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Catheter E4ects in Organ Perfusion Experiments
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In a typical isolated organ perfusion experiment, a substance is injected upstream of an organ
and then collected at some distance downstream. To reach the organ from the injection site,
and then from the organ to the collector, a solute passes through catheters, usually tubes with
circular cross-sections. Catheters cause distortion to the concentration}time pro"le of the
perfusion. In this paper, we analyse catheter distribution kinetics from a mathematical point of
view, develop the function most suitable for modeling this distribution and successfully apply
this function to experimental data.
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1. Introduction

It has been long recognized that catheter e!ects
have to be taken into account in organ perfusion
experiments (Silverman & Goresky, 1965). In
particular, the importance of catheters has been
recognized in liver disposition kinetics (Evans
et al., 1991), where the inverse Gaussian distribu-
tion has been used as a catheter-modeling func-
tion. A number of subsequent investigations have
also used the inverse Gaussian distribution to
model catheter function in this context (Evans
et al., 1993; Roberts et al., 1998; Weiss et al.,
1998). Parameters in the catheter distribution
function have been "tted from experimental data
for isolated catheters.

It is noted that catheter e!ects can also arise in
organ-bath pharmacological studies, skin ab-
sorption studies, biochemical reaction engineer-
ing and other applications, where there is #ow of
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a medium into a receptor, organ or reactor via
catheters. In all these cases, catheter e!ects will
become important when the transit time of
a catheter is comparable to that of the system
under study.

In this paper, we examine how catheter func-
tion is best described. We consider "rst a math-
ematical description of catheters, more general
than previously given, and its e!ect on an organ
concentration}time pro"le. Let catheters 1 and 2
deliver solute from injection site to organ, and
from organ to collector, respectively. Let f

1
(t)

and f
2
(t) be the concentration}time pro"le which

arises at output from catheters 1 and 2, respec-
tively, following unit bolus injection of solute
into these catheters in isolation. As the transport
of the drug through the catheter is linear, the
actual concentration at input to the organ, Cr

in
(t),

is then

Cr
in
(t)"P

t

0

C
in

(t!q) f
1
(q) dq"C

in
(t)* f

1
(t), (1)
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where C
in
(t) is the input concentration at the

injection site, &&*'' denotes convolution, and we
assume C

in
(t)"0 for t(0. Similarly, the concen-

tration measured at the collector will be

Cr
out

(t)"P
t

0

C
out

(t!q) f
2
(q) dq"C

out
(t)* f

2
(t),

(2)

where C
out

(t) is the concentration of solute at
output from the organ. Knowing f

1
(t), f

2
(t) and

C
in
(t), and measuring Cr

out
(t), it is possible to

compute Cr
in
(t) and C

out
(t), using eqns (1) and (2).

For bolus experiments [C
in
(t)"(Dose/Q)d(t),

where Dose is the quantity of solute injected and
Q is the #ow rate], small values of Dose are
usually chosen to ensure linear elimination kinet-
ics in the organ. Using eqn (1), in this case, yields
for the actual concentration at input to the organ:

Cr
in
(t)"

Dose
Q

f
1
(t). (3)

For the linear kinetics in the organ, the output
concentration from the organ, C

out
(t), can be rep-

resented as convolution of the input concentra-
tion with the concentration which would arise at
output from the organ following a hypothetical
unit d-functional (bolus) input to the organ, Cd(t).
We have therefore,

C
out

(t)"
Dose
Q P

t

0

Cd (t!q) f
1
(q) dq

"

Dose
Q

f
1
(t)*Cd(t). (4)

Using eqns (2) and (4), the concentration mea-
sured at the collector can be expressed as

Cr
out

(t)"
Dose
Q

f
1
(t)*Cd (t)* f

2
(t). (5)

In the Laplace domain, eqn (5) can be written as

CK r
out

(s)"
Dose
Q

f K
1
(s)CK d(s) fK

2
(s)"

Dose
Q

fK (s)CK d(s),

(6)
where the Laplace transform of a function f (t) is
designated as fK (s), CK d (s) is the Laplace transform
of Cd (t), and fK (s)" fK

1
(s) fK

2
(s). Using eqn (6), it is

easy to take into account catheter e!ects if the
function fK (s) is known.

