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It has been shown recently that the ratio of unidirectional tracer fluxes, passing in 
opposite directions through a membrane which has transport properties varying 
arbitrarily with the distance from a boundary, is independent of time from the very 
first appearance of the two outfluxes from the membrane. This surprising proposition 
has been proved for boundary conditions defining standard unidirectional fluxes, 
and then generalized to classes of time-dependent boundary conditions. The 
operational meaning of all the resulting theorems is that when any of them appear 
to be refuted experimentally, the presence of more than one parallel transport 
pathway (that is, of membrane heterogeneity transverse to the direction of transport) 
can be inferred and analyzed. Recent experimental data have been interpreted 
accordingly. However, the proofs of the theorems given so far have not taken into 
account the possibility of temporary capture of tracer at sites fixed in the membrane 
(including also entrances to microscopic culs-de-sac). The possible presence of such 
a process, which would not affect fluxes in the steady state, left a fundamental gap 
in the aforementioned inferences. It is shown here that all the theorems previously 
proved for the flux ratio under unsteady conditions remain valid when temporary 
capture of tracer is admitted, no matter how the rate of capture, and the probability 
distribution of residence times of tracer at capture sites, may depend on the distance 
from a membrane boundary. The validity of the aforementioned inferences from 
observed time-dependence of the flux ratio is thereby extended to a much wider 
class of membrane transport processes. 

1. Introduction 

The ratio of  unidirectional tracer fluxes passing in opposite directions through a 
membrane (called the flux ratio) has proved to be a powerful tool for studying 
transport properties of  biological membranes (Ussing, 1978). In this context, 
unidirectional flux is defined and observed as the outflux of  tracer from the membrane 
into a bathing solution maintained at zero tracer concentration, following a sudden 
imposition and subsequent maintenance of a non-zero tracer concentration in the 
solution bathing the other side of  the (initially tracer-free) membrane. 

A salient feature of  the flux ratio is that important conclusions about membrane 
transport can be drawn from it without specifying the dependence of  local transport 
parameters within the membrane (such as tracer diffusion coefficient and drift 
velocity) on the distance from a membrane boundary. For charged tracers this means 
that the spatial distribution of  the potential difference measured across the membrane 
need not be known or postulated. 
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The uses of  the flux ratio are quite different in the steady and in the unsteady 
states. The flux ratio under  steady-state conditions has long been used to distinguish 
between passive, facilitated and active transport mechanisms (Ussing, 1978). We 
shall not be concerned here with this aspect of  the flux ratio. 

The use of  the flux ratio under unsteady conditions has arisen recently from a 
surprising conjecture of  Ussing (1978): after the sudden imposition of constant 
boundary concentrations, the flux ratio is independent of  time from the very first 
appearance of  each of  the two unidirectional outfluxes from a plane membrane, no 
matter how the diffusion coefficient and the drift velocity of  the tracer may depend 
on the distance from a membrane boundary. This conjecture has recently been 
proved (Sten-Knudsen & Ussing, 1981; Bass & Bracken, 1983) and extended to 
t ime-dependent boundary conditions on concentrations (Bass & Bracken 1983), and 
to fluxes into and out of  a hollow circular cylinder (Bass & McAnally, 1984). As 
these results hold in general only for a membrane with a single transport pathway 
(that is, with no heterogeneity transverse to the direction of  transport) it has been 
concluded that whenever a t ime-dependence of  the flux ratio is detected experi- 
mentally, the presence of at least two kinds of parallel transport pathways can be 
inferred and analysed (Ussing et aL, 1981; Lira & Ussing, 1982). 

