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The distributed-tubes model of hepatic elimination is extended to include intermixing between sinusoids,
resulting in the formulation of a new, interconnected-tubes model. The new model is analysed for the
simple case of two interconnected tubes, where an exact solution is obtained. For the case of many
strongly-interconnected tubes, it is shown that a zeroth-order approximation leads to the
convection-dispersion model. As a consequence the dispersion number is expressed, for the first time,
in terms of its main physiological determinants: heterogeneity of flow and density of interconnections
between sinusoids. The analysis of multiple indicator dilution data from a perfused liver preparation
using the simplest version of the model yields the estimate 10.3 for the average number of
interconnections. The problem of boundary conditions for the dispersion model is considered from the
viewpoint that the dispersion-convection equation is a zeroth-order approximation to the equations for

the interconnected-tubes model.

1. Introduction

Various models have been used in attempts to
describe the enzymatic elimination of substances from
blood flowing through the liver (Rowland et al., 1973,
Winkler et al., 1974; Bass et al., 1978; Mellick et al.,
1997). Although the development of these models has
undoubtedly increased our understanding of the
physiological, pharmacokinetic and dynamical as-
pects of these important processes, some aspects of
the modelling remain ill-defined. Broadly speaking,
the models proposed so far fall into four classes:
compartmental (or tank) models, single-tube models,
distributed-tube models and dispersion models
(Fig. 1).

The simplest model of hepatic elimination treats the
liver as a single “‘well-stirred” compartment or “‘tank”
(Rowland ef al., 1973). This model is limited in that
it does not correctly describe either the outflow
concentration-time profile after a bolus injection or
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the concentration-distance profile in the liver during
steady-state infusion (Roberts & Rowland, 1985).

The single-tube model (Winkler et al., 1974) treats
the liver as a single tube (or n identical tubes) of
constant cross-section through which blood flows and
along which elimination occurs, in order to model
of the variation of substrate concentrations with
distance into the organ.

Distributed tube models (Bass et al., 1978; Goresky
et al., 1973) attempt to take account of liver geometry
by treating the organ as a large collection of
non-identical tubes representing liver sinusoids, or
more generally, independent pathways for blood flow,
acting in parallel. In the “distributed model” (Bass
et al., 1978), each tube accepts a common input
concentration of substrate which is depleted as it
passes to the downstream, venous end where mixing
occurs. In this paper, we modify the discrete version
of this model to include micromixing. For the discrete
version of the distributed model, with n tubes labelled
j=1,2,...,n, the concentration in the j-th tube is a
function ¢;(x, ) of distance x along the tube, and time
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t. Governing equations for the j-th tube are (Bass
et al., 1978)

%, 0
a() 5 +15)

= —p;i(x)g(), (1
where a;, f; and p; are the cross-sectional area at
location x, the rate of blood flow at time ¢ and the
density of enzyme elimination activity at location x,
respectively, for that tube. The function g(c)
characterizes the form of liver kinetics responsible for
elimination; thus g(c) = ¢/(c + K,,) for Michaelis—
Menten kinetics, where K, is the half-saturating
concentration constant.

We shall be concerned in this paper mainly with
modelling of situations appropriate to experiments
where a substrate is injected into blood flow at input
to the liver, the blood being previously free of that
substrate. The corresponding initial and boundary

conditions for the distributed model are then
C/(x,0)=0, nggl/
C/'(O, [) = cin(l), t> 0, (2)

where c¢;, is the common input concentration, and /; is
the length of the j-th tube to the output mixing site.
The measurable output concentration from the liver
is then the “flow-weighted”” mean concentration (Bass
et al., 1983)

ant) = S i ) ©)

where F' = X, f; is the rate of total hepatic blood flow,
and ¢;(x, t) is the solution of (1).

A criticism that has been levelled at the distributed
model is its failure to take account of intermixing
between sinusoids (Roberts & Rowland, 1985),
observed in anatomical studies of the hepatic
microcirculation (Koo et al., 1975). Despite this, the
model has been wused successfully to interpret
experimental data from steady-state experiments
(Bass, 1980). In steady-state situations, the solution of
(1) at the output x = /; involves the total elimination
capacity for that tube, but neither /; nor the form of
p; explicitly (Bass et al., 1978). Thus, while the
distributions of flow rates and total elimination
capacities affect steady-state extraction (Bass et al.,
1978; Roberts et al., 1988), the distribution of tube
lengths is irrelevant for this purpose.

