)

−1

dr2+r2(dθ2+sin2 θdφ2),

(5.17)

applies for a black hole embedded in a de Sitter universe (a universe with zero mass

density and a constant positive cosmological constant, Λ). This solution should

therefore be a better approximation than pure Schwarzschild at late times in a

FRW universe with Λ > 0. The mass of a black hole in such a space is,

mb =
rc2

2G

(

1 − Λr2

3c2

)

. (5.18)

There are two positive real solutions for r. The inner is identified with the black

hole radius, rb. The outer is identified with the cosmological event horizon radius,

rc. We approximate a black hole embedded in an arbitrary FRW universe using the

Schwarzschild-de Sitter solution. This will be a good approximation for eternally

expanding FRW universes with Λ > 0 at late times.

We have the freedom to choose the mass of our black holes arbitrarily. The

number density of black holes is then constrained by the need to remain consistent

with the matter density of the universe. Recall, the normalized matter density of

the universe, ΩM, is related to the density by,

ρ0 =
3H2

0 ΩM

8πG
. (5.19)

We assume that the black holes are the only contribution to the matter density of

the universe, ρ0 = ρb0
. Let nb0

be the current number density of black holes. Then,

ρb0
= mb nb0, (5.20)
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nb0
=

3H2
0 ΩM

8πGmb

. (5.21)

The black hole number density drops like nb = nb0
a−3 as the universe expands.

For both Schwarzschild and Schwarzschild-de Sitter space the horizon surface area

is given by6 Ab = 4πr2
b. However, in general FRW universes the surface area of

a single black hole’s event horizon will depend to some extent on the spacetime

geometry of the cosmological model. For very large black holes or very early epochs

these corrections may be significant. A full treatment of black hole solutions in

time-dependent cosmological backgrounds is beyond the scope of this thesis. As

a first approximation, however, we may correct for the spacetime curvature of the

embedding space by introducing the factor Sk such that,

Ab = 4πR2(t)S2
k(rb/R), (5.22)

(c.f. Eq. 5.10). This factor is chosen so that the areas of the black hole and

cosmological horizons are equal when rb = rc. Thus the total surface area of all the

black hole event horizons, Ab,tot, is given from Eqs. 5.18–5.22 and Eq. A.24 by,

Ab,tot = Ab nb Vc. (5.23)

5-4.1 Small departures from de Sitter space

Restricting ourselves to small perturbations about de Sitter space, we may proceed

in the same fashion as the calculation in Eqs. 5.13–5.15 above. For a first approx-

imation we stick to the Schwarzschild black hole with rb = 2mb. The total black

hole area within the cosmological horizon is,

Ab,tot = (4πr2
b)
(

ρb

mb

)(

4

3
πH−3

)

(5.24)

=
32π2rbρb

3H3
. (5.25)

6To calculate the area of a surface with dr = 0 we integrate over the angular terms in

the metric. Therefore for both Schwarzschild and Schwarzschild-de Sitter horizons, Ab =
∫ π

0

∫ 2π

0
r2 sin θ dφdθ = 4πr2.
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The rate of change of black hole area is therefore,

Ȧb,tot = −32π2rbρb

H2
(5.26)

where we have used ρ̇b = −3H(ρb + pb) from Eq. 5.7 with pb = 0, and once again

ignored the Ḣ term. Eq. 5.13 gives the rate of change of the cosmological horizon

entropy, Ṡc, with Ḣ = −4π(ρ + p) where pb = 0 for black holes. Using Ȧc = 4Ṡc

gives,

Ȧc =
−32π2ρb

H3
. (5.27)

For the GSL to hold we need,

Ȧb,tot + Ȧc ≥ 0. (5.28)

Using Eqs. 5.27 and 5.26 this inequality becomes

rb <
∼ 1/H, (5.29)

rb <
∼ rc. (5.30)

Thus the GSL holds as long as the black holes are smaller than the cosmological

event horizon.

Converting to a Schwarzschild-de Sitter black hole slightly increases the size of

the black hole and decreases the size of the cosmological event horizon. Redoing the

same analysis using the Schwarzschild-de Sitter mass-radius relationship (Eq. 5.18)

gives the total black hole area to be,

Ab,tot =
32π2rbρb

3H3(1 −H2r2
b)
, (5.31)

where we have used the fact that rc = rdeS =
√

Λ/3 = 1/H for a de Sitter cosmo-

logical horizon. The rate of change of total black hole area is,

Ȧb,tot =
−32π2rbρb

H2(1 −H2r2
b)
, (5.32)

assuming Ḣ is negligible. The inequality Eq. 5.28 reduces to,

rb <
∼ rc

(

1 − r2
b

r2
c

)

, (5.33)
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so for the GSL to hold the black holes have to be somewhat smaller than the de

Sitter horizon (as the assumption of “small departures from de Sitter” ensures).

The limit on the right hand side of Eq. 5.33 is less than that of Eq. 5.30 as we

would expect, because in the Schwarzschild-de Sitter case the cosmological event

horizon is smaller than the rc = 1/H which we used here.

We have been unable to solve inequality 5.28 exactly for all FRW universes.

Instead in the next section we provide numerical solutions for a broad range of

black hole cosmological models including large departures from de Sitter space.

5-4.2 Numerical extension to far-from-de-Sitter FRW mod-

els

In this section we show the results of numerical calculations assessing the loss of

black hole entropy across the cosmological event horizon in general FRW models

that are large departures from de Sitter space. We use the numerical calculations

to find the comoving distance to the cosmological event horizon from which we can

calculate both Ac (Eq. 5.10) and Vc (Eq. A.24), in turn allowing us to use Eq. 5.23

for Ab,tot.

We find that for cosmological models with realistic black hole sizes (up to, say,

the size of a typical supermassive black hole) the increase in cosmological horizon

area overwhelms the loss of black hole horizon area, in clear conformity with the

extended GSL. Greater interest, then, attaches to the case where the black holes are

relatively large enough to represent a significant fraction of the total horizon area.

In a realistic case this would refer only to very early epochs, on the assumption that

primordial black hole formation had taken place. In what follows we concentrate

on the case where the ratio of black hole horizon area to total horizon area is large.

The de Sitter horizon at rdeS =
√

3/Λ is the horizon that would exist if the matter

density were zero in each model. As such it is the asymptotic limit in time of the

cosmological event horizon. We express the results of the numerical calculations in

terms of the radius and area of the de Sitter horizon. The results of these numerical
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Figure 5.4. The evolution of total horizon area is shown as a function of time for three

FRW models filled with a pressureless gas of black holes. In all models the black hole

radius is rb = 0.1rdeS. The vertical axis has been scaled to the de Sitter horizon area,

AdeS, in each model. The dotted line shows the total area of black hole horizons within

the cosmological event horizon. The dashed line shows the area of the cosmological event

horizon. The thick solid line shows the sum of the black hole and cosmological horizon

areas. The thin, solid vertical lines mark turning points in the total horizon area curve.

This series of graphs shows the results when we do not correct for the effects described in

Sect. 5-4.3. Significant departures from the GSL can be seen at early times in all models.

calculations are shown in Fig. 5.4. Black hole event horizon area, cosmological

event horizon area and the total horizon area are plotted against time for a variety

of models.

5-4.3 Corrections needed to naive calculation

Treating the problem as stated so far we find significant departures from the GSL

at early times in all models and at late times for large black holes. The majority

of these departures are an obvious artefact of the approximations we have used.

Firstly, by treating the black holes as dilute dust (and as solid spheres) we have

neglected interactions between them. At very early times the black holes in the

simulation are so densely packed that they overlap, which is clearly unphysical

(see 5-5.1). Secondly, we have assumed that the disappearance of a black hole across

the cosmological horizon is instantaneous, but for black holes of size comparable

to the cosmological horizon this is unrealistic. A proper GR treatment of the
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Figure 5.5. Corrections have been made for the assumptions listed in Sect. 5-4.3. The

gray shading indicates the region that should be neglected because black holes overlap.

The black hole contribution to area starts from zero and peaks because black holes initially

have a radius larger than the cosmological horizon radius and so are excluded from the

area calculation by Eq. 5.35. The upper row has rb = 0.1rdeS while the lower row has

rb = 0.01rdeS. Here the areas of black holes have been calculated in the geometry of

the type of universe they are embedded in (using Eq. 5.22). The results are qualitatively

unchanged when Ab = 4πr2b is used. With these corrections the GSL violation in flat and

closed models has been removed, but a GSL violation remains in the open model at early

times.
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Figure 5.6. An example in which the assumption of the Schwarzschild-de Sitter solution

for black hole area breaks down because of the presence of matter density outside the black

holes. The GSL appears to be violated by the entropy decrease at early times even for

small black holes.

merging of horizons, which will involve significant departures from homogeneity and

isotropy, is beyond the scope of this thesis. However, as a first approximation to

compensating for this effect, we use a simple geometric argument (see 5-5.2). Taking

both the above considerations into account removes almost all the departures from

the GSL. The corrected area-time plots are shown in Fig. 5.5 with the unphysical

black-hole-overlap regions shaded gray.

A third approximation which we have used but cannot correct for is the assump-

tion that the Schwarzschild-de Sitter solution for the black hole radius holds. This

neglects the presence of matter density outside the black hole. This approximation

is therefore suspect at early times in FRW universes while the universe is dominated

by matter rather than dark energy (Λ). The effect can be minimized by concen-

trating on small black holes. An example of a GSL violation which we attribute to

the breakdown of the Schwarzschild-de Sitter assumption is shown in Fig. 5.6 for

the spatially open (k = −1) model where departures from the GSL are indicated

at early times.