However, a major gap has been left in the foregoing reasoning. Tracer may be 
trapped temporarily at sites distributed through the membrane. Such sites may be 
interpreted in terms of  molecular kinetics, or as entrances to microscopic culs-de-sac 
within the membrane. This possibility has not been taken into account in the proofs 
of  Ussing's conjecture (and of  its extensions), so that an observed unsteadiness of 
the flux ratio might be due to temporary capture of  tracer rather than to heterogeneity 
of  transport pathways transverse to the direction of  transport. In the present paper 
we close this gap. We show that, no matter how the density of  capture sites may 
depend on the distance from a membrane boundary,  and no matter how the form 
of  the distribution of residence times of trapped tracer may vary with that distance, 
Ussing's conjecture and its aforementioned extensions remain true. We shall show 
that effects of temporary capture of  tracer increase greatly the variety of possible 
unidirectional flux transients, and cannot be described in general by a mere re- 
definition of  the functions representing the arbitrary space-dependence of  the tracer 
diffusion coefficient and drift velocity. We shall show also that temporary capture 
of tracer has no observable effects on fluxes in the steady state, so that the aforemen- 
tioned gap could not be detected by steady-state studies. 

We are surprised by the generality of  circumstances under which the flux ratio 
is steady under unsteady conditions and, more generally, by the kinetic and mathe- 
matical depth of  the concept of  flux ratio. In this regard we note that the constancy 
of  the flux r~itio in the one-dimensional diffusion-drift problem (Sten-Knudsen & 
Ussing, 1981; Bass & Bracken, 1983) implies, with the use of B~icklund transforma- 
tions, related ratio theorems for boundary value problems for certain non-linear 
partial differential equations (Rogers & Bracken, 1986). 

The validity of  flux ratio theorems under unsteady conditions, so surprising at 
first sight, is related to characteristic features of  classical diffusional transport, and 
in particular to the fact that the speed of such transport is in principle infinite. It 
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is for this reason that arbitrary finite convection advancing the one unidirectional 
flux and retarding the other does not cause the ratio theorems to fail even at first 
appearances of the tracer outfluxes. In practice the observed speed of diffusion is 
limited only by the sensitivity of  detectors of  the diffusing particles. The concept 
of  "flux ratio at first appearance of  the unidirectional outfluxes'" has, therefore, the 
operational meaning of the ratio taken when the smaller outflux first becomes reliably 
measurable, using instruments of the same accuracy on both sides of the membrane. 

2. Transport of Tracer With Temporary Capture 

We represent the membrane by a slab in the spatial interval 0 -  < x < - h, in which 
a tracer has diffusion coefficient D(x )  and drift velocity v(x). Both D and v are 
independent of time, but they can depend arbitrarily on position except that D(x)  > 0 
for all x. The free tracer concentration c(x, t) and flux j(x,  t) depend also on the 
time t, and are related by 

j = - D ( x )  OC+ v(x)c. (1) 
Ox 

Here v(x)  may be the velocity of  convective flow, or of the drift of  tracer in an 
electric field associated with the membrane. The continuity (mass balance) equation 
for the free tracer is 

e 3iO_+_j = q ( x , t ) ,  (2) 
Ot Ox 

where the term q(x, t) accounts for capture and release of tracer. It is the presence 
of  this term that generalizes the previous considerations of  the flux ratio problem. 

As tracer does not saturate the sites, capture occurs by first-order kinetics with a 
rate constant k(x)  which varies with position as the density of sites does. Hence 
the capture contribution to q is - k ( x ) c ( x ,  t). If  g(x, r) d r  is the probability that a 
tracer molecule captured at x will remain there for a time between r and r + d r ,  
then the contribution to q at x due to release of previously captured tracer is 

k(x )  c(x, t - r)g(x,  r) dr  

the upper limit has been set equal to t because the membrane was initially tracer-free: 
c(x, t<-O)=0. The probability density g(x, r) is non-negative and normalized at 
any x 

fo °g(x,  r) = 1. (3) d r  

Altogether 

;o q = - k ( x ) c ( x ,  t) + k(x)  c(x, t - r)g(x,  r) dr. (4) 
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If  we introduce the new integration variable 0 = t -  z (time of capture) in place of 
% we can write equation (4) in the form 

Io q = - k ( x ) c ( x ,  t)+ k(x) c(x, O)g(x, t - O )  dO. (4a) 

We wish to establish the validity of  flux ratio theorems (previously proved for q = 0) 
for the set of  equations (1)-(4) or (4a). Before doing so in section 3, we elucidate 
four aspects of  this generalization of  membrane transport. 