One way to determine f (t)"¸~1 ( fK (s)) is by
performing an additional experiment for cath-
eters alone. With catheters 1 and 2 joined to-
gether, and using a bolus injection, it is possible
to recover the concentration}time pro"le, f (t), by
"tting some empirical function with free para-
meters to the experimental points. This method is
widely used (Evans et al., 1991) with the inverse
Gaussian distribution g(t) chosen to approximate
f (t), where

g (t)"S
¹

4npt3
exp A

(t!¹)2
4p¹t B (7)

and ¹ and p are free parameters which are deter-
mined by the "tting.

This experimental method has some disadvan-
tages. The "rst is the necessity to perform an
additional experiment with catheters. The second
disadvantage results from the distortion caused
by sampling to the approximation of f (t). It is
apparent from the experimental data that the
function f (t) is sharply peaked. In order to re-
cover f (t) correctly from the experimental points,
which represent average concentration during
the time of sampling for each point, times be-
tween measurements of concentration must be
taken relatively short around the peak of the
function f (t). This quick sampling is sometimes
impossible due to experimental limitations.

In this paper, we want to discuss another, non-
experimental approach for determining f(t).
Using geometrical parameters of a catheter, like
its radius and length, we will try to predict its
concentration}time pro"le by applying the
mathematical analysis of dispersion of solute in a
tube.

2. Dispersion of Solute Flowing through a Tube

The combined action of molecular di!usion
and the variation of velocity over any cross-
section, for solute introduced into a cylindrical
tube of circular cross-section carrying solvent,
were studied theoretically and experimentally by
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Taylor (1953). In this section, we will essentially
follow his approach and extend it to model cath-
eter function.

We consider a circular pipe of radius r
0

and
choose the cylindrical coordinate system with
r being the distance from the central line of the
tube and x the distance along the tube. If we
assume that the concentration C is symmetrical
about the axis of the pipe so that it is a function of
r, x and t only, the equation for the combined
action of molecular di!usion and convection is

DA
L2C
Lr2

#

1
r

LC
Lr

#

L2C
Lx2B"

LC
Lt

#v (r)
LC
Lx

, (8)

where D is the coe$cient of molecular di!usion,
assumed independent of concentration here, and
v(r) is the velocity of solute, assumed constant in
time. For a tube with circular cross-section,
Poiseuille #ow is realized with distribution of
velocity

v(r)"v
0 A1!

r2
r2
0
B , (9)

where v
0

is the maximum velocity, at the axis of
the tube. The maximum velocity can be related to
the #ow rate, as we have

Q"P
rÒ

0

v (r)2nrdr (10)

and after integration yields for v
0
:

v
0
"

2Q
nr2

0

. (11)

As the coe$cient of molecular di!usion is nor-
mally less than 10~5 cm2 s~1 for most solutes of
interest, and the length of a catheter is typically
not less than about 10 cm, we can neglect the
di!usion in the axial direction here; this cancels
the third term in brackets in eqn (8). With the
dimensionless variable z"r/r

0
, and taking into

account eqn (9), eqn (8) becomes

L2C
Lz2

#

1
z
LC
Lz

"

r2
0
D

LC
Lt

#

r2
0
v
0

D
(1!z2)

LC
Lx

. (12)
The boundary condition which expresses the fact
that the wall of the tube is impermeable is

LC
Lz K

z/1

"0. (13)

Another boundary condition for eqn (12) is that
C(x, z) remains "nite when zP0.

It is not possible to solve eqn (12) exactly
in general. In this section, we will consider app-
roximate solutions for the following limiting
conditions:

(1) The change in concentration due to con-
vective transport along the tube takes place in
a time which is so short that the e!ect of molecu-
lar di!usion in the radial direction may be ne-
glected. We will refer to this as the case of a short
tube.