The Schwarzschild-de Sitter approximation also breaks down when the radius of
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Figure 5.7. A model universe filled with large black holes for which the assumption

of the Schwarzschild-de Sitter solution breaks down. The GSL appears to be violated by

the entropy decrease at late times.

the black hole is comparable to the radius of the cosmological event horizon. This

is because the effect of the embedding spacetime on the mass-radius relationship

of a black hole becomes larger for larger black holes (see the term in brackets in

Eq. 5.18). An example is shown in the spatially closed (k = +1) model illustrated

in Fig. 5.7, where departures from GSL are indicated at late times.

A more accurate resolution of these departures from the GSL awaits the deriva-

tion of horizon solutions for black holes embedded in arbitrary evolving FRW space-

times. In the next section we provide brief details of how we have dealt with these

corrections and the effect they have on the total entropy results.

5-5 Correction details

5-5.1 Exclude overlapping and superhorizon-sized black holes

We rule out the times when black holes are so close that they overlap as being

unphysical. The separation between black holes is given by n
−1/3
b . So we rule out
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any regions for which,

2rb ≤ n
−1/3
b . (5.34)

The unphysical region defined by Eq. 5.34 is shaded gray in Figs. 5.5–5.7. This

also implicitly excludes the region for which the black holes are larger than the

cosmological event horizon. The black holes become smaller than the cosmological

horizon before they cease to overlap. To ensure we never inadvertantly include an

unphysical region our program also includes a clause excluding superhorizon-sized

black holes.

5-5.2 Geometric considerations

By considering a black hole to have crossed the cosmological horizon when its centre

passes over it we calculate too much black hole horizon area (averaged over all black

holes) to be inside the cosmological horizon. To fix this we need to calculate the

point at which exactly half the black hole horizon is outside the cosmological hori-

zon. This occurs when the black hole’s diameter makes a secant to the cosmological

horizon.

rc

black
hole

cosmological
event horizonI �

rc − δ

rc

δ

rb
-�

black
hole

Therefore we should consider black holes to have left the horizon when they are

a distance δ from the horizon where δ is the length of the perpendicular bisector

of the secant between the secant and the perimeter of the event horizon. That is,

when we calculate the volume within the event horizon that contains black holes

we should use rc − δ.

rc − δ =
√

r2
c − r2

b. (5.35)

This corrected calculation is shown in Fig. 5.5.
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5-5.3 Radius calculation

An indication of the magnitude of the effect of different embeddings can be gained

by comparing the Schwarzschild-de Sitter solution to the Schwarzschild solution.

For a particular black hole radius the difference in mass for the two embeddings

is ∆mb/mb = (mdeS
b − mSch

b )/mSch
b = −Λr2

b/3c
2. That means that for H0 =

70 kms−1Mpc−1 and ΩΛ = 0.7 the difference between the two solutions is less than

∆m/m = 0.01 as long as black holes are smaller than 1.7 billion light years across

(the de Sitter horizon for a Universe with ΩΛ = 0.7 sits at rdeS =
√

3/Λ = 16.7Glyr

so 1.7Gyr represents rb = 0.1rdeS, c.f. Fig. 5.5). Therefore to minimize the effect

of the embedding spacetime on the radius of a black hole we simply need to use

“small” black holes (a “small” black hole of 0.17Glyr radius is still on the order of

1021 solar masses).

The only GSL violation that does not disappear when black holes are restricted to

small sizes is the early time entropy decrease that occurs in open universes because

of the breakdown of the Schwarzschild-de Sitter solution in this regime. It may

be possible to infer the direction of the correction from the difference between the

Schwarzschild-de Sitter and Schwarzschild solutions. When the space surrounding

the black hole is accelerating, as in the Schwarzschild-de Sitter case, the black hole

event horizon radius is larger than in the pure Schwarzschild case. If the opposite

were to happen and black hole radius decreased when a black hole was surrounded

not with the accelerating effect of a cosmological constant but with the decelerating

effect of matter density, then it would reduce the entropy contribution from black

holes. Such a correction is in the direction required to remove the total entropy

decrease at early times in these open models.

We emphasize that any other apparent departures from GSL are manifested

only in the extreme cases where the size of the black holes approach the size of

the observable universe. In a realistic cosmological model, the largest black holes

formed by merger will still be orders of magnitude smaller than the cosmological

horizon. In those cosmological models that permit primordial black hole formation
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Figure 5.8. We show the corrected results as calculated using Ab = 4πr2b instead of

Eq. 5.22 for area. The difference is significant but does not remove the GSL violations.

from density perturbations, the size of the holes is still generally much less than the

cosmological horizon size at the epoch of formation.

5-5.4 Area calculation

Since we have used Eq. 5.22 without proof we provide in Fig. 5.8 graphs of the

calculation using, Ab = 4πr2
b, to show the magnitude of the correction for various

models. The results are qualitatively unchanged.

5-6 Relationship to other work

We have concentrated on several explicit examples, including some numerical solu-

tions, of extensions of the generalized second law of thermodynamics to cosmological

horizons. This work complements some recent theorems that prove more general

but less explicit results that have a bearing on the GSL. For example, for black hole-

de Sitter spacetimes, Shiromizu et al. (1993) show that the black hole event horizon

area is non-decreasing in asymptotically de Sitter space times, while Hayward et al.

(1994) show that the black hole event horizon area is bounded by 4π/Λ.
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The cosmological horizon area in models with a positive cosmological constant

has been considered by Boucher et al. (1984) who show that the horizon area is

bounded by 12π/Λ on a regular time-symmetric hypersurface, while Shiromizu et al.

(1993) show that the horizon area is bounded by 12π/Λ on a maximal hypersurface.

Neither of these proves a bound in a non-stationary asymptotically de Sitter universe

such as an FRW universe.

Maeda et al. (1998) extend the work of Davies (1988b,a) by showing that the

cosmological event horizon area does not decrease in any asymptotically de Sitter

spacetime. They also show that the de Sitter horizon is the upper limit of horizon

size for any cosmological model with nonzero Λ. Our results both illustrate these

theorems and demonstrate that, for certain specific models, the GSL is satisfied not

just asymptotically, but at all times (excluding the shaded region where black holes

overlap).

5-7 Summary

We define total entropy to be the entropy of a cosmological event horizon plus

the entropy within it. Davies (1988b) showed that the entropy of the cosmological

event horizon in FRW universes, subject to the dominant energy condition, never

decreases. We examined radiation filled FRW universes and showed that total en-

tropy never decreases for a wide range of models by testing the parameter space

using numerical calculations. We then assessed the entropy lost as black holes dis-

appeared over the cosmological event horizon. The lack of a black hole solution for

arbitrary spacetime embeddings restricts the application of this technique. Limit-

ing the size of black holes to those small enough that the difference in embedding

in empty space compared to de Sitter space is less than 0.1% allowed us to show

that no GSL violation occurs in any of the closed or flat models tested, but an

apparent violation occurs at early times in open FRW universes, probably due to

the breakdown of the Schwarzschild-de Sitter assumption in the presence of matter

density outside a black hole. Further progress in resolving this matter will require

more realistic approximations of black hole solutions in cosmological backgrounds.
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An associated issue that needs to be addressed is what constitutes the appropri-

ate surface that characterizes horizon entropy when black holes are situated in a

time-dependent background.





Chapter 6

Black hole thermodynamics may

constrain theories of varying

constants

6-1 Introduction

Recent evidence suggests the fine structure constant α = e2/h̄c may have been

smaller in high redshift quasar absorption clouds (Webb et al. 2001; Murphy et al.

2001, 2002; Webb et al. 2003). This raises the question of which fundamental quan-

tities are truly constant and which might be time- or environment-dependent. Sev-

eral candidate theories have been proposed in which different fundamental constants

vary. We propose that black hole thermodynamics may provide a means to discrim-

inate between alternative theories, because changes in α may affect the horizon area

of a charged black hole. Since the event horizon area is widely accepted as a mea-

sure of the entropy of the black hole (Bekenstein 1973, 1974; Hawking 1976) some

variations in the fundamental ‘constants’ could lead to a violation of the generalized

second law of thermodynamics.

In this Chapter we outline our proposal (Davies, Davis and Lineweaver, 2002) for

how black hole entropy could provide a theoretical test of candidate varying con-
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stant theories. In response to criticisms we include a discussion of the operational

meaning of variations in dimensional parameters and provide explicitly dimension-

less constraints. We discuss the limitations of this idea, in particular that the black

hole entropy needs to be calculated from within a theory of varying constants for

which few solutions are currently available.

6-2 Observational evidence for a varying fine struc-

ture constant

Physicists have long been questioning the constancy of the fundamental constants of

nature. Milne (1937) and Dirac (1937) independently suggested that gravitational

and electromagnetic clocks may tick at different rates and proposed theories in

which the gravitational constant, G, varies with time1. Both theories have been

ruled out observationally (at least in their original form, see review by Uzan 2003),

but the basic idea remains: the constancy of the fundamental quantities of nature

is a feature that must be tested experimentally.

Webb et al. (2003) give observational evidence for a smaller fine structure con-

stant in high redshift quasar absorption clouds (see also Murphy et al. 2001, 2002;

Webb et al. 2001). They report a variation in the fine structure constant of ∆α/α =

−0.57 ± 0.10 × 10−5 averaged over the redshift range 0.2 < z < 3.7 (corresponding

to about 2.5 to 11.8 billion years ago). The observations are statistically significant

(preferred over no variation at the 5.7σ level) but remain tentative as the observers

cannot rule out some as-yet-undiscovered systematic error. Nevertheless the many-

multiplet method used was chosen because it is fairly robust to systematics and

several possible systematic errors have been ruled out.