(A)  T H E  R O L E  O F  B O U N D  T R A C E R  

I f  we denote the concentration of  bound (captured) tracer by Cb(X, t) for O-- x <-- h 
and t > O, we have evidently 

c3Cb 
- -  = - q  ( 5 )  
ot 

so that total tracer c+  Cb satisfieS the continuity equation 

0 
~t ( c+ cb) + °j (2a) 

in accord with equation (2). 
We now elucidate the general problem by using bound tracer explicitly to construct 

an important example of  the probability density g(x, 7"). Suppose that bound tracer 
is released at any x by a first-order process with the rate k(x)cb(x, t), where the 
local rate constant/~(x) may depend arbitrarily on the position x. Then q = - k c  + kcb, 
and equations (2) and (5) become 

O___c+ 8 j = - k ( x ) c ( x ,  t) + fC(X)Cb(X, t) (6) 
dt Ox 

aCb 
- k(x)c(x,  t) - fc(x)cb(x, t). (7) 

Ot 

We can solve equation (7) for cb by using the~integrating factor exp (/~(x)t), and 
the circumstance that the membrane is initially tracer-free (Cb(X, 0 )=  0) 

;o Cb(X, t) = k(x)  c(x, O) e -~(x)('-°) d0. (8) 

Substituting in equations (6) and (7) and comparing with equations (2) and (5) we 
see that 

Io q(x, t) = - k ( x ) c ( x ,  t)+ k(x)  c(x, O)fc(x) e -£(x)(t-°) d0. (9) 

Comparison with equation (4a) shows that in this special case 

g(x, 7) = fc(x) e-~(x)L (10) 
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Using the general definition of  the mean residence time 

÷(x) = rg(x, r) d~- (11) 

and substituting from equation (10), we find readily 

g(x, r) = e-T/~(x)/~(x), f (x)  = 1//~(x). (12) 

Thus the kinetics described in equations (6) and (7) results at each x in the standard 
exponential distribution of  the residence times of  captured tracer, with the mean 
1/k(x) .  It is easy to show, conversely, that the exponential distribution of  residence 
times implies the capture-release kinetics described in equations (6) and (7). 

(B) THE STEADY-STATE LIMIT 

I f  the unidirectional fluxes are due to the imposition, at t = 0, of boundary 
concentrations that are kept constant in time (as in Ussing's original conjecture), 
then it may be expected that a steady state of  fluxes and of  concentrations of free 
and bound tracer is approached as time tends to infinity. (This need not be the case 
under the time-dependent boundary conditions pertaining to the generalized flux 
ratio theorems). From equation (5) it follows that q = 0 in the steady state. From 
equation (2) we conclude that, in the steady state, fluxes and concentrations of free 
tracer are unaffected by temporary capture of  tracer. We can see this also directly 
from equation (4) without reference to bound tracer. Temporary capture means that 
g(x, r) tends to zero as r tends to infinity. As t tends to infinity in equation (4), 
the contributions to the integral from large values of r tend to zero with g(x, r),  so 
that only c(x, 0o) contributes to the integrand. Because of  equation (3), equation 
(4) yields q(x, oo)=0. The presence of  temporary capture of  tracer cannot be 
discovered by the study of steady-state fluxes. 

The presence of captured (bound) tracer does increase the radioactivity of the 
membrane even in the steady state. In the special case of  an exponential distribution 
of  residence times we see immediately, from equations (7) and (12), that 

%(x, 0o) = k(x)÷(x)c(x,  oo). (13) 

We show in the Appendix that equation (13) holds for any probability density 
g(x, r). It follows that, at any x, the steady-state radioactivity of  the membrane is 
increased by the factor (1 + ~k) as compared with the case of no capture (k = 0). 
However, as all tracer can be washed out of  the membrane, this observable effect 
could be interpreted in terms of  a tracer partition coefficient between the membrane 
and the bathing solutions, without specific consideration of  a process of  temporary 
capture. 