However, the distributed model is not readily
applicable to unsteady situations such as those which
apply after bolus injection of substrate (Bass et al.,
1983; Roberts & Rowland, 1985), because the broad
distribution of tube-lengths /; (and hence of arrival-

times at the downstream mixing site), and the nature
of its unknown correlations with the (assumed)
narrow distributions of g;, f; and p; values, are also
needed for the calculation of ¢,,(f) in those cases.
Furthermore, it has been argued that parallel tube
models do not adequately describe the availability-
flow and availability-unbound fraction relationships
for highly extracted drugs (Roberts & Rowland,
1986b). Some of these difficulties are circumvented in
the “distributed sinusoidal perfusion model” de-
scribed by Goresky et al. (1973), at the expense of
making more restrictive, and therefore less realistic,
assumptions about sinusoidal structure. Roberts &
Rowland (1986a) emphasized the need to use in such
a model a distribution of arrival times based on the
impulse-response relationship for a vascular reference
marker in the liver. Such a model has been applied to
time-dependent (Roberts et al., 1988; Goresky et al.,
1992; Luxon & Weisiger, 1993; Schwab et al., 1990)
and Michaelis—Menten data (Roberts et al., 1989).
In order to take into account intermixing within the
liver and to adequately describe the transit time
distribution of vascular reference markers, the
axial-dispersion model was introduced by Roberts &
Rowland (1985). Rather than attempt to model the

Well stirred — ol:> — k
Tube <1.> 4»
Distributed
I — |
Dispersion 42)( 2C ))( )l> ’ E
il W |

Interconnected | f ¥ |
tubes + +

| [—— I |

F1G. 1. Models of hepatic elimination: schematic representations
and concentration-time profiles after bolus injection of nonelimi-
nated substance.
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complicated sinusoidal geometry directly, with its
many interconnections (Koo et al., 1975), it takes
advantage of this complexity by treating the liver as
a “fixed-bed chemical reactor” (Levenspiel, 1976),
lumping together the mixing effects as a second order
space derivative term in the convection-elimination
equation. Although the form of the second order
term is similar to that in the diffusion equation,
it must be emphasized that there is no identity of
the terms. Roberts & Rowland (1986a) have stated
that dispersion defines the spread in convection
flow at a macrolevel as a consequence of the net
effect of several events, including: (1) variations in
flow velocity and variations in lengths of different
sinusoids; (2) mixing of blood at the branch points of
sinusoids and at the interconnections between
sinusoids; and (3) in principle, molecular diffusion.
The governing equation for the dispersion model
is
, 2, .
CopEE v pogle). )

where D is the “dispersion coefficient” (Roberts &
Rowland, 1986a), ¢(x, t) is an average concentration
at distance x into the liver, v is the average velocity
of convection throughout the liver, p(x) is the average
density of enzymatic elimination, per unit area of
cross-section, at distance x, and g(c) is as before. The
equation for the dispersion model is commonly used
in dimensionless form:

0 0 0?
EC(X, T) = —ﬁ,c(X, 7) + DNWC(X, 7)

—Ry(c, X)e(X, 1), (5)

where X =x/L, t=1t/T, T=L/v, Ry(c,X)=
p(x)Tg(c)/c and Dy= D/(Lv) is the dispersion
number (Roberts & Rowland, 1986a).

In a two compartmental form the dispersion
model has been used to describe time-dependent
data (Roberts et al., 1988; Yano et al., 1989;
Chou et al., 1993; Hussein et al., 1994; Evans et al.,
1993).

Bass et al. (1987) have suggested that ‘“‘the
physiological interpretation of the dispersion co-
efficient in the liver is problematical. In particular, the
model does not predict how the dispersion coefficient
changes with the rate of hepatic blood flow. ... A
further difficulty is that the dispersion model,
necessarily expressed in terms of a second order
partial differential equation, requires boundary
conditions (additional to those of the sinusoidal
perfusion model) that have not yet been formulated
unambiguously.” One further mathematical difficulty

is that little exact mathematical analysis of (4) is
possible in cases. where p(x) is non-constant or g(c)
is nonlinear, so that one then has to resort to
numerical solution on a case-by-case basis. These
criticisms have been addressed by Roberts et al.
(1988) using the dispersion model with mixed
boundary conditions and a dimensionless dispersion
number. Work by Roberts e al. (1990), Chou et al.
(1993), Hussein et al. (1994) and Evans et al. (1993)
have shown that the dispersion number is indepen-
dent of flow and protein concentration.