For a detailed examination of possible systematics and how they have been dealt

with we refer the reader to Murphy et al. (2001, 2003). So far all of the observations

have been made from Keck with the HIRES instrument, so the first step in reducing

1Milne’s theory had an increasing G while Dirac’s theory had a decreasing G.
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the chance of instrumental systematic error is to repeat the observations on another

telescope with a different spectrograph. Exploring the same technique with different

transitions in other wavelength bands would provide a further test.

Other methods of constraining ∆α/α have been consistent with no variation

in the fine structure constant (e.g. Fujii et al. 2000; Olive et al. 2002). The quasar

absorption line measurements improve on previous techniques by constraining ∆α/α

directly without needing to assume the constancy of any other parameters. For a

review of experimental and observational tests of varying constants we refer the

reader to Uzan (2003) and the recent work reported in Martins (2003).

6-3 Theoretical motivation

Modern theoretical motivation for the search for varying constants comes in two

main forms. Firstly there are several scalar theories in which one or more of the

fundamental parameters is coupled to a varying scalar field. In an attempt to make

a gravitational theory that complied with Mach’s principle Brans & Dicke (1961)

suggested such a theory in which G was replaced by a scalar field that can vary

in both space and time. The first fully covariant, gauge invariant theory of vary-

ing constants was proposed by Bekenstein (1982) who derived a theory of varying

electric charge motivated by the need for a framework against which to compare

experimental constraints on a varying fine structure constant. Over the last decade

quintessence theories have questioned the constancy of the cosmological constant

(see review by Wetterich 2002). The latest resurgence of interest has been moti-

vated by the possibility of solving some of the problems with the current big bang

model by invoking a varying speed of light (Moffat 1993; Albrecht & Magueijo 1999;

Barrow & Magueijo 1998; Magueijo 2000; Sandvik et al. 2002; Moffat 2003a,b) and

has been fueled by cosmological observations which indicate that the fine structure

constant may have been different in the past (see Sect. 6-2).

The second theoretical motivation arises from attempts to quantize gravity.

String and M-brane theories provide a natural regime for constant variation in which
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the constants depend on the properties of the extra dimensions. Kaluza-Klein the-

ory (see for example review by Overduin & Wesson 1997), which is considered an

early prototype for many-dimensional unification theories, attempts to unify gravity

with the other fundamental forces through the addition of an extra dimension. (It

has been rejected, at least in its initial form, partially due to its classical rather than

quantum nature.) Kaluza-Klein theory predicts that fundamental constants would

vary with the size of the extra dimensions. Since the three spatial dimensions of

our experience do seem to be expanding it seems natural that the sizes of the extra

dimensions, and thus the values of the fundamental constants, could also change.

Attempts to quantize gravity and link it to the other fundamental forces result in

similar predictions. For an excellent review of theoretical motivations of the search

for variations in fundamental constants we refer the reader to Uzan (2003) Sect. VI.

For examples see Dent (2003), Gregori (2002) and Youm (2002, 2001b,a).

The current state of affairs sees many different theories predicting (or allowing)

different variations in the fundamental constants and a need for experimental results

to decide between them. Magueijo et al. (2002) derive observational tests that can

be used to distinguish between two manifestations of scalar field theories – one a

varying-e theory, the other a varying-c theory. Although these observations may

be attained by the next generation of experimental programs, they remain for the

moment out of reach. For many of the quantum theories experimental confirmation

is even further away.

6-4 How black hole thermodynamics may con-

strain theories of varying constants

Observational evidence of varying fundamental constants would have far reaching

implications for physics and the quest for the unification of the fundamental forces.

Should the variation in the fine structure constant be confirmed it would force a

profound shift in our understanding of the Universe and perhaps help direct our

search for a more fundamental theory. However, the lack of other observational tests
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is a persistent problem that means theories are currently selected for on theoretical

or aesthetic grounds. Our aim is to find a theoretical test that could distinguish

between varying constant theories to decide which are more viable. One theoretical

criterion that has held throughout the development of modern physics is the second

law of thermodynamics.

One expects that the second law of thermodynamics is likely to hold in any new

theories because a violation is equivalent to getting something for nothing. Sir

Arthur Eddington2 writes “if your theory is found to be against the second law of

thermodynamics, I can give you no hope; there is nothing for it but to collapse

in deepest humiliation.” Albert Einstein3 is quoted to have claimed “[The second

law of thermodynamics] is the only physical theory of universal content, which I

am convinced, that within the framework of applicability of its basic concepts will

never be overthrown.”

Such emotive language indicates a level of philosophy rather than observation

which seems inappropriate as a basis for physical theory. However, the second law

of thermodynamics has already survived drastic theoretical paradigm shifts such as

the transition to general relativity and quantum mechanics and there is no reason

to expect it to fail in the next theory. In this chapter we assess some of the im-

plications of the second law of thermodynamics on varying constant theories under

2In The Nature of the Physical World, Maxmillan: New York (1948), p. 74, “The law that

entropy always increases – the second law of thermodynamics – holds I think, the supreme position

among the laws of Nature. If someone points out to you that your pet theory of the Universe is in

disagreement with Maxwell’s equations - then so much worse for Maxwell equations. If it is found

to be contradicted by observation - well these experimentalists do bungle things sometimes. But

if your theory is found to be against the second law of thermodynamics, I can give you no hope;

there is nothing for it but to collapse in deepest humiliation.”
3In Thermodynamics in Einstein’s Universe by M. J. Klein, Science, 157, (1967) p 509, “[A law]

is more impressive the greater the simplicity of its premises, the more different are the kinds of

things it relates, and the more extended its range of applicability. Therefore, the deep impression

which classical thermodynamics made on me. It is the only physical theory of universal content,

which I am convinced, that within the framework of applicability of its basic concepts will never

be overthrown.”



100
Chapter 6. Black hole thermodynamics may constrain theories of

varying constants

the assumption that it holds. Black holes offer a very clean, geometric measure of

entropy. We therefore suggest that when black hole entropy calculated in a varying-

constant theory produces a violation of the second law of thermodynamics then that

theory should be considered suspect.

Unfortunately most of the theories under investigation are not sufficiently well

developed to have black hole entropy solutions. Some have solutions for the area of

a black hole (e.g. Magueijo 2001), but more work needs to be done to check that

in these cases area remains a good measure of entropy. In the absence of a full

varying-constant solution we take the value of black hole area in general relativity,

assume that this is a slow-variation limit of a more fundamental varying-constant

theory, and assess how horizon area varies as the constants change.

The fine structure constant is given by4 α = e2/h̄c. An increase in the fine

structure constant can therefore be attributed to an increase in electric charge, or a

decrease in either the speed of light or Planck’s constant (with all other dimensional

constants unchanged – we discuss the meaningfulness of variations in dimensional

constants in Sect. 6-5.) In the case of a non-rotating black hole with an electric

charge Q, and mass M , the area of the black hole event horizon, AH, is given

in conventional general relativity theory from the Reissner-Nordström solution of

Einstein’s field equations (Misner et al., 1973, Box 33.2C),

Ab = 4πr2, (6.1)

where,

r =
G

c2

[

M +
√

M2 −Q2/G
]

. (6.2)

We can write Q as an integer, n, multiplied by the fundamental electric charge, e.

The expression for the entropy of a black hole becomes,

Sb =
kbc

3

Gh̄

Ab

4
, (6.3)

=
kbπG

h̄c

[

M +
√

M2 − n2e2/G
]2

, (6.4)

4In this formula e is in atomic units (measured in kgm3s−2). To convert from Coulombs to

atomic units we redefine e2/4πǫ0 → e2 (and ǫ0, the permittivity of free space, is a conversion

factor between the Coulomb and kg m3s−2).
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where kb is Boltzmann’s constant. It is immediately obvious that an increase in the

magnitude of the electric charge Q, with c, h̄, G, kB and M remaining constant,

implies a decrease in the event horizon area. By contrast, a decrease in the speed

of light, c, or Planck’s constant, h̄, would lead to an increase in event horizon area.

Thus two contending alternatives for an increase in α produce opposite outcomes

as far as black hole entropy is concerned.

One could argue that a decrease of horizon area implies a violation of the gener-

alized second law of thermodynamics and so the fundamental electric charge cannot

increase. However, before we can be secure in that interpretation, a number of con-

ditions need to be satisfied. The black hole will radiate heat into its environment via

the Hawking process, and as Q changes the temperature will vary. For a violation

of the second law of thermodynamics to occur the black hole must not raise the

entropy of the environment more than its own entropy decreases. This condition is

readily satisfied by immersing the black hole in a heat bath of equal temperature,

and allowing the heat radiation to change isentropically as the charge varies (for

a highly charged black hole the specific heat is positive (Davies 1977), and it can

reside in stable equilibrium in an infinite heat bath).

Moreover, Eq. 6.4 is based on standard gravitation theory. In a non-standard

theory involving varying e, h̄ or c, the formula for the event horizon area will

likely differ (e.g. Magueijo 2001). Also, the Hawking process may be modified in

a way that alters the relationship between temperature, entropy and horizon area.