(C) M O D I F I C A T I O N  OF TRANSPORT PARAMETERS 

It might seem possible intuitively that the effects of  capture and release of  tracer 
upon transport could be described by modifying suitably the arbitrary functions 
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D(x) ,  v ( x ) .  We consider briefly to what extent this is the case. For this purpose we 
suppose that g(x ,  r) is distributed narrowly about its mean ~ given by equation 
(11). Then, for times very much greater than ~, the value of  the integral in equation 
(4) is not affected significantly when its upper limit is replaced by infinity. For such 
times t we expand c(x ,  t -  7-) in the Taylor series 

Oc(x, t) +~,r ,32c(x  . t) ~-. (14) 
c ( x ,  t - 7-)  = c ( x ,  t )  - 7- • • 

ot Ot- 

where dots denote terms of order 7 -3 and higher. Substituting the expansion in the 
integral in equation (4) and using equation (3) we obtain 

Oc 1 ' ~ 0 2 C  
q = - k ÷ - - + ~ _ k r ' - - ~ + . .  • (15) 

ot ot-  

where 

io r 2= r~g(x ,  r) dr. (16) 

Using q from equation (15) in equation (2) and re-arranging, we have 

• ~ ~ a 2 c  
(1 + k~)Oc+ OJ = 5 k r ' ~ f i + .  . .. (17) 

at ax 

Suppose for simplicity that D, v, ~ and k are all independent of x. Then, using 
equation (1) in equation (17) and dividing through with (1 + k?) we find 

ac , a 2 c  ~ O c _  k7- 2 02c~-" • • (18) 
O t -  D~x2  + Ox - 2(1 + k¢') Ot - -5-  

with 

D t) 

/ ) = l + k  < D ,  t~=l+k--~, I~[<lvl. (19) 

We see that the intuitive expectation is borne out to order ? if we replace D, v with 
/9, ~: the right-hand side of  equation (18) is negligible to this order of  approximation, 
and the equation is then of  the same fo__rm as if there was no temporary capture, 
but with modified D and v. But if the r2-term on the right-hand side of  equation 
(18) is retained, we have a new mathematical situation which cannot be grasped by 
any re-definition of the transport parameters D, v even in the simplified circum- 
stances used in this discussion. (The r2-term changes the character of the partial 
differential equation from parabolic to elliptic.) The use o f / )  and ~ accounts for 
the capture-release effects only under linear changes of c(x ,  t) with time (02c/Ot 2 = 0). 
If 0 2 c / a t 2 >  0 at some time t, then at closely preceding times c was higher at x than 
accounted for by the use only of/)_~_~, so at time t more tracer is being released 
than accounted for. I__n that way the rZ-term acts as a positive source of  tracer at x. 
(If  02c /0 t2<  O, the rZ-term acts as a sink for analogous reasons). The profound 
effect of temporary capture of  tracer on the non-steady tracer transport is apparent 
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from this example: in general, the variety of  unidirectional transients is much richer 
than in the case k = 0. 

(D)  P R E S E N C E  A N D  A B S E N C E  O F  SYSTEM M E M O R Y  

In equations (4) and (4a) the process of  tracer capture is described probabilisti- 
cally whereas, for the release, the unspecified probability density g(x, ~') admits 
probabilistic as well as causal mechanisms. A simple causal mechanism is described 
by setting 

g(x, ~) = ~ ( ~ -  ~) (20) 

with 8 an impulse (Dirac delta) function, imposing a single standard residence time 
on all captured tracer. By contrast, the release described by equations (12) is a 

purely probabilistic (Poisson) process at each position x. If g(x, z) includes a causal 
element, the membrane-tracer system can be said to have a temporary memory of 
past states. If the release is purely probabilistic, as in equations (12), the system is 
memoryless (Markovian). 