Other limitations of the distributed and the
dispersion models have been addressed by Bass et al.
(1987). There N liver “units” in series with N mixing
sites were suggested to describe intermixing between
sinusoids. Each liver unit was described in terms of
the distributed model, and a value of a dispersion
coefficient D for the system as a whole was obtained,
enabling a prediction to be made as to how D would
behave under variation of total flow rate F. A
tanks-in-series model has also been proposed for
first-order extraction (Weisiger et al., 1986; Gray &
Tam, 1987, Roberts et al., 1988) and Michaelis—
Menten (Roberts et al., 1989) elimination.

Overall, the models proposed so far appear to have
different domains of applicability, reflecting their
different underlying and simplifying assumptions. For
example, the dispersion model, which lumps the
effects of the sinusoidal network into a diffusion-like
term in a second-order partial differential equation,
appears to work well in practice in describing
time-dependent elimination with first-order reaction
kinetics, from a bolus (“delta-function”) input of
substrate. The distributed model, on the other hand,
which models the liver geometry as an ensemble of
tubes acting in parallel, leads to uncoupled first-order
differential equations, and appears to work well in
some steady-state situations involving nonlinear
elimination kinetics.

Our purpose here is to approach the modelling of
hepatic elimination in a new way. We aim to take into
account intermixing between sinusoids, rather than
neglect it as in the distributed model, but we aim to
do it in a more specific way than in the dispersion
model, paying attention to the known vascular
architecture of sinusoids. An important outcome of
our modelling is that we are able to provide a more
direct physiological basis for the applicability of the
dispersion model, and to clarify its domains of
applicability. We are also able to clarify the meaning
of the dispersion number in terms of more
fundamental physiological variables.

We propose to call the new model the “intercon-
nected-tubes model”.



92 Y. G. ANISSIMOV ET AL.

2. Interconnected-tubes Model

In order to take into account both the sinusoidal
structure of the liver, and the high degree of
intermixing observed experimentally (Koo et al.,
1975), we propose to model the elimination process in
terms of a large number of tubes acting in parallel,
with various flow rates, with elimination within each
tube, and with continuous interchange of substrate
between tubes along their (common) length L. We
suppose that the interchange is the result of
convective fluxes from one tube to another which
causes a variation of flux f; along each tube.

The governing equations of the model are, most
generally

a,-(x)% + fi(x) % = —pi(x)g(c:)

Y (ki) — k(). (6)

J=1j#i

fori=1,2,...,nand 0 < x < L. The symbols have
the same meaning as in eqn (1) for the distributed
model, the new feature being the final, intermixing
term, in which &;(x) is the rate constant for transfer
of substrate (and solvent) from the i-th to j-th tube
at distance x. From conservation of solvent, we now
have an additional equation to be satisfied by the i-th
flux,

g{c - Z (ki(x) — ky(x)), i=1...n, (7

j=li#i

and obviously for the model to be valid, £;(x) must
be such that fi(x) >0 fori=1...nand 0 < x < L.

We have made the simplifying assumption that all
tubes have the same length L, and for the purposes
of this paper, we now make the further assumptions
that &, a;, f; and p; are constants in order to be able
to make some progress with the mathematics.
Obviously, these approximations are crude in the
context of the actual liver physiology, but we believe
the resultant modeling still captures the essential
features of the transport and elimination processes. In
order to have f; constant we need, according to
eqn (7), the restriction

ﬁ ki —k;)=0, i=1...n. ®)

J=lj#i

Furthermore, we suppose that we are dealing with
tracer concentrations of substrate, so that g(c) can be
assumed linear, i.e. g(¢) = ¢/K,. It is at once clear
that there are interesting and important questions, to

what extent these simplifying assumptions can be
relaxed without making analysis of the model
completely intractable; we hope to return to some of
these questions elsewhere.

Note that the k; are non-negative, and some may
be zero, but it is implicitly assumed that the values of
the &, are such that the system of n tubes cannot be
regarded as two or more subsystems with no
interconnections between them [eqn (34)]. For
convenience we will use k; = k;/a; for the coefficient
of exchange (so that dimension of k; is T7').

Under the simplifications stated, the defining
equation (6) can be written in the form

dc; dc;

E = —U; a - Cikyi

+ 2

J=l#i

a; o -
<c_,-k_,-,»ai c,k,_,), i=1...n, (9

where, for the i-th tube, v; (=f:/a;) is the constant
velocity of blood flow, and k. (=p:/(a.K,)) is an
elimination rate constant.