Eq. 6.4 must then be considered as an approximation in the limit of small variation

of ‘constants.’ The validity of GR in this limit may not be secure. Newton’s laws

are the low velocity, low mass (energy) limit of general relativity. We have suggested

that the next step in the ladder means general relativity is the slow variation limit

of a varying-constant theory. However, the analogy may not hold. The concepts

of mass and velocity are intrinsic to Newton’s laws so it is natural that they agree

with the limit of general relativity. The concept of constant variations, on the

other hand, does not appear in general relativity. So a varying-constant theory

is not necessarily just a step up in magnitude from general relativity, it may be
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qualitatively different.

However, it seems unlikely that minor modifications of Eq. 6.4 will reverse the

sign of the relationship between charge and horizon area. Moreover, in the standard

theory there is a maximal electric charge given by Q2 = M2 above which the horizon

disappears and the black hole is replaced by a naked singularity. A modified theory

might alter the value of this maximal charge, but there may still be a limit above

which any increase in charge will create a naked singularity, in violation of the

cosmic censorship hypothesis (Penrose 1969). Thus both cosmic censorship and the

second law of thermodynamics are threatened by theories in which e increases with

time.

One might also consider theories in which major modifications occur to the struc-

ture of charged black holes. For example, in the theory of Bekenstein (1982) and of

Barrow & Magueijo (1998) electric charge can vary with position as well as time,

and depends on the energy in the Coulomb field. In the case of a highly charged

black hole, the spacetime geometry and causal structure close to the hole might de-

part greatly from the standard theory. Whether these departures would lead to the

horizon area increasing, rather than decreasing, as a function of electric charge, is

unclear in the absence of an exact solution. But in such theories one could consider

the case of a black hole with a small electric charge, and hence low Coulomb field,

for which Eq. 6.4 remains a good approximation. Thus, a violation of the second

law seems probable if variations in e are responsible for the variation in α. Fur-

thermore, a violation of cosmic censorship would also seem probable by combining

a small electric charge with sufficiently rapid rotation of the black hole to produce

the equivalent of an extreme Kerr-Newman black hole, for which any increase in

charge would create a naked singularity.

Our arguments, although only suggestive, indicate that varying e theories run a

serious risk of being in violation of both the second law of thermodynamics and cos-

mic censorship. Thus, black hole thermodynamics may provide a criterion against

which contending theories for varying ‘constants’ should be tested.
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6-5 The meaning of varying dimensional constants

Our paper (Davies et al. 2002) sparked the latest round in an ongoing debate over

whether it is meaningful to discuss variations in dimensional constants. Gen-

eralizing broadly, protagonists such as Dent (2002); Duff (2002); Dzuba (2002);

Flambaum (2002); Wolfe (2002) claim that it is meaningless to talk about vari-

ations in dimensional constants. While champions of varying constant theories

such as Albrecht & Magueijo (1999); Magueijo (2000); Barrow et al. (2002); Moffat

(2002); Sandvik et al. (2002) disagree. However, there is a wide area of common

ground. Both parties agree that it is meaningless to discuss varying dimensional

constants without defining what they vary with respect to. Both parties agree

that varying constant theories are meaningful discussions of varying dimensional

constants. Both parties agree that with or without varying constant theories it is

impossible to unambiguously discover which dimensional constant is varying. In

fact, there is very little that the two parties disagree on, and some of the points of

disagreement lie in miscommunication. We believe the remaining point of debate

concerns whether it is meaningful to discuss varying dimensional constants outside

a theory of varying constants. Since these points have raised so much vehement

debate we take the time to summarize the arguments and clarify what we believe

is the solution.

In its simplest form, the claim that variations in dimensional constants is mean-

ingless relates to the fact that only dimensionless quantities are measurable. All

measurements are ratios of the measured quantity to the appropriate measuring

stick. For example, when we measure a person’s height we use a ruler. What we

measure is the dimensionless ratio of height divided by ruler length. If we find

that in a subsequent measurement this ratio is larger we know that something has

changed but we cannot say whether the person grew taller or whether the ruler

shrank.

We note that since our current standards of length and time5 both depend upon

5Our current standard for the metre is the length of the path traveled by light in vacuum
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the speed of light, c, it is impossible to use them to measure any variation in c.

However, if we use the speed of light to calibrate a ruler today and another ruler

tomorrow we could find that the two rulers are different. Once calibrated, the length

of the rulers depends on molecular or atomic forces and is therefore only indirectly

sensitive to a variation in the speed of light (molecular forces may depend on c but

in a different functional form than the original calibration).

Varying the speed of light (in a particular system of units) while all other funda-

mental constants (in that system of units) remain constant has real physical, mea-

surable effects. For example, as in George Gamow’s classic book “Mr Tompkins in

Paperback” (Gamow 1965), if the speed of light were greatly reduced relativistic

effects such as length contraction would become evident in everyday life. Varying

speed of light theories are of interest because a faster speed of light in the early

Universe could remove the horizon problem and thus remove one of the primary

motivations of inflation. However, we cannot unambiguously say that the physical

effects we are seeing are due to a variation in the speed of light because the “speed

of light” can always be redefined using a different set of units so that it does not

vary. The physical effects are clear — but their cause is up for debate.

To elucidate this more clearly I will elaborate on an example provided in Duff

(2002). Consider SI units. Length is measured in metres, and time is measured

in seconds. We can define a number of alternate sets of units, one of which is the

familiar Planck units. The conversions between SI and Planck units for length and

time are respectively,

L2
P =

Gh̄

c3
, (6.5)

T 2
P =

Gh̄

c5
. (6.6)

A length, L, measured in metres is equal to L/LP Planck lengths. So to convert

a speed from metres per second to Planck lengths per Planck time we divide by

during a time interval of 1/299 792 458 of a second (Hagiwara et al. 2002). The current standard

for the second is defined to be the duration of 9 192 631 770 periods of the radiation corresponding

to the transition between the two hyperfine levels of the ground state of the caesium-133 atom

(Hagiwara et al. 2002), and thus depends on the value of the fine structure constant.
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LP/TP = c. Thus the speed of light measured in Planck units is identically one,

cP = c/c = 1. We have converted to a set of units in which the speed of light

can never vary because our definition of units depends upon it. However, consider

another set of units that Duff (2002) calls Schrödinger units. The conversions

between SI and Schrödinger units for length and time are respectively,

L2
ψ =

Gh̄4

e6
, (6.7)

T 2
ψ =

Gh̄6

e10
. (6.8)

Again, to convert a speed from metres per second to Schrödinger length per Schrödinger

time we divide by Lψ/Tψ = e2/h̄. Therefore the speed of light measured in

Schrödinger units is cψ = c/(e2/h̄) = 1/α. In this set of units the speed of light

changes in inverse proportion to the fine structure constant. From this we can

conclude that if c changes but e and h̄ remain constant then the speed of light in

Schrödinger units, cψ changes in proportion to c but the speed of light in Planck

units, cP stays the same. Whether or not the “speed of light” changes depends on

our measuring system (three possible definitions of the “speed of light” are c, cP

and cψ). Whether or not c changes is unambiguous because the measuring system

has been defined.

All the above systems of units are interchangeable and so together define a unique

concept. How fast a photon travels between two points is a real physical observable

that is unchanged by any of humanity’s choices of units. Once we have chosen a

system of units (e.g. metre and second) it is meaningful to discuss changes amongst

the dimensional fundamental parameters (e.g. the speed of light) in these units.

We simply have to recognize that if we chose another set of units we might find

that different fundamental constants vary.

Moreover any variation in dimensional constants can be re-expressed as a vari-

ation in dimensionless constants. To demonstrate this final point more clearly lets

return to the entropy of a charged black hole as defined in Eq. 6.4.

Dent (2002); Duff (2002); Flambaum (2002) and Wolfe (2002) all suggested that

this entropy be written in dimensionless form. To do this we must divide through
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by Boltzmann’s constant,

sb =
Sb

kb

= π
[

m+
√
m2 − n2α

]2
, (6.9)

where m = M/MP and the Planck mass M2
P = h̄c/G. Arguments from quantum

theory suggest that it is more natural to expect that m would remain constant than

M (Flambaum 2002; Carlip 2003). Under this assumption Eq. 6.9 suggests that

any increase in α would violate the second law of thermodynamics, independent of

which of e, c or h̄ varies. This seems to be in contradiction to our previous result in

which an increase in e decreased Sb but a decrease in c or h̄ increased Sb. However,

in our initial formulation we had assumed that M remained constant whereas here

we are assuming m remains constant. If we allow m to vary such that M remains

constant the result for black hole entropy is unchanged from the previous version.

This demonstrates how strongly dependent any conclusions are on the assump-

tions of what is held constant. Bekenstein (1979) points out why several attempts

(Baum & Florentin-Nielsen 1976; Solheim et al. 1976) to measure the variation of

dimensional constants gave a null result because they had implicitly assumed the

constancy of the quantity they were trying to measure. Certain combinations of

varying and constant constants may result in a violation of the second law of ther-

modynamics, but it is not sufficient to say which constants vary, you must also

specify those that do not change. This is where theories of varying constants come

into play. (As an example, Albrecht & Magueijo (1999, Sect. II) provides a clear

description of what exactly it means to have a theory of varying speed of light.)

Varying constant theories make definite physical predictions that we can in principle

measure (e.g. Magueijo et al. 2002). Nevertheless, these varying constant theories

are unable to unambiguously say which dimensional constants are varying, even if

all their physical predictions are borne out.

The reason for this is that any theory of varying constants can be transformed

by a change of units into a theory in which a different constant varies (see Fig. 6.1).