(2) The time necessary for convective trans-
port to a!ect concentration is long compared
with the di!usion time during which radial vari-
ations of concentration at any given value of
x are reduced to a fraction of their initial value
through the action of molecular di!usion. We
will refer to this as the case of a long tube.

To "nd the characteristic radial di!usion time,
we consider the solutions of eqn (12) for which
there is no axial gradient (LC/Lx"0). Separating
variables z and t in eqn (12) we get for the concen-
tration

C(z, t)"
=
+
i/1

b
i
exp(!a

i
t) J

0
(r
0
z Ja

i
/D), (14)

where J
0

is the Bessel function of zero order, b
i

are determined by the initial condition, and a
i
are

such that the boundary condition (13) is satis"ed.
Since J@

0
(x)"!J

1
(x), eqn (13) gives

J
1
(r
0

Ja
i
/D)"0. (15)

The smallest non-zero root of eqn (15) corre-
sponding to the lowest value of a

i
is 3.8, rounded

to the nearest tenth. Therefore, the time required
for the radial variation of C (z, t) represented by
eqn (14) to die down to 1/e of its initial value is
not more than

t
d
"

1
a
1

"

r2
0

(3.8)2D
. (16)
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We will refer to this as the characteristic radial
di!usion time.

For the characteristic convection transport
time, we simply take

t
c
"

l
v
0

, (17)

where l is the length over which solute is spread
in a tube, obviously l)¸. Using eqn (11), it can
be found that

t
d
t
c

"

2Q
l (3.8)2nD

"0.044
Q
Dl

*0.044
Q
D¸

. (18)

2.1. SHORT TUBE

We de"ne a short tube as one with
0.044Q/(D¸)<1, so that the radial di!usion time
is much greater than the convection transport
time, t

d
<t

c
. The present analysis for short tubes

di!ers from that of Taylor (1953) in that instead
of the initial distribution of concentration,
C(x, t"0), it is the input concentration pro"le
that is given. Furthermore, the concentration in
the classical Taylor (1953) approach is deter-
mined by shining light through a given cross-
section of a tube carrying #owing solute, and
measuring its absorption, which is related to the
mean solute concentration through this cross-
section de"ned by

C
m

(x, t)"
1

nr2
0
P

rÒ

0

C (x, r, t) 2nr dr. (19)

In organ perfusion experiments, samples are usu-
ally collected using a fraction collector and their
concentration is then measured. The concentra-
tion in the j-th sample which collected #owing
solute from time t

j
to t

j`1
is

C
j
"

1
Q (t

j`1
!t

j
) P

t
j
`Ç

t
j

J (¸, t) dt, (20)

where ¸ is the length of the tube and J (¸, t) is the
total #ux of substrate through the cross-section
at x"¸. If the average concentration in the
cross-section of the tube at x is de"ned as

C
a
(x, t)"

J (x, t)
Q

, (21)
then the concentration in the j-th sample is sim-
ply a time average of C

a
at x"¸ :

C
j
"

1
(t
j`1

!t
j
) P

t
j
`Ç

t
j

C
a
(¸, t) dt. (22)

As the total #ux of substrate through the cross-
section at x of the tube can be found from

J (x, t)"P
rÒ

0

C (x, r, t) v (r)2nr dr, (23)

the appropriate de"nition for concentration #ow-
ing from the tube, C

o
, for the case of measuring

concentration using a fraction collector is
therefore

C
o
(t)"C

a
(¸, t)"

1
Q P

rÒ

0

C (¸, r, t) v (r)2nr dr.

(24)

Concentrations de"ned by eqn (21) are often
called #ux concentrations (Kreft & Zuber, 1978).
Flux concentrations are relevant to perfused or-
gan systems because bolus injections are made
into a #owing solute and out#ow samples (re-
sponse) are collected in a fraction collector
(Roberts et al., 2000).