Initial and boundary conditions for the new model
are (2), the same as for the distributed model. Thus
we have the simplest form of the interconnected tubes
model, defined by eqn (9) and initial and boundary
conditions (2).

Consider the coefficient of exchange k;. Obviously,
the larger is k;, the more changes of velocity a particle
of blood containing substrate, and governed by
eqn (9), will experience as it passes from inlet at x = 0
to outlet at x = L. In order to quantify this idea we
shall elucidate the connection between the discrete
situation for sinusoidal interconnections and the
continuous way of modelling these by eqns (6) and
(9). Let us do this for the simplest case of two
sinusoids (Fig. 2). We emphasize at this stage that the
following consideration is not meant to provide a
strict physiological basis for the governing equation
(6). The intermixing terms in these equations are
heuristic, and we can only expect at best to obtain
rough estimates for the coefficients k;. We will
simplify the discussion by letting all connecting
sinusoids have the same length d, velocity of flux v;
(either from sinusoid 1 to sinusoid 2 or back) and
cross-section area a;. We further imagine connecting
sinusoids distributed uniformly along the length L, so
that the number of connecting sinusoids with flux
from sinusoid 1 to sinusoid 2 per element of length Ax
is AxK/2 and is equal to the number of connecting
sinusoids with the opposite direction of flux, with
K=N/L and N equal to the total number of
connecting sinusoids. If we assume that d is small
enough in order to have constant concentration along



NEW MODEL OF HEPATIC ELIMINATION 93

connecting sinusoids, then considering fluxes of
substrate into and out of a small element of length
Ax < d< L we get

(AVi(er(x, £+ A1) — ei(x, 1) = —AVikaer(x, AL
—awiAt(ei(x + Ax, t) — ¢i(x, 1))

—U;AIA%K as(er(x. 1) — x(x, 1)),

AVi(er(x, t + At) — ca(x, 1)) = —AVakaoo(x, 1AL
— vy At(ea(x + Ax, t) — ca(x, 1))

—UgA[A'%I(v(h(x, [) - Cl(xa Z))a (10)

.

where AV:= Axa; + a;dAxK/2 includes the volume
of connecting sinusoids. As Ax and Az are small,
we substitute c:(x, t + At) — ci(x, t) =~ Atdci(x, t)/0t
and (x4 Ax, t) — c(x, 1) & Axdci(x, t)/0x  in
(10) and divide by AtAx to get the continuous
equations

K
<a1 + d2a3>§lcl(xa 1) = —avi (’%Cl(x’ 1) — ka

X <a1+d§a3>c|(x, t) — vs % (ci(x, 1) — ca(x, 1))

dKa;\ 0 _ , 0
<a2 + 2) 5 a(x, t) = —aw; i a(x,t) —ka

X <a2 + d§a3>cz(x, 1) —vs % (c2(x, t)—ci(x, 1)).

(11)

Dividing eqns (11) by corresponding effective areas
(a; + dKa;/2) we get eqns (9) for two tubes with
effective velocity v; = 2v/a;/(2a; + dKas) along the i-th
sinusoid and coefficients of exchange ki, = a;v:K/
(2(11 + dKa3), kz] = Cl3U3K/(2a2 + dKa3). We can then
write, for example,

e uooe NN
oo = 2a, + dKas v VakK = 0 L=%T (12)
where
_ as Us
*= 2a, + dKa3 Vay (13)

is dimensionless and independent of small changes of
hepatic blood flow, T'= L/v,, and v, is the average
effective velocity of the two tubes [c.f. eqn (15)]. Let
us estimate o. Hepatic sinusoids can be classified into

T

Vo

Ky T l SP

| — |

Vo

F1G. 2. Transition from the case of two sinusoids interconnected
discretely to interconnections modeled as continuous.

three types: branching sinusoids, direct sinusoids and
interconnecting sinusoids with average velocities of
0.27mms™', 0.4l mms~' and 0.37 mm s~', respect-
ively and average radii of 6.3 um, 6.6 um and 6.3 um,
respectively (Koo et al., 1975). In our example
sinusoids 1 and 2 correspond to branching type and
a;, v; represent parameters of interconnecting
sinusoids, thus using data for the rat liver (Koo et al.,
1975) one can get a; = a3, v, =027mms~' and
v; = 0.37 mm s~ '. If we assume that d is small in order
to have dK<« 1, then using (13) we get o =~ 0.7. The
important point is that k, T is proportional to N, with
a coefficient of proportionality o which is of order of
magnitude 1. For the more general case of n tubes we
therefore argue that each k; will typically be
proportional to the average number of mixing sites
N, along sinusoids. More precisely, we suppose that
for each i