The possibility of memory is reflected in the mathematical circumstance that 
equations (1)-(4) for the free tracer are an integro-differential system in the time 
variable. The absence of memory is reflected in the reducibility of this system to a 
differential one in the purely probabilistic case, as can be shown by substituting 
from equations (12) in equation (4a) 

fo q = - k c +  (k/P) e -'/~ c(x, O) e °/~ dO. (21) 

Multiplying equations (2) and (21) through with e x p ( t / ~ )  and using the new 
dependent variable c exp ( t /÷)  in place of c, we can remove the integral by differenti- 
ation with respect to time (because t no longer occurs in the integrand). We thus 
arrive at a differential system (of higher order), still greatly enriched (complicated) 
by temporary capture of  tracer, but now without a memory. 

In the next section we prove flux ratio theorems for a general probability density 
g(x, r). As we are interested primarily in the validity of these theorems under the 
most general conditions, we shall not consider particular forms of g(x, r) any further. 

3. Generalized Flux Ratio Theorems 

We consider equations (1), (2), (3) and (4a), with the initial condition c(x, 0)=  0, 
under the two sets of boundary conditions which bring about the two unidirectional 
fluxes passing through the membrane in opposite directions. We distinguish the two 
resulting cases by subscripts 1, 2. Thus, when c~(h, t) = 0 and c~(0, t) > 0, the con- 
centration is c~(x, t), the flux is j~(x, t) and the unidirectional outflux from the 
membrane is j~(h, t). When c2(0, t ) = 0  and c2(h, t ) > 0 ,  the unidirectional outflux 
from the membrane is -j2(0, t). The ratio theorems concern the ratio j~(h, t)/j2(O, t). 
The oldest of the theorems (see for example Ussing, 1978) pertains to the steady 
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state (t ~ co and hence q = 0): if c~ (0, t) = c~ (0) and c2(h, t) = c2(h) are constants, then 

-j2(0, co) c2(h) exp dx . (22) 

In order to consider the flux ratio under unsteady conditions, we first transform 
the equations for either suffix by the method of  Bass & Bracken (1983). Throughout  
this section, equation (2) is understood as having q expressed explicitly by substitut- 
ing from equation (4a). We introduce the function 

U(x) = exp ~ ox ] (23) 

which plays a key role in what follows. We call U(x) the Ussing function. We 
assume that the integral in the exponent exists for all x in the interval 0 -  < x-< h; in 
particular we assume that D(x) > 0. Clearly U(x) is positive, and for real membranes 
it is greater than zero and less than infinity. Hence 1 / U  is likewise greater than 
zero and less than infinity. 

We introduce the new dependent variable u(x, t) by writing 

c(x, t)= U(x)u(x, t). (24) 

In terms of  u(x, t), equation (1) becomes 

j = - D  o u  U (25) 
0x 

and equation (2) becomes 

fo Ou+Oj U-'  = -ku  + k u(x, 0)g(x, t -  0) dO. (26) 
Ot Ox 

The initial condition c(x, 0 )=  0 becomes 

u(x, 0) = 0. (27) 

We shall use Laplace transforms of  u, j and g. For example 

fo o ~(x, p) = e-P'u(x, t) dt (28) 

and similarly for the transforms ] o f j  and ~ of g. The transform of equation (25) is 

= - D  dt~ U (29) 
J dx" 

In transforming equation (26) we note that the integral term is a convolution, whose 
Laplace transform is the product  of  transforms of  the convolved functions. Using 
also equation (27), the transform of  equation (26) is therefore 

pfi + U -~ = k ( ~ -  1)12. (30) 
(IX 
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We now consider any two solutions of equations (25), (26) and (27), in particular 
(ubj~) and (u2,j2). We envisage writing equation (30) first for (t~,]~), and then 
again for (52, ]z). Multiplying the first of these through with ~2, the second with ~2~, 
and subtracting, we cancel the terms involving a~a2 and find 