For a short tube (t
d
<t

c
), both di!usion terms

in eqn (8) can be neglected. Thus, for the initial
condition C (0, r, t)"C

in
(t), where C

in
(t) is the

input concentration at the beginning of the tube,
we have a simple solution:

C(x, r, t)"C
in

(t!x/v(r)). (25)

Using this solution in eqn (24) with v (r) described
by eqn (9) for Poiseuille #ow yields

C
o
"

2
r2
0
P

rÒ

0
A1!

r2
r2
0
BC

inAt!
¸

v
0
(1!r2/r2

0
B2rdr,

(26)

where we have expressed Q using eqn (11).
Changing the variable of integration in this equa-
tion to

q"
¸

v
0
(1!r2/r2

0
)

(27)
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yields after transformations

C
o
"2q2

m P
t

qm
C

in
(t!q)q~3dq, (28)

where q
m
"¸/v

0
is the minimal time required for

solute to reach the end of the catheter, and we
take into account that C

in
"0 for t(0.

If we de"ne

G (q)"u(q!q
m
)2q~3 q2

m
, (29)

where u (t) is the unit step function, we can rewrite
eqn (28) as

C
o
(t)"P

t

0

G(q) C
in

(t!q) dq"G(t)*C
in
(t), (30)

where * denotes the convolution product.
It follows from eqn (30) that for bolus input, we

have

C
o
(t)"

Dose
Q

u (t!q
m
)
2q2

m
t3

. (31)

The mean transit time (M¹¹ ) in this case is

M¹¹"

:=
0

tC
o
dt

:=
0

C
o
dt

"2q
m
. (32)

Therefore, as expected, M¹¹"2¸/v
0
"</Q,

where <
t
"qr2

0
¸ is the volume of the catheter.

Another important characteristic of concentra-
tion}time pro"les in organ perfusion experiments
is the normalized variance de"ned as

C<2"
:=
0

t2C
o
dt :=

0
C

o
dt

(:=
0

tC
o
dt)2

!1. (33)

Using this equation, we "nd that the normalized
variance for this case is logarithmically divergent.
In reality, eqn (25) for C(x, r, t) is only accurate
for t;t

d
, as we neglected di!usion in deriving it.

This limitation means that the tail section of the
concentration}time pro"le is not correctly de-
scribed by eqn (31).

Let us estimate the time, t
b
, when di!usion

becomes important and thus eqn (31) becomes
invalid. For bolus input, the contribution to the
output concentration at long times is due only to
transport of solute molecules in layers with slow
velocity which are close to the wall of the tube.
This is due to the fact that solute molecules closer
to the center of the tube are transported faster
[see eqn (9)] and are cleared from the tube at
earlier times. For a given time, t'q

m
, all solute

molecules which have not been cleared from the
tube are therefore con"ned to a layer of thickness
d next to the wall of the tube, where d is de"ned
by

¸

v
0
(1!(r

0
!d)2/r2

0
)
"t. (34)

For long times, we have t<q
m
, and we expect

d;r
0
, therefore eqn (34) gives after some algebra

d+
¸r

0
2v

0
t
. (35)

The spread of solute due to di!usion in the
radial direction can be approximated as J4Dt.
When this spread is of the same order of magni-
tude as d, solute molecules cannot be assumed to
be con"ned to the layer next to the wall, render-
ing eqn (31) invalid. Therefore, taking d"J4Dt
and solving for t, we "nd the time, t

b
, when

di!usion becomes important:

t
b
"A

¸2r2
0

16 v2
0
DB

1@3
+q

m A
t
d

q
m
B
1@3

. (36)

For a short tube, we assumed that t
d
<t

c
and, if

we also require t
d
<q

m
, then as expected t

b
<q

m
,

and eqn (31) can be used for times t)t
b
. Equa-

tion (36) can be rewritten as

t
b
"t

d A
q
m
t
d
B
2@3

(37)

so it is clear that t
b
;t

d
.