For example, Barrow & Magueijo (1998) showed how a varying c theory can be

transfomed into a varying e theory by a change in units. It is not important that
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Minimally coupled

varying speed of light theory

(broken Lorentz invariance)

6=
Non-minimally coupled

varying speed of light theory

(Lorentz invariant)

m m

Non-minimally coupled

varying-e theory

(broken Lorentz invariance)

6=
Minimally coupled

varying-e theory

(Lorentz invariant)

Figure 6.1. This diagram represents the fact that a varying speed of light theory

can be transformed into a varying-e theory and vice versa. However, the theory created

by transforming a simple varying speed of light theory into a varying-e theory is not

equivalent to a simple varying-e theory. This diagram follows a similar one by Dzuba

(2002).

these theories do not answer the question of which constant is really varying be-

cause they make clear physical predictions that we can test. If we find that one of

these theories predicts correctly all observational tests we can perform then it will

supercede previous theories. It is then up to the user to choose to solve problems

in whichever mode of the theory they find convenient.

6-5.1 A question of philosophy

The discussion over the meaningfulness of varying dimensional constants is partially

a question of philosophy of science. Does physics endeavour to best describe “re-

ality” or does it endeavour to reveal “reality”? Proponents of the different camps

answer differently when asked of the meaningfulness of varying dimensional con-

stants. It is impossible to answer definitively that it is e that varies or it is c that

varies. On the other hand, to say that the observables are best described by a vary-

ing e or the observables are best described by a varying c is meaningful, though it
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relies on a value judgment that is usually drawn from arguments of simplicity.

Some may argue that value judgments such as which description of reality is

simplest should be kept out of physics, but value judgments are made every time

we choose a frame of reference in which to perform a calculation (e.g. the time coor-

dinate in an expanding universe, see Chapter 4). We are not saying that that is the

only frame of reference available, but we choose the frame so that the calculations

are simplest.

6-6 Extension to particular varying constant the-

ories

Theories in which fundamental constants are allowed to vary provide solutions to

black hole entropy that supersede our assumption that Eq. 6.9 derived from GR

provides a slow variation limit to varying constant theories. Since publication of

Davies, Davis and Lineweaver (2002) several papers have applied the black hole

entropy criterion using various varying constant theories. Here we briefly summarize

some of their results.

Barrow (2003a,b) gives the example of Brans-Dicke theory, in which black hole

horizon entropy,

Sb ∝ GM2. (6.10)

He notes that the entropy decrease criterion would rule out any theories in which

G decreased. Essentially all Brans-Dicke theories have this behaviour. However,

by definition G is constant on the Schwarzschild horizon in this theory. When G

is allowed to vary the static, spherically symmetric solution in Brans-Dicke theory

is no longer a black hole. For this reason he argues that black holes are unable to

constrain Brans-Dicke theories.

Fairbairn & Tytgat (2003) consider the entropy of a class of charged dilaton

black holes related to string theory. They consider both adiabatic and non-adiabatic

variations of the fine structure constant and find that black hole entropy does not
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change in the former and increases in the latter. Vagenas (2003) shows that entropy

decreases as e decreases for 2-d stringy black holes. He notes that there are no

model independent constraints on black hole entropy and concludes that there are

no theories that are out of favour with black hole thermodynamics. However, he has

demonstrated a specific model that is out of favour with black hole thermodynamics.

The above analyses concentrate on black hole solutions in varying constant the-

ories. Others have concentrated on analyzing any concomitant increase in the

entropy of the Reissner-Nordström black hole environment when constants vary.

Carlip & Vaidya (2003) consider the full thermal environment of a black hole inside

a heat bath – a box of fixed radius, temperature and charge (the canonical ensem-

ble) or electrostatic potential (the grand canonical ensemble). Presuming that the

features of the box remain fixed as α changes they show that black hole entropy

increases as α increases, independent of whether the change is due to decreasing c

or h̄, or due to increasing e. They conclude that black hole thermodynamics ‘mili-

tates’ against models in which e decreases, but places no constraints on increasing

e, and is insufficient to constrain theories in which α increases.

Other constraints relate to existing efforts to quantize black holes. Carlip (2003)

analyzes the problems varying constants introduce if you try to quantize the entropy

of black holes. Flambaum (2002) also deals with quantizing black holes and suggests

that quantum black holes give reason to believe that entropy is conserved.

6-7 Conclusion

The subject of varying fundamental constants is an exciting one that could prove to

be the next step in physical theories. Observational tests are needed to determine

which forms of varying constant theories best describe reality. We have proposed

black hole thermodynamics as a tool to theoretically rule out some varying constant

theories. This stimulated much debate and subsequent work by a variety of authors

applies the black hole thermodynamics test to several different varying constant

theories.





Chapter 7

Conclusions

We have clarified some common misconceptions surrounding the expansion of the

Universe, and shown with numerous references how misleading statements manifest

themselves in the literature. Superluminal recession is a feature of all expand-

ing cosmological models that are homogeneous and isotropic and therefore obey

Hubble’s law, vrec = HD. This does not contradict special relativity because the

superluminal motion does not occur in any observer’s inertial frame. All observers

measure light locally to be travelling at c and nothing ever overtakes a photon.

Inflation is often called “superluminal recession” but even during inflation objects

with D < c/H recede subluminally while objects with D > c/H recede superlu-

minally. Precisely the same relationship holds for non-inflationary expansion. We

showed that the Hubble sphere is not a horizon — we routinely observe galaxies

that have, and always have had, superluminal recession velocities. All galaxies at

redshifts greater than z ∼ 1.46 today are receding superluminally in the ΛCDM

concordance model. We have also provided a more informative way of depicting the

particle horizon on a spacetime diagram than the traditional worldline method.

An abundance of observational evidence supports the general relativistic big bang

model. The duration of supernovae light curves shows that models predicting no

expansion are in conflict with observation. Using magnitude-redshift data from

supernovae we were able to rule out the SR interpretation of cosmological redshifts
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at the ∼ 23σ level. Together these observations provide strong evidence that the

general relativistic interpretation of the cosmological redshifts is preferred over tired

light and special relativistic interpretations. The general relativistic description of

the expansion of the Universe agrees with observations, and does not need any

modifications for vrec > c.

We have pointed out and interpreted some additional counter-intuitive results

of the general relativistic description of our Universe. We have shown that the

unaccelerated expansion of the Universe has no effect on whether a galaxy set up at

rest with respect to our position approaches or recedes from us. In a decelerating

universe the untethered galaxy approaches us, while in an accelerating universe

it recedes from us. The expansion, however, is responsible for the galaxy joining

the Hubble flow, and we have shown that this happens irrespective of whether the

untethered galaxy approaches or recedes from us.

The expansion of the Universe is a natural feature of general relativity that also

allows us to unambiguously convert observed redshifts into proper distances and

recession velocities and to unambiguously define approach and recede. We have

used this foundation to predict the existence of receding blueshifted and approach-

ing redshifted objects in the universe. To our knowledge this is the first explicit

derivation of this counter-intuitive behaviour.

We used the example of the empty universe to relate SR expansion (the Milne

universe) to FRW expansion. Two choices of time coordinate are intuitive. The

first chooses the time coordinate of a fundamental observer’s inertial frame (Milne

universe). This has the advantage of allowing Lorentz transformations, time dilation

and length contraction to hold and be calculable in the familiar SR formalism.

However, this choice means the universe is not homogeneous, and the formalism

cannot easily be translated into a non-empty universe. The second chooses the

time coordinate as the proper time of comoving observers (FRW universe). This

choice makes the Universe homogeneous and allows us to use Friedmann’s equations

to describe the evolution of the Universe in the non-empty case. The SR Doppler

shift equation relates redshift to velocity only in the Milne universe. This is not the
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velocity that appears in Hubble’s law.

We define total entropy to be the entropy of a cosmological event horizon plus

the entropy within it. Davies (1988) showed that the entropy of the cosmological

event horizon in FRW universes, subject to the dominant energy condition, never

decreases. We examined radiation filled FRW universes and showed that total en-

tropy never decreases for a wide range of models by testing the parameter space

using numerical calculations. We then assessed the entropy lost as black holes dis-

appeared over the cosmological event horizon. The lack of a black hole solution for

arbitrary spacetime embeddings restricts the application of this technique. Limit-

ing the size of black holes to those small enough that the difference in embedding

in empty space compared to de Sitter space is less than 0.1% allowed us to show

that no GSL violation occurs in any of the closed or flat models tested, but an

apparent violation occurs at early times in open FRW universes, probably due to

the breakdown of the Schwarzschild-de Sitter assumption in the presence of matter

density outside a black hole. Further progress in resolving this matter will require

more realistic approximations of black hole solutions in cosmological backgrounds.

An associated issue that needs to be addressed is what constitutes the appropri-

ate surface that characterizes horizon entropy when black holes are situated in a

time-dependent background.

We have also used black hole thermodynamics to suggest constraints on theories

of varying constants. We propose that if a theory of varying constants predicts a

decrease in black hole entropy without a concomitant increase in horizon entropy

then that theory should be considered suspect. Constraints on varying constant

theories are increasingly important as new observational evidence suggests a possible

variation in the fine structure constant over cosmological time scales.





Appendix A

Standard results

A-1 General relativistic definitions of expansion

and horizons

A-1.1 The metric

The metric for an homogeneous, isotropic universe is the Robertson-Walker (RW)

metric,

ds2 = −c2dt2 +R(t)2[dχ2 + S2
k(χ)dψ2], (A.1)

where c is the speed of light, dt is the time separation, dχ is the comoving coordinate

separation and dψ2 = dθ2 + sin2 θdφ2, where θ and φ are the polar and azimuthal

angles in spherical coordinates. The scalefactor, R, has dimensions of distance.