_ d ] ,  _ dr2 d x ( f t 2 ]  ' _ - : .  [ . : d a 2  ~-dl i ,~ 
0=U2dx Uldx . . . . .  _._ U i y 2 ) -- ! c h  -~-~x -- y 2 -d-~x } (31) 

where the last equality is an identity. Using j~ and J2, respectively, as given by 
equation (29), we see that the last bracket in equation (31) vanishes, so that tiz]l - a~ ]2 
is independent of x. In particular, at the boundaries we have 

fi2(O)],(O) - li,(O)j2(O) = fi2(h)j~(h) - zi,(h)j2(h). (32) 

Next we consider boundary conditions. For the most general case of unidirectional 
fluxes we take for t > 0 

and 

c,(O, t )=f , ( t )>o,  c,(h, t )=0  (33) 

cdO, t)=0,  c2(h, t ) = f d 0  > 0. (34) 

Transforming equations (33), (34) first by equation (24), and then by the Laplace 
transformation, we find readily 

a~(0) = f ,  a~(h)=0 (33a) 

a~(o) = o, adh) = f2/U(h). (34a) 

Using equations (33a) and (34a) in equation (32), we obtain 

- f , ] 2 ( O )  = f 2 ] , (  h ) l  U (  h ). (35) 

From here we proceed in two steps. 
(i) Suppose first that the two boundary concentration have a time-independent 

ratio r 

c60, t) A(t)  
- r = const. (36) 

c2(h, t )- f2(t)  

Since f l ( t )  and f2(t) are finite and positive, f~(p) and f2(P) are finite and positive 
for all p >  0. As f~(p)= rf2(p) from equation (36), equation (35) is reduced to 

- r]2(O) = ]~ ( h ) / U (  h ). (37) 

As equation (37) holds for the Laplace transforms ]~(h) and ]2(0) for all p > 0 ,  it 
holds for jr(h, t) and j2(0, t) themselves by the uniqueness (Lerch) theorem for 
Laplace transforms. Hence 

-j2(0, t) ~ dx , t > 0. (38) 
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This is the flux ratio theorem for unsteady states with boundary conditions con- 
strained by equation (36). The theorem evidently includes the case of  steady 
boundary conditions discussed by Ussing (1978). 

(ii) I f  we drop the constraint equation (36) and permit quite different (positive) 
functions of  time f l ( t )  and fE(t) in equations (33), (34), we return to equation (35) 
and recall that the product  of  two Laplace transforms is the transform of a con- 
volution. Equation (35) implies therefore that, for all times t > 0, 

_ f ~ o c ~ ( O , t _ , ) j 2 ( O , r ) d r - U ( h ) = e x p  ---~dx . (39) 

This result, obtained by Bass & Bracken (1983) for the case q = 0, completes the 
proof  that all the results of  Sten-Knudsen & Ussing (1981) and of  Bass & Bracken 
(1983) hold even in the presence of temporary  capture of  tracer described by 
equations (4) or (4a). 

Another generalization of  interest concerns ratio theorems for unidirectional tracer 
fluxes passing into and out o f  a hollow circular cylinder, such as is formed by the 
membrane of a single perfused capillary (Bass & McAnally, 1984). It is not difficult 
to show, by adapting the calculations of  the present section to cylindrical symmetry,  
that this generalization too remains valid in the presence of  temporary  capture of  
tracer described by equations (4) or (4a). 

Applications of  the flux ratio in the presence of  chemical transformations of  the 
free tracer have been considered by Patlak et al. (1980). In this context we note that 
if a permanent  sink (for example,  a metabolic one) of  the form - w ( x ) c ( x ,  t) is 
added to the right-hand sides of  equations (4) and (4a), then fluxes are affected 
even in the steady state: writing c(x, oo) = c(x)  and using equation (1), we have 

-d-d I - D ( / ) d ~ +  dx v ( x ) c ] = - w ( x ) c .  (40) 

Moreover,  incomplete recovery of the original tracer may be noticed experimentally, 
so that the applicability of  the flux ratio theorems might be doubted.  However,  a 
review of the calculations of  the present section shows readily that all the theorems 
obtained above remain valid. I f  therefore any of  the flux ratio theorems (for the 
original tracer) appeared to be refuted experimentally, the inference of  heterogeneity 
transverse to the direction of transport  would still be valid. 