For times t from the interval t
b
;t)t

d
it is

reasonable to expect a decrease quicker than 1/t3,
possibly exponential, so that after t"t

d
, C

o
must

be extremely small. Taking this into considera-
tion, it is possible to estimate upper and lower
bounds for C<2. Exchanging the upper limit in
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the integral :=
0

t2C
o
dt in eqn (33) with t

b
and then

t
d
, we get

1
2

ln A
t
c

q
m
B!1(C<2(

1
2

lnA
t
d

q
m
B!1 (38)

or, using eqn (36),

1
6

ln A
t
d

q
m
B!1(C<2(

1
2
ln A

t
d

q
m
B!1. (39)

These are, of course, quite rough bounds on C<2,
but at least they give an idea as to what is the
dependence of the normalized variance on the
catheter parameters. It is clear from eqn (39), for
example, that C<2 need not be small compared
with that for a perfused organ, therefore the cath-
eter distortion must be taken into account
in organ perfusion experiments with a short
catheter.

2.2. LONG TUBE

For the converse situation of a relatively long
tube, when t

d
;t

c
, we expect only small radial

variation in C(z, x, t), because quick di!usion
across the tube tends to make concentration uni-
form in the radial direction. Then, C(z, x, t) can
be reasonably approximated by C0 (x, t)"
C(0, x, t). Taylor (1953) has shown that in this
case C0(x, t) is approximately described by the
convection}dispersion di!erential equation

LC0

Lt
#

v
0
2

LC0

Lx
"D

eff

L2C0

Lx2
, (40)

where D
eff

is the e!ective dispersion coe$cient:

D
eff

"

r2
0
v2
0

192 D
. (41)

Taylor (1953) has also demonstrated that experi-
mental data for the mean concentration in the
long tube is well described by eqn (40). Due to
small radial variation in C (z, x, t), concentration
#owing from the tube, C

o
as de"ned in eqn (24),

can be approximated by C0 (¸, t). (That is, solute
and #ux concentrations are approximately equal
in this case.) The solution of eqn (40) for bolus
input, assuming mixed boundary conditions is
(Roberts & Anissimov, 1999)

C
o
"

Dose
Q

¸

J4nD
eff

t3
expA!

(¸!tv
0
/2)2

4D
eff

t B
(42)

which corresponds to the inverse Gaussian distri-
bution (7). As noted previously, this distribution
is commonly used to describe the catheter func-
tion in isolated perfused liver disposition studies
(Evans et al., 1993; Roberts et al., 1998; Weiss
et al., 1998). We now see that this is justi"ed for
long catheters, but not for short catheters.

Mean transit time and normalized variance
can be obtained for C

o
de"ned in eqn (42):

M¹¹"

:=
0

tC
o
dt

:=
0

C
o
dt

"

2¸
v
0

"

<
t

Q
, (43)

C<2"
:=
0

t2C
o
dt :=

0
C

o
dt

( :=
0

tC
o
dt)2

!1"
4D

eff
¸v

0

. (44)

Using eqn (41) or D
eff

, C<2 can be rewritten as

C<2"
r2
0
v
0

48D¸

"

3.82 l
48¸

r2
0

3.82D
v
0
l
. (45)

For the case of a long catheter, the spread of
solute in the catheter is less than its length, that is
l(¸, so that

C<2(0.3
t
d
t
c

. (46)

Using the condition for a long tube, t
d
;t

c
, yields

C<2;1. A small value of normalized variance is
an indication that the dispersion in a long cath-
eter is not important. Indeed, if we also have
C<2

cath
;C<2

organ
, where C<2

cath
and C<2

organ
are normalized variances for the catheter and the
organ, respectively, it follows that the distortion
caused by the catheter can be neglected.

3. Applicability of Poiseuille Flow for Catheters

In the previous sections, we used Poiseuille
#ow to describe dispersion of solute in catheters.
Poiseuille #ows are realized in very long tubes
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with Reynolds numbers, R less than R
c
+2000,

where

R"

r
0
v
0

l
(47)

with l being the kinematic viscosity of the solvent
(Landau & Lifshits, 1989). For the catheters used
in rat liver perfusion experiments, r