The function Sk(χ) = sinχ, χ or sinhχ for closed (k = +1), flat (k = 0) or open

(k = −1) universes respectively (Peacock 1999, p. 69). The time, t, is the proper

time of a comoving observer, also known as cosmic time (see Section 4-1). The

proper distance D, at time t, in an expanding universe, between an observer at

the origin and a distant galaxy is defined to be along a surface of constant time

(dt = 0). We are interested in the radial distance so dψ = 0. The RW metric then

reduces to ds = Rdχ which, upon integration yields,

Proper distance, D(t) = R(t)χ. (A.2)
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Differentiating this yields the theoretical form of Hubble’s law (Harrison 1993),

Recession velocity, vrec(t, z) = Ṙ(t)χ(z), (A.3)

= H(t)D(t), (A.4)

where vrec = Ḋ (for χ̇ = 0) and χ(z) is the fixed comoving coordinate associated

with a galaxy observed today at redshift z. Note that the redshift of an object

at this fixed comoving coordinate changes with time1 (Eq. 2.15). A distant galaxy

will have a particular recession velocity when it emits the photon at tem and a

different recession velocity when we observe the photon at t0. Eq. A.4 evaluated at

t0 and tem gives the recession velocities plotted in Fig. 2.1 (top and bottom panels

respectively).

The recession velocity of a comoving galaxy is a time dependent quantity because

the expansion rate of the universe Ṙ(t) changes with time. The current recession

velocity of a galaxy is given by vrec = Ṙ0χ(z). On the spacetime diagram of Fig. 1.1

this is the velocity taken at points along the line of constant time marked “now”.

The recession velocity of an emitter at the time it emitted the light we observe is the

velocity at points taken along the past light cone2. However, we can also compute

the recession velocity a comoving object has at any time during the history of the

universe, having initially calculated its comoving coordinate from its present day

redshift.

Allowing χ to vary when differentiating Eq. A.2 with respect to time gives two

distinct velocity terms (Landsberg & Evans 1977; Silverman 1986; Peacock 1999;

Davis et al. 2003),

Ḋ = Ṙχ+Rχ̇, (A.5)

vtot = vrec + vpec. (A.6)

1In addition, objects that have a peculiar velocity also move through comoving coordinates,

therefore more generally Eq. A.3 above should be written with χ explicitly time dependent,

vrec(t, z) = Ṙ(t)χ(z, t).
2The recession velocity at the time of emission is vrec(tem) = R(tem)χ(z) where R(tem) = R(t)

as defined in Eq. A.9.
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This explains the changing slope of our past light cone in the upper panel of Fig. 1.1.

The peculiar velocity of light is always c (Eq. A.7) so the total velocity of light whose

peculiar velocity is towards us is vtot = vrec − c which is always positive (away from

us) when vrec > c. Nevertheless we can eventually receive photons that initially were

receding from us because the Hubble sphere expands and overtakes the receding

photons so the photons find themselves in a region with vrec < c (Section 2-1.3).

Photons travel along null geodesics, ds = 0. To obtain the comoving distance,

χ, between an observer at the origin and a galaxy observed to have a redshift z(t),

set ds = 0 (to measure along the path of a photon) and dψ = 0 (to measure radial

distances) in the RW metric yielding,

c dt = R(t)dχ. (A.7)

This expression confirms our previous statement that the peculiar velocity of a

photon, Rχ̇, is c. Since the velocity of light through comoving coordinates is not

constant (χ̇ = c/R), to calculate comoving distance we cannot simply multiply

the speed of light through comoving space by time, we have to integrate over this

changing comoving speed of light for the duration of propagation. Thus, the co-

moving coordinate of a comoving object that emitted the light we now see at time

t is attained by integrating Eq. A.7,

Past Light Cone, χlc(tem) = c
∫ t0

tem

dt′

R(t′)
. (A.8)

We can parametrize time using redshift and thus recast Eq. A.8 in terms of observ-

ables. The cosmological redshift of an object is given by the ratio of the scalefactor

at the time of observation, R(t0) = R0, to the scalefactor at the time of emission,

R(t),

Redshift, 1 + z =
R0

R(t)
. (A.9)

Differentiating Eq. A.9 with respect to t gives dt/R(t) = −dz/R0H(z) where red-

shift is used instead of time to parametrize Hubble’s constant. H(z) is Hubble’s

constant at the time an object with redshift, z, emitted the light we now see. Thus

for the limits of the integral in Eq. A.8 the time of emission becomes the observed
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redshift z, while the time of observation becomes z = 0. The comoving coordinate

of an object in terms of observables is therefore,

χ(z) =
c

R0

∫ z

o

dz′

H(z′)
. (A.10)

Thus there is a direct one to one relationship between observed redshift and co-

moving coordinate. Notice that in contrast to special relativity the redshift does

not give you the velocity, it gives you the distance3. That is, the redshift tells us

not the velocity of the emitter, but where the emitter sits (at rest locally) in the

coordinates of the universe. The recession velocity is obtained by inserting Eq. A.10

into Eq. A.3 yielding Eq 2.1.

A conformal time interval, dτ , is defined as a proper time interval dt divided by

the scalefactor,

Conformal time, dτ = dt/R(t). (A.11)

This allows us to rewrite the RW metric as,

ds2 = R(t)2[−c2dτ 2 + dχ2 + S2
k(χ)dψ2], (A.12)

so the part of the metric inside the square brackets looks like the Minkowski metric

of special relativity.

A-1.2 The Friedmann equations

The time dependence of the scalefactor, R(t), is given by the Friedmann equations,

ρ̇ = −3H(ρ+ p/c2), (A.13)

3H2 = 8πGρ+ Λ − 3kc2/R2, (A.14)

where ρ and p are the density and pressure of the cosmological fluid respectively.

The radiation density and cosmological constant can be normalized to,

ΩM =
8πGρ0

3H2
0

, and ΩΛ =
Λ

3H2
0

, (A.15)

3Distance is proportional to recession velocity at any particular time, but a particular redshift

measured at different times will correspond to different recession velocities.
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respectively so that ΩM + ΩΛ = 1 represents flat space at the present day. The

dimensionless scalefactor a(t) is defined as a(t) = R(t)/R0 where R0 is the present

day radius of curvature of the Universe,

R0 =
c

H0

∣

∣

∣

∣

1

1 − ΩM − ΩΛ

∣

∣

∣

∣

1/2

. (A.16)

Equation A.14 can then be rewritten as,

Ṙ(t) = R0ȧ = R0H0

[

1 + ΩM

(

1

a
− 1

)

+ ΩΛ(a2 − 1)
]1/2

, (A.17)

which we use with the identity dt/R(t) = dR/(ṘR) to evaluate Eqs. A.8, A.19

and A.20. Rearranging the Friedmann Equation also gives the time dependence of

the Hubble’s constant,

H(z) = H0 (1 + z)

[

1 + ΩMz + ΩΛ

(

1

(1 + z)2
− 1

)]1/2

. (A.18)

Expressing Hubble’s constant this way is useful because it is in terms of observables,

but it restricts our calculations to objects with redshift z < ∞. That is, objects

we can currently see. There is no reason to assume the Universe ceases beyond

our particle horizon and expressing Friedmann’s equation in the form of Eq. A.17

allows us to extend the analysis to t→ ∞ which is beyond what we can observe.

A-1.3 Cosmological horizons

Altering the limits on the integral in Eq. A.8 gives the horizons we have plotted on

the spacetime diagrams. The time dependent particle horizon we plot in Fig. 1.1

uses Dph = R(t)χph(t) with,

Particle Horizon, χph(t) = c
∫ t

0

dt′

R(t′)
. (A.19)

The traditional depiction of the particle horizon as a worldline usesDph = R(t)χph(t0).

The comoving distance to the cosmological event horizon is given by,

Event Horizon, χc(t) = c
∫ tend

t

dt′

R(t′)
, (A.20)
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where tend = ∞ in eternally expanding models or the time of the big crunch in

recollapsing models.

A universe expands forever provided:

ΩΛ ≥











0 0 ≤ ΩM ≤ 1

4ΩM

{

cos
[

1
3
cos−1

(

1−ΩM

ΩM

)

+ 4π
3

]}3
ΩM > 1,

(A.21)

(Carroll, Press and Turner 1992). All FRW universes with a positive cosmological

constant ΩΛ > 0 that expand forever have an event horizon. These universes tend

towards de Sitter space (ΩM,ΩΛ) = (0, 1) as t→ ∞ and their event horizons there-

fore tend toward the Hubble sphere. De Sitter space has a deceleration parameter

of q = −R̈R/Ṙ2 = −1. Universes that tend towards q = −1 from above have an

event horizon that increases in size as it approaches the Hubble sphere from below.

In these universes we can observe some superluminally receding objects because

photons in superluminal regions later find themselves in subluminally receding re-

gions and can therefore approach us. On the other hand universes that tend towards

q = −1 from below have an event horizon that decreases in size as it approaches the

Hubble sphere. In these universes we cannot observe some subluminally receding

galaxies because photons in subluminal regions later find themselves in superlumi-

nally receding regions and never again approach us. Figure 1.3 shows the evolution

of the deceleration parameter for several cosmological models.

Universes that ‘bounce’ (collapse then expand) also have event horizons as most

of these tend towards exponential expansion4. There is no event horizon in eternally

expanding universes without a cosmological constant. Collapsing universes that end

in a big crunch can have an event horizon. In big crunch universes the event horizon

occurs not because light travels only a finite distance in an infinite time, but because

light only has a finite time to travel.