We are grateful to the Australian Research Grants Committee for the award of a Fellowship 
to one of us (J.H.). 
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APPENDIX 

Bound and Free Tracer in the Steady State 

In the case o f  a general distribution of  residence times o f  captured tracer, described 
by a density funct ion g(x,  ~-) as in equat ion (4a), the equat ions governing the 
concentra t ions  c(x, t) and  cb(x, t) of  free and b o u n d  tracer in the membrane  are, 
in place o f  equat ions (6) and (7) 

Io Oc+Oj = - k ( x ) c  + k(x)  c(x, O)g(x, t -  0) dO (AI)  
Ot Ox 

Io ~ =  - c ( x ,  t - 0) dO. (A2) k(x)c  k(x)  O)g(x, 

Here j is the flux o f  free t racer  as in equat ion (1): there is no cor responding  flux 
for the ( immobile)  b o u n d  tracer. 

Integrat ion o f  equat ion  (A2) gives, with the initial condi t ion cb(x, O)= O, 

fo f0[;  ] cb(x, t) = k(x)  c(x, O) dO - k(x)  c(x, O)g(x, T-- 0) dO dr. (A3) 

The second term on the right hand  side can be regarded as a double  integral o f  
c(x, O)g(x, "r- O) over the tr iangular  region 0 -  < 0<-- T, 0 -  T < -- t in the (0, ~,)-ptane. 
This region, which is b o u n d e d  by the straight lines 0 = 0, 0 = ~- and T = t, can also 
be described by the inequalities 0 <- r--< t, 0--< 0 --< t, enabling us to see that the double  
integral can be rewritten so that equat ion (A3) becomes  

I/ Io[;: Cb(X, t) = k (x )  c(x, O) dO - k (x)  c(x, O)g(x, r -  0) d r  dO. (A4) 

Then 

I o [ f  t ] c b ( x , t ) = k ( x )  c(x,O) 1-- g (x , r - -O)  dr  dO 
o 

f o l i o  -° ] = k(x)  c(x, O) 1 -  g(x, ct) da dO 

on setting a = T-- 0 in the inner integral. Or, on setting 0 = t - T in the outer  integral 

Io [Io ] Cb(X, t) = k (x )  c(x, t -  r) 1 - g(x, a )  d a  dr. (A5) 

In this form, the equat ion  for  cb(x, t) has an i l luminating interpretat ion in 
probabil ist ic terms: k(x)c(x ,  t - T) is the amoun t  o f  free tracer at x which is captured 
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at time t -  z; and So g(x, a )  d a  is the probabili ty that tracer bound at x at any one 
time will be released in a subsequent time interval of  length r, so that 1 -So g(x, a) da 
is the probabili ty that such tracer will remain bound after that time interval. Thus 
the right-hand side of  equation (AS) expresses the probable  amount  of  tracer, 
captured at any time between 0 and t, which remains bound at time t: this equals 
cb(x, t). 

Suppose now that g(x, a) approaches zero sufficiently rapidly as a approaches  
infinity, so that the mean -7 in equation (11) is finite; and that c(x, t) approaches 
c(x, co) as t approaches  infinity. By going to the latter limit in equation (A5) and 
integrating by parts, we find 

= k ( x ) c ( x , ° ° ) { [ r [ 1 - I : g ( x , ° l ) d a ] ] : : : + f o ' r g ( x ,  1")d'r } 

io o = k(x)c(x, 0o) rg(x, r) dr 

= k(x)¢'(x)c(x, 00). (A6) 

We have thus obtained equation (13) for any choice of  the density function g(x, t). 
At each position x in the membrane,  the fractional concentrations of  free and bound 
tracer are therefore, respectively 

k(x)- '  ~'(x) 
(A7) 

k(x) -1 + q(x)' k(x) -1 + q(x)" 

The fraction k(x)- l /q(x)  is the ratio of  the mean waiting times: for the free tracer 
to become bound, and for the bound tracer to become free. 