0
+0.1 cm,

with #ow rate Q lying between 0.5 and 1 cm3 s~1
(or ml s~1) and kinematic viscosity l"
0.01 cm2 s~1 for water. The corresponding values
for Reynolds number are 318)R)636. There-
fore, we can safely assume that the #ow in these
catheters is laminar. The question remaining is
whether the catheters are long enough to justify
the assumption of Poiseuille #ow. More exactly,
we want to know at what distance from the
beginning of the pipe the distribution of velocity
becomes close enough to the distribution of velo-
city in Poiseuille #ow. If this distance, say ¸

p
, is

much less than the length of the catheter
(¸

p
;¸), then the use of Poiseuille #ow for the

catheter is justi"able.
The problem of #ow near the inlet of a circular

pipe for large Reynolds numbers (R<1) has
been analysed (Goldstein, 1938). The experi-
mental data (Goldstein, 1938) show that at dis-
tance x"0.07 r

0
R from the inlet of the pipe the

maximal deviation of velocity from that de-
scribed by the Poiseuille #ow assumption (9) is
less than 4% and the Poiseuille #ow can be
assumed to be fully developed at this distance.
The appropriate formula for ¸

p
is therefore

¸
p
"0.07r

0
R. (48)

For catheters with radius r
0
"0.1 cm and rate of

#ow Q between 0.5 and 1 cm3 s~1, this yields
2.2)¸

p
)4.4 cm. Thus, if the catheter is longer

than about 15 cm, the use of Poiseuille #ow is
quite justi"able.

4. Evaluation of Model with Experimental Data

In catheter experiments two tubes, one deliver-
ing solute from the injection site to the organ and
another from the organ to the collector (catheters
1 and 2), are joined together. Those tubes are
usually of di!erent diameters and the junction
between them obviously produces perturbations
to the Poiseuille #ow, especially downstream of
the junction. As was discussed in Section 3, this
perturbation reduces quite quickly, but the im-
portant result of it is mixing of solute leaving
catheter 1. This mixing makes it impossible to
treat two joined tubes as one and use eqn (31)
directly.

In order to avoid the problem of accounting
for the mixing at the junction between two cath-
eters and directly checking eqn (31), experiments
with simple tubes were "rst performed.

4.1. EXPERIMENTS WITH SIMPLE TUBES

Two di!erent tubes were used: tube I with
length ¸"27.6 cm and internal radius
r
0
"0.08 cm and tube II with ¸"28 cm and

r
0
"0.157 cm.
Tubes II and I were perfused with distilled

water at #ow rates Q"15 and 30mlmin~1, re-
spectively. An injection of 25ll of tritiated water
was made as a bolus and samples collected at
intervals of 0.5 s at "rst and 2.5 s later. All out#ow
samples and injectate were analysed for total 3H
activity on a TriCarb 2700TR Liquid Scintilla-
tion Analyzer (Packard) and the concentration
was presented as a fraction of the injection dose
per ml of the sample (out#ow fraction per ml).

Experimental results and theoretical predic-
tions using eqn (31) are shown in Fig. 1. The
theoretical prediction of experimental points
(asterisks) takes into account the fact that the
concentration of the sample is the time average
[see eqn (22)] of the output concentration over
the time of sampling (often referred to as pooling
e!ect). It is clear from Fig. 1 that this pooling
e!ect is important for the "rst non-zero predic-
tion only. That is, the time average of the theoret-
ical prediction of the output concentration for
t'q

m
is very close to the output concentration at

the mid-sampling time ((t
j
#t

j`1
)/2). We note

that the theoretical prediction of the "rst experi-
mental point is zero and therefore, cannot be
presented on the logarithmic plot.

The values of q
m
, t

d
and t

b
were calculated to be

(in s) q
m
"1.11, t

d
"22.2, t

b
"3.01 and q

m
"2.13,

t
d
"85.4, t

b
"7.29 for tubes I and II, respectively.

To "nd t
d

and t
b

the di!usion coe$cient for
water was taken to be D"2.0]10~5 cm2 s~1,



FIG. 1. Experimental data (LLL), theoretical prediction
of concentration (**) and theoretical prediction of experi-
mental points (* * *).