T max (kj) o Ny, (14)
j#i

where T is the average time of passage through the
liver, and again the coefficient of proportionality is of
order 1. For the model as described, this average time
is given by T = L/v,,, where v,, is the average velocity
defined by

o=t Yav, A=Y a. (1)

i=1 i=1
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Branching sinusoids are characterized by a large
number of mixing sites, and it is apparent that they
outnumber direct sinusoids (Koo et al., 1975). As a
result, it is reasonable to argue that N, >1 and so,
from (14) that T max;.; k;> 1.

3. Two Interconnected Tubes

As a first step towards the treatment of the n-tube
model, let us consider the simple case of two tubes,
which turns out to be exactly solvable. We have the
two equations
(

0 0
5 alx, )= —u P a(x, t)—kaci(x, t) — kei(x, 1)

J +kea(x, 1)
e t) = —0 k ykes(x, 1
57 % ) = —am (X, ) —kae(x, ) —yke(x, 1)
L +ykei(x, 1), (16)

where k = kiy = ka/y, and y = ai/as.
Initial and boundary conditions are

(x,00=0, ¢(0,0)=0(), i=12 (17

Here and below 6(¢) is Dirac’s o-function. It is
assumed without loss of generality that v, > v;.
In a more general form the system of eqns (16) has
been studied by Hill (1981) and McNabb (1985).
We will use the Laplace transform to solve this
system of differential equations. After transformation
we have, taking into account the initial condition in

a1,

Gl % ai(x,8) = —(s+ ka + k)ei(x, 5) + kéa(x, s)

02% &(x, 8) = —(s+kao+yk)ea(x, s)+ykei(x, s),

(18)
where ¢,,(x, s) are Laplace images of ¢»(x, ).
The boundary conditions in (17) become
¢12(0,5) = 1. (19)

Equations (18) form a system of two coupled
linecar first order differential equations, whose
solution after tortuous transformations can be written
in the form

el(-x7 S) = ;’exp<x k"] _ ke2 + (1 — ’)))k)

Uy — Uy

, X s
X [exp(—s v)(bvzr lefr=5)
2

(= ) e ) + exp(““ f)
1

X (—bvyrle P4~ (r + s/)e"("“’/)):|,

(20)

eZ(X, S) = ;exp<x kf’l _ keZ + (1 — ’)})k)

Uy — Uy

X [exp( -5’ j)(byv,r‘e/“"“
2

+ ' (r + 5)e ) + exp<s’ ;)
1

X (=byvir~le =4 (r—s")rle =) ],

@0

where

P JOP T =Tl

U, — Uy

2k ﬁ_’CDZ_D]

b - _M 21)102 ’

Uy — Ul’

g S+ku +kgz—£k(y +1)

kel_ke2+(1_y)k U]+U2
vy — Uy 2

+

Now, inverting eqns (20), (21) to the time domain,
with the help of known transforms (Erdelyi er al.,
1954), we get the solution for the system (16) with
boundary and initial conditions (17):

alx, t) = eXp<_tk“ + ke ; (1 + )k

Uy — Uy 2
y [5(1 _x> N 0(x, Nk
U1 Uy — Uy

X <U2]o(ky) + Ulmll(ky)>:|’ 22

ko —ko+ (1 —y)k<[vl+vz_x>>
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ofx, 1) = exp<tk€’1 + ko 42- (1 + )k
_ka—kat+(l _V)k<[vl+vz_x>>
Uy — U 2
X |:5<t — x> + M
U2 Uy — Uy

x <yvllo(ky)+vz — L(ky)ﬂ, (23)

where I, I, are modified Bessel’s functions,

0(x, 1) = u(t - ;) - u(l - ;“1>
X

X
1 for —<it<—
Uy U

0 otherwise,

and

y= 2\/y(tvz —x)(x — tvy)

U, — U

From (22), (23) it is clear that c»(x,t) =0 if
t¢[x/va, x/vi], so we will consider ¢ € [x/vs, x/vi] or
equivalently x € [tvy, tv].