4Bounce universes (universes that stop their collapse at a finite scalefactor and re-expand)

occur when,

ΩΛ ≥ 4ΩM

{

coss

[

1

3
coss−1

(

1 − ΩM

ΩM

)]}3

, (A.22)

where “coss” is defined as being cosh when ΩM < 1/2, cos when ΩM > 1/2 and either when

ΩM = 1/2 (Carroll, Press and Turner 1992).
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In closed, eternally-expanding universes the comoving distance that light can

travel in infinite time (the comoving distance to the event horizon) can exceed the

distance to the antipode. The antipodal point is where light rays we emit again

converge on the opposite side of the universe (the south pole if you are the north

pole). Events beyond the event horizon when the event horizon is beyond the

antipode are visible from light they emit in the other direction around the closed

universe. In these cases the event horizon appears out of the antipode at a finite

time5.

The volume within a cosmological event horizon is given by:

Vc = 4π R3
∫ χc

0
S2
k(χ)dχ (A.23)

=























































2π R3 (χc − sinχc cosχc) closed,

4
3
πR3χ3

c flat,

2π R3 (−χc + sinhχc coshχc) open.

(A.24)

A-1.4 Peculiar velocity decay

Here we show that peculiar momentum decays as 1/a in the expanding FRW uni-

verse. The following derivation arises as a combination of the derivations in Peacock

(1999, Sect. 15.3) and Padmanabhan (1996, Sect. 6.2(c)).

From Peacock (1999, Sect. 15.3): “Consider first a galaxy that moves with some

peculiar velocity in an otherwise uniform universe. Even though there is no peculiar

gravitational acceleration acting, its velocity will decrease with time as the galaxy

attempts to catch up with successively more distant (and therefore more rapidly

receding neighbours. If the proper peculiar velocity is v, then after time dt the

5When you reduce Λ enough you find closed universes in which the event horizon does not

extend beyond the antipode. It is more difficult to achieve (and for some Λ is impossible to

achieve) by increasing ΩM, but increasing ΩM brings the emergence of the horizon from the

antipode to earlier times (for a particular Λ). Increase ΩM enough and the time of event horizon

emergence from the antipode starts to increase again.
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galaxy will have moved a proper distance x = v dt from its original location. Its

near neighbours will now be galaxies with recessional velocities Hx = Hv dt, relative

to which the peculiar velocity will have fallen to,

v′ = v −Hx. (A.25)

The equation of motion is therefore just,

v̇ = −Hv = − ȧ
a
v, (A.26)

with the solution v ∝ a−1: peculiar velocities of non-relativistic objects suffer red-

shifting by exactly the same factor as photon momenta.”

Because the galaxies’ velocities were not summed relativistically in Eq. A.25 the

above does not apply for relativistic objects. We now provide the more general

derivation following the treatment of (Padmanabhan 1996, Sect. 6.2(c)). Relativis-

tic velocity addition requires us to replace Eq. A.25 with,

v′ =
v −Hx

1 − vHx/c2
≈ v − (1 − v2/c2)Hx, (A.27)

where the approximation assumes that the relative velocity of the two frames, Hx,

is infinitesimal (this is a requirement of our setup since we integrate over these

infinitesimal increments to calculate the decay of peculiar velocity.) The equation

of motion is therefore,

v̇ = −(1 − v2/c2)Hv, (A.28)

which can be integrated to give,

v
√

1 − v2/c2
∝ 1

a
. (A.29)

The left hand side of this equation is proportional to the relativistic equation for

momentum, p = γmv and so p ∝ 1/a follows.

A-1.5 Infinitesimal Doppler shifts

We have shown in Sect. 4-2 that the SR Doppler shift equation does not relate

redshift to the recession velocity that appears in Hubble’s law vrec = HD, but
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does relate redshift to velocity in the Milne description of the empty universe.

There is another way that the SR Doppler shift is linked to the FRW description.

We know that SR holds in an infinitesimal region around each comoving observer.

So how does the SR Doppler shift, which holds locally, become the cosmological

redshift globally? The following derivation relies heavily on Padmanabhan (1996),

Sect. 6.2(a).

Take an object an infinitesimal comoving distance δχ away from an observer. The

proper distance of that object is δr = a(t)δχ. The velocity is given by δv = δ̇r =

ȧδχ = (ȧ/a)δr, Hubble’s law. The time taken for a photon to transit between these

infinitesimally separated observers is δt = δr/c, so the velocity can be re-expressed

as

δv =
ȧ

a
cδt = c

δa

a
. (A.30)

So far we have just rearranged the expression for velocity in Hubble’s law. Now

we assume that the special relativistic Doppler shift applies for this infinitesimal

redshift. In fact, since velocity tends towards zero as distance tends towards zero,

the low redshift approximation v = cz of the SR Doppler shift is adequate in

the infinitesimal limit. If the original wavelength of light is λ and the redshifted

wavelength is λ+ δλ then the definition of redshift gives us,

δλ

λ
= z =

δv

c
=
δa

a
. (A.31)

This relationship holds for all of the infinitesimal shifts between every point between

emission and observation of a photon, therefore we can integrate this equation over

the duration of propagation of a photon to calculate the cosmological redshift.

Performing the integration gives,

lnλ = ln(a× constant) (A.32)

λ ∝ a, (A.33)

as expected. This shows how infinitesimal SR Doppler shifts are useful, and that

these should be extended to large distances by integration.





Appendix B

Examples of misconceptions in the

literature

In text books and works of popular science it is often standard practice to simplify

arguments for the reader. Some of the quotes below fall into this category. We

include them here to point out the difficulty encountered by someone starting in

this field and trying to decipher what is really meant by ‘the expansion of the

Universe’.

[1] Feynman, R. P. 1995, Feynman Lectures on Gravitation (1962/63), (Reading, Mass.: Addison-

Wesley) p. 181, “It makes no sense to worry about the possibility of galaxies receding from us

faster than light, whatever that means, since they would never be observable by hypothesis.”

[2] Rindler, W. 1956, MNRAS, 6, 662-667, Visual Horizons in World-Models, Rindler acknowl-

edged that faster than c expansion is implicit in the mathematics, but expresses discomfort with

the concept: “. . . certain physical difficulties seem to be inherent in models possessing a particle-

horizon: if the model postulates point-creation we have material particles initially separating at

speeds exceeding those of photons.”

[3] McVittie, G. C. 1974, Quart. J. R. Astron. Soc., 15, 246-263, Distances and large redshifts,

Sect. 4, “These fallacious arguments would apparently show that many quasars had ‘velocities of

recession’ greater than that of light, which contradicts one of the basic postulates of relativity

theory.”
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[4] Weinberg, S. 1977, The First Three Minutes, (New York: Bantum Books), p. 27, “The conclu-

sion generally drawn from this half century of observation is that the galaxies are receding from

us, with speeds proportional to the distance (at least for speeds not too close to that of light).”,

see also p. 12 and p. 25. Weinberg makes a similar statement in his 1972 text Gravitation and

Cosmology (New York: Wiley), p. 417, “a relatively close galaxy will move away from or toward

the Milky Way, with a radial velocity [vrec = Ṙ(t0)χ].” (emphasis ours). Shortly thereafter he

adds a caution about SR and distant sources: “it is neither useful nor strictly correct to interpret

the frequency shifts of light from very distant sources in terms of a special-relativistic Döppler

shift alone. [The reader should be warned though, that astronomers conventionally report even

large frequency shifts in terms of a recessional velocity, a “red shift” of v km/sec meaning that

z = v/(3 × 105).]”

[5] Field, G. 1981, This Special Galaxy, in Section II of Fire of life, the book of the Sun, (Washing-

ton, DC: Smithsonian Books) “The entire universe is only a fraction of a kilometer across [after

the first millionth of a second], but it expands at huge speeds — matter quite close to us being

propelled at almost the speed of light.”

[6] Schutz, B. F. 1985, A first course in General Relativity, (Cambridge U.K.: Cambridge U.

Press) p. 320, “[v=HD] cannot be exact since, for D > 1.2 × 1026m = 4000 Mpc, the velocity

exceeds the velocity of light! These objections are right on both counts. Our discussion was a local

one (applicable for recession velocity << 1) and took the point of view of a particular observer,

ourselves. Fortunately, the cosmological expansion is slow...”

[7] Peebles, P. J. E., Schramm, D. N., Turner, E. L. and Kron, R. G. 1991, Nature 352, 769, The

case for the relativistic hot Big Bang cosmology, “There are relativistic corrections [to Hubble’s

Law, v = H0D,] when v is comparable to the velocity of light c.” However, Peebles, in his 1993

text Principles of Physical Cosmology, (Princeton: Princeton University Press), p. 98, explains:

“Since equation [D = Rχ] for the proper distance [D] between two objects is valid whatever

the coordinate separation, we can apply it to a pair of galaxies with separation greater than the

Hubble length... Here the rate of change of the proper separation, [Ḋ = HD], is greater than the

velocity of light. This is not a violation of special relativity;” Moreover, in the next paragraph

Peebles makes it clear that, dependent upon the cosmological parameters, we can actually observe

objects receding faster than the speed of light.
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[8] Peacock, J. A. 1999, Cosmological Physics, (Cambridge U.K.: Cambridge U. Press) p. 6,

“. . . objects at a vector distance r appear to recede from us at a velocity v = H0r, where H0 is

known as Hubble’s constant (and is not constant at all as will become apparent later.) This law

is only strictly valid at small distances, of course, but it does tell us that objects with r ≃ c/H0

recede at a speed approaching that of light. This is why it seems reasonable to use this as an

upper cutoff in the radial part of the above integral.” However, Peacock makes it very clear that

cosmological redshifts are not due to the special relativistic Doppler shift, p. 72, “it is common but

misleading to convert a large redshift to a recession velocity using the special-relativistic formula

1 + z = [(1 + v/c)/(1 − v/c)]1/2. Any such temptation should be avoided.”