FIG. 2. Sketch of the catheter (not to scale) used to per-
form catheter perfusion experiments. <

1
is the volume be-

tween the end of the injection needle and the beginning
of the input tube (shaded area), ¸

in
and ¸

out
are the lengths

of the input and output tubes and r
in

and r
out

are their radii,
respectively: (<

1
"0.08 ml, ¸

in
"32 mm, ¸

out
"93 mm,

r
in
"0.65 mm, r

out
"0.78 mm.)
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which corresponds to the di!usion coe$cient of
the deuterium water (H1H2O16) at temperature
203C (Gray, 1972).

The agreement between the experimental data
and theoretical prediction of concentration is
good for both tubes for times t)t

b
(note that the

prediction does not involve "tting the data). Dur-
ing this time, 86 and 91% of solute is already
recovered for tubes I and II, respectively. For
times t

b
(t(2t

b
when, as predicted, di!usion in

the radial direction becomes important, the de-
crease of concentration is slower than 1/t3. For
times somewhat greater than 2t

b
, the decrease of

concentration is quicker than 1/t3. Starting from
about t"4t

b
, experimental points are below

the curve predicted by eqn (31), as seen from
Fig. 1 for tube I.

4.2. CATHETER EXPERIMENTS

Experiments were performed with the catheter
normally used in liver perfusion experiments. The
sketch of the catheter (not to scale) is shown in
Fig. 2. In liver perfusion experiments, the input
tube of the catheter is inserted into the portal vein
and the output tube is connected to the hepatic
vein. For catheter perfusion experiments, the in-
put and output sections of the catheter are con-
nected together. The dimensions of the catheter
are shown in Fig. 2.

The catheter was perfused with a standard
bu!er used in liver perfusion experiments (see
e.g. Mellick & Roberts, 1996) at #ow rate
Q"30mlmin~1. Bolus injection of 25 ll of the
bu!er with radioactively labeled red blood cells
(99Tc) was used and out#ow samples were col-
lected with fraction collector at intervals of 0.5 s
at "rst and 2.5 s later. To measure the output
concentration all out#ow samples and injectate
were analysed for total gamma-activity on
a Packard Cobra II Auto Gamma counter. The
concentration was presented as a fraction of the
injected dose per ml of the sample (out#ow frac-
tion per ml).

Due to the assumed extensive mixing in vol-
ume<

1
, it was decided that concentration in<

1
is

best described by the well-stirred model. Equa-
tion (31) was used for the input and output tubes.
As the extent of the mixing of solute at the junc-
tion between the input and output tubes is not
known, two alternative theoretical assumptions
were considered:

(1) The concentration pro"le at the outlet
from tube I is well mixed before entering tube II.

(II) The mixing at the outlet from tube I is
negligible, so that the concentration entering
tube II is C (¸

in
, t, r) and the two tubes e!ectively

behave like one tube with the total volume
<"<

in
#<

out
.



FIG. 3. (A) Experimental data for catheter (LLL), theor-
etical prediction of concentration [solid line for Assumption
(I) and dashed line for Assumption (II)] and theoretical
prediction of experimental points (* * *). (B) The same data
and their best "t (**"unweighted and } } }"weighted)
by the inverse Gaussian.

CATHETER EFFECTS 271
The predicted output concentration after the
bolus input for Assumption (I) is

C(I)
0

(t)"
Dose
Q P

t

0
C
exp(!(t!q)/t

1
)

t
1

]P
q

0

u (q@!q
m1

)
2q2

m1

q@3
u(q@!q!q

m2
)

]
2q2

m2

(q@!q)3
dq@dq, (49)

where t
1
"<

1
/Q, q

m1
"<

in
/(2Q) and q

m2
"

<
out

/(2Q). Integration with respect to q@ in
eqn (49) yields

C(I)
0

(t)"
Dose
Q
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t
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exp(!q/t
1
)u(q) dq, (50)

where
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The integral in eqn (50) can easily be evaluated
numerically.

For Assumption (II), the output concentration
is

C(II)
0

(t)"
Dose
Q P

t

0

exp(!(t!q)/t
1
)

t
1

u(q!q
m
)
2q2

m
q3

dq,

(52)

where q
m
"q

mÇ
#q

mÈ
. Integration with respect to

q in eqn (52) yields

C(II)
0
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1
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exp(!t/t

1
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1
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1
)!Ei(q
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1
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t2 D , (53)
where Ei(x) is the exponential integral function
de"ned as a Cauchy principal value integral:

Ei(x)"P
x

~=

exp(m)
m

dm. (54)

Theoretical predictions of the output concentra-
tion for Assumptions (I) and (II) for a catheter
with dimensions as in Fig. 2 are presented in
Fig. 3(a) together with the experimental points.
For Assumption (I), the theoretical prediction of
experimental points taking into account the e!ect
of pooling was also presented. As the theoretical
predictions for Assumptions (I) and (II) are very
close to each other, the pooling e!ect is not
presented for Assumption (II). In Fig. 3(b), the
same data as in Fig. 3 (a) are presented together
with the best "t of these data by the inverse
Gaussian, equation (7).

It is apparent that there is no signi"cant
di!erence in the predicted concentration for
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Assumptions (I) and (II). In fact, eqn (53) gives
a slightly better agreement with experimental
points for times t'3 s. As eqn (53) is also simpler
than the corresponding eqn (50), its use might be
preferred.

There is some essential deviation of the theor-
etical prediction from experimental points for
times between 1 and 10 s. This could be due to the
very simpli"ed modeling of volume <

1
of the

catheter as a well-stirred compartment. Obviously,
some sections of this volume could be poorly
mixed with others, leading to the necessity to
introduce an additional compartment or com-
partments in the modeling. This complication of
the model will require the introduction of addi-
tional coe$cients which are not determined from
the geometry of the catheter, and therefore will
require "tting of the experimental data. Overall,
considering times from 0.1 to 20 s, the theoretical
prediction of the experimental points is better
than the corresponding "t of experimental points
by the inverse Gaussian (weighted or unweighted,
see Fig. 3), which is currently used to account for
the catheter e!ect. Therefore, we conclude that
the modeling of the catheter out#ow pro"le pre-
sented in this paper is su$cient to describe the
catheter distortion of the output concentration in
liver perfusion experiments. We stress again that
while the standard approach used hitherto re-
quires "tting experimental data for the catheter,
the approach we suggest in this paper allows the
theoretical prediction of the catheter output con-
centration and does not involve "tting.

5. Conclusion

The main outcome of the work presented in
this paper is the formulation and analysis of
equations for the output concentration from the
tube at x"¸ when input concentration at x"0
is known. A similar problem of the dispersion of
solute in tubes when initial concentration at t"0
is known and concentration for t'0 and x'0
is to be found was formulated and solved by
Taylor (1953). In this paper, we used his
approach to derive our equations.

The assumption of Poiseuille #ow in a tube is
critical for deriving the equations in this paper,
especially for the short tube. Our analysis of the
applicability of Poiseuille #ow for tubes typically
used in catheters shows that such a #ow assump-
tion is relevant, though some measurable distor-
tion from Poiseuille #ow is evident for the inlet
section of the tube. The characteristic length of
this distortion is given by eqn (48).

Equation (31) for the short tube is valid if
di!usion is not important. It was shown that for
times t't

b
, where t

b
is de"ned in eqn (36), di!u-

sion becomes important and therefore the output
concentration must deviate from the curve pre-
dicted by eqn (31). It has been demonstrated that
this analysis is in good agreement with experi-
mental results for simple tubes.

The catheter used in liver perfusion experi-
ments is not a simple tube, therefore some addi-
tional modeling is required. Two equations for
the output concentration from the catheter were
derived, based on simple assumptions. Compari-
son with the experimental data con"rms as satis-
factory the predictions of these equations.

Apart from its importance in the analysis of the
dispersion of solute in catheters, the work pre-
sented in this paper might be used to examine the
dispersion of drugs in blood vessels, where the
assumption of Poiseuille #ow in a blood vessel is
justi"able. In this case, it has to be borne in mind
that complications such as these arising from
#exibility of the vessels will of course also have to
be taken into account.
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