[9] Davies, P. C. W. 1978, The Runaway Universe (London: J. M. Dent & Sons Ltd) p. 26,

“. . . galaxies several billion light years away seem to be increasing their separation from us at

nearly the speed of light. As we probe still farther into space the redshift grows without limit, and

the galaxies seem to fade out and become black. When the speed of recession reaches the speed

of light we cannot see them at all, for no light can reach us from the region beyond which the

expansion is faster than light itself. This limit is called our horizon in space, and separates the

regions of the universe of which we can know from the regions beyond about which no information

is available, however powerful the instruments we use.”

[10] Berry, M. 1989, Principles of Cosmology and Gravitation, (Bristol, U.K.: IOP Publishing)

p. 22 “. . . if we assume that Euclidean geometry may be employed, . . . galaxies at a distance

Dmax = c/H ∼ 2 × 1010 light years ∼ 6 × 109 pc are receding as fast as light. Light from more

distant galaxies can never reach us, so that Dmax marks the limit of the observable universe; it

corresponds to a sort of horizon.”

[11] Raine, D. J. 1981, The Isotropic Universe, (Bristol: Adam Hilber Ltd) p. 87, “One might

suspect special relativistic effects to be important since some quasars are observed to exhibit red-

shifts, z, in excess of unity. This is incompatible with a Newtonian interpretation of the Doppler

effect, since one would obtain velocities v = cz in excess of that of light. The special relativistic

Doppler formula 1+ z = [(c+ v)/(c− v)]1/2 always leads to sub-luminal velocities for objects with

arbitrarily large redshifts, and is at least consistent. In fact we shall find that the strict special

relativistic interpretation is also inadequate. Nevertheless, at the theoretical edge of the visible

Universe we expect at least in principle to see bodies apparently receding with the speed of light.”
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[12] Liddle, A. R. 1988, An introduction to Modern Cosmology, (Sussex: John Wiley & Sons Ltd)

p. 23, Sect 3.3, “. . . ants which are far apart on the balloon could easily be moving apart at faster

than two centimetres per second if the balloon is blown up fast enough. But if they are, they will

never get to tell each other about it, because the balloon is pulling them apart faster than they

can move together, even at full speed.” This is a very useful analogy, and this statement is strictly

true. However, to ensure the balloon is blown up “fast enough” we must ensure the expansion

rate accelerates such that the balloon’s radius increases at least exponentially with time.

[13] Krauss, L. M. and Starkman, G. D. 1999, ApJ, 531(1), 22–30, Life, the universe and nothing:

Life and death in an ever-expanding universe, “Equating this recession velocity to the speed of

light c, one finds the physical distance to the so-called de Sitter horizon... This horizon, is a sphere

enclosing a region, outside of which no new information can reach the observer at the center”.

This would be true if only applied to empty universes with a cosmological constant - de Sitter uni-

verses. However this is not its usage: “the universe became Λ-dominated at about 1/2 its present

age. The ‘in principle’ observable region of the Universe has been shrinking ever since. ... Objects

more distant than the de Sitter horizon [Hubble Sphere] now will forever remain unobservable.”

[14] Harrison, E. R. 1991, ApJ, 383, 60–65, Hubble spheres and particle horizons, “All accelerating

universes, including universes having only a limited period of acceleration, have the property that

galaxies at distances L < LH are later at L > LH , and their subluminal recession in the course of

time becomes superluminal. Light emitted outside the Hubble sphere and traveling through space

toward the observer recedes and can never enter the Hubble sphere and approach the observer.

Clearly, there are events that can never be observed, and such universes have event horizons.”

The misleading part of this quote is subtle – there will be an event horizon in such universes

(accelerating universes), but it need not coincide with the Hubble sphere. Unless the universe is

accelerating so quickly that the Hubble sphere does not expand (exponential expansion) we will

still observe things from beyond the Hubble sphere, even though there is an event horizon (see

Fig. 1.1).

[15] Harwit, M. 1998, Astrophysical Concepts, 3rd Ed., (New York: Springer-Verlag) p. 467, “State-

ment (i) [In a model without an event horizon, a fundamental observer can sooner or later observe

any event.] depends on the inability of particles to recede at a speed greater than light when no

event horizon exists.”
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[16] Hubble, E. and Humason, M. L. 1931, ApJ, 74, 443–480, The Velocity-Distance relation among

Extra-Galactic Nebulae, pp. 71–72, “If an actual velocity of recession is involved, an additional

increment, equal to that given above, must be included in order to account for the difference in

the rates at which the quanta leave the source and reach the observer1.”, Footnote 1: “The factor

is
√

1+v/c
1−v/c which closely approximates 1 + dλ/λ for red-shifts as large as have been observed. A

third effect due to curvature, negligible for distances observable at present, is discussed by R. C.

Tolman...”

[17] Lightman, A. P., Press, W. H., Price, R. H. and Teukolsky, S. A. 1975, Problem book in

relativity and gravitation, (Princeton, U.S.A.: Princeton U. Press) Prob. 19.7

[18] Halliday, D., Resnick, R. and Walker, J. 1974, Fundamentals of Physics, (USA: John Wiley

& Sons) 4th Ed., Question 34E, “Some of the familiar hydrogen lines appear in the spectrum of

quasar 3C9, but they are shifted so far toward the red that their wavelengths are observed to be

three times as large as those observed for hydrogen atoms at rest in the laboratory. (a) Show that

the classical Doppler equation gives a relative velocity of recession greater than c for this situation.

(b) Assuming that the relative motion of 3C9 and the Earth is due entirely to recession, find the

recession speed that is predicted by the relativistic Doppler equation.” See also Questions 28E,

29E and 33E.

[19] Seeds, M. A. 1985, Horizons - Exploring the Universe, (Belmont, California: Wadsworth Pub-

lishing) pp. 386–387, “If we use the classical Doppler formula, a red shift greater than 1 implies a

velocity greater than the speed of light. However, as explained in Box 17-1, very large red shifts

require that we use the relativistic Doppler formula.... Example: Suppose a quasar has a red shift

of 2. What is its velocity? Solution: [uses special relativity]”

[20] Kaufmann, W. J. and Freedman, R. A. 1988, Universe, (New York: W. H. Freeman &

Co.) Box 27-1, p. 675, “. . . quasar PKS2000-330 has a redshift of z = 3.78. Using this value

and applying the full, relativistic equation to find the radial velocity for the quasar, we obtain

v/c = (4.782 − 1)/(4.782 + 1) = ... = 0.92. In other words, this quasar appears to be receding

from us at 92% of the speed of light.”

[21] Taylor, E. F. and Wheeler, J. A. 1991, Spacetime Physics: introduction to special relativity,

(New York: W. H. Freeman & Co.) p. 264, Ex. 8-23

[22] Hu, Y., Turner, M. S. and Weinberg, E. J. 1993, Phys. Rev. D, 49(8), 3830–3836, Dynamical



130 Appendix B. Examples of misconceptions in the literature

solutions to the horizon and flatness problems, “. . . many viable implementations of inflation now

exist. All involve two key elements: a period of superluminal expansion...” They define superlumi-

nal expansion later in the paper as “Superluminal expansion might be most naturally defined as

that where any two comoving points eventually lose causal contact.” Their usage of superluminal

conforms to this definition, and as long as the reader is familiar with this definition there is no

problem. Nevertheless, we should use this definition with caution because even if the recession

velocity between two points is Ḋ > c this does not mean those points will eventually lose causal

contact.

[23] Khoury, J., Ovrut, B. A., Steinhardt, P. J. and Turok, N. 2001, Phys. Rev. D, 64(12), 123522,

Ekpyrotic universe: Colliding branes and the origin of the hot big bang, “The central assumption

of any inflationary model is that the universe underwent a period of superluminal expansion early

in its history before settling into a radiation-dominated evolution.” They evidently use a definition

of ‘superluminal’ that is common in inflationary discussions, but again, a definition that should

be used with caution.

[24] Lovell, B. 1981, Emerging Cosmology, (New York: Columbia U. Press) p. 158, “. . . observations

with contemporary astronomical instruments transfer us to regions of the universe where the con-

cept of distance loses meaning and significance, and the extent to which these penetrations reveal

the past history of the universe becomes a matter of more sublime importance”

[25] McVittie, G. C. 1974, Quart. J. R. Astron. Soc., 15(1), 246–263, Distance and large red-

shifts,“. . . conclusions derived from the assertion that this or that object is ‘moving with the speed

of light’ relative to an observer must be treated with caution. They have meaning only if the

distance and time used are first carefully defined and it is also demonstrated that the velocity so

achieved has physical significance.”

[26] Bowers, R. L. and Deeming, T. 1984, Astrophysics II, Interstellar Matter and Galaxies,

(Jones and Bartlett Publishers, Inc.), Sect. 26.5, p. 478, “Unfortunately, although the concept of

distance is relatively trivial in ordinary experience, particularly in flat space, where the velocity of

light is, to all practical purposes, infinite, distance is much harder to handle in cosmology.... The

answer is that (a) any of these definitions of distance is adequate, but (b) they do not all give the

same result for the distance of a galaxy, and therefore (c) the concept of a unique distance that

has any absolute physical meaning must be abandoned”
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