As discussed in Section 2, it is reasonable to expect
kT>1, where T is the mean transit time. This allows
us then to consider times ¢ such that kr>1. In
formulae (22) and (23), an exponentially small factor
occurs, namely

_ d+y) 1=y [ ontv
exp( k([ 3 +Uz—U1t 5 X

or, if we put x = fv, where v € [vy, v2] (as x € [tvy, tr1])

exp( ~ Gl 00 = )+ - 00))

Whenever ¢, and ¢, are not exponentially small, this
factor must be compensated for, and this is only
possible where ky>1, because the asymptotic
formulae for I;(x) and I;(x) for x> 1 are (Abramovitz
& Stegun, 1965)

In(x) = ¢ <1 + %X’l + 0(x2)>3
2nx
X 3
L(x) = — <1 2y 0(x2)>.
< 2nx 8

Having substituted these in (22) and (23), we get

alx, t) = exp<k<y 1y —yv) — x(1 — V))

Uy — U1

— k92)>

+ l(keZUl - k91U2) + x(ké.]
Uy — Uy

o [y=s (1 - 83yk1>
+ 0((ky)2)>, 24
ex(x, 1) = exp<k<y o) =Xl = ”)
4 Hkavy — Kavs) + x(ka — ka))
Uy — U

X ! k <yvl<1 + ! k‘)
ey U T 02 8y

X—tw (., 3,
leg—X<] 8yk>

+ 0((ky)2)>, (25)

+ 0,

where we have neglected in (22), (23) the terms
involving d-functions because they have exponentially
small coefficients.

We consider the first term of the exponent in (24)
and (29),

p(x,t) = k<y _ (v, —yv) — x(1 — y))

U, — U

It can be shown that for x € [ty tv2] and ¢ fixed,
p(x,t) has its maximal value if x=tv,,
Vo = (yv1 + v2)/(y + 1) and that:

p(tv,, 1) =0
p.\/'(vuz‘y [) = 0
(+1y

Phttne. 0= —k g,

_ 30+ D01
p.\,\iv ([Uul'a [) - k 4(02 _ 171)3V2[2 N
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Then we can write

- . O=+1y
plx, 1) = k4(vz — vy)yt

D=1
8(vy — v1)ypt?

(x — to,)?

+ (x — tow ).
In order to have c¢;,(x, f) not exponentially small,

we need to consider x so that |p(x,f)~1 or

k(x/v. — 1) ~ t. We now introduce the new variable

z:
z=(x— tv,)k"?, x=tv,+ zk "2,

and change x,  to z, f in (24) and (25), keeping only
terms of order k="

- Jvay+ Dk o D)
alt,z) = 41 (vy—v1 )yt R 4(vy— v )yt et

(1451 ko —ka ywiBy+D+uw@p-—1
vy — 1 4(vs — V1)Vt

20+ D' =D
e M)) (26)

(y+1y

ot z) ~ 4(1)2_1)1)2,))1,_1@11‘1)

Uﬁl‘ V+ 1)3k ex _ZZ
47 (vy— v )yt P

<1+ k125 kgz — kgl + '))1)1(1 — '))) + U2(3 + '}))
U, — Uy 4(U2 - U])Uaz:yl

L0+ Do = 1)
e M)) @7

where

k o Vke] +ke2
av V+1 .

If we now change back from z to ¢ and keep just
the first term in (26) and (27), we have the physically
clear result for large k:

2
co(x. 1) ~ /“jfexp(—wk(t—f) —kmz), (28)

where

oo La 1)
T 4o, — vyt

Note from (28) that

(29)

Vv

lim ¢1a(x, 1) = exp(—k(,pt)é(t - x).

In this limit, equilibration of concentrations in
tubes become instantaneous, so that ¢(x, )=
c(x, 1), and we have, effectively, one tube with
average parameters. Formulae (26) and (27) give an
idea of how rapid is this process with respect to the
extent of the coefficient of exchange between the two
tubes.

4. Strongly Interconnected Tubes

Encouraged by the successful analyses of the
two-tube case, and the sensible solutions obtained, we
now proceed to the case of n tubes. The two-tube case
suggests that the way to approach this mathematical
problem, which is not exactly solvable for n > 2, is by
asymptotic analysis, the important independent
variable being z.

Let us rewrite eqn (9) in a matrix form:
0 0
EC——Vac—Kec—ko, (30)

where ¢’ = (¢1, ¢, . . ., ¢,), n is the number of tubes,
V = diag(v;), K.= diag(k.), v; and k., represent
distributions of velocities and elimination rate
constants, M = {m;} is the matrix of coefficients of
exchange between tubes, so that

my= =0, ¥ kit kil ij=1...n (1)
=1 i

The initial and boundary conditions are
c(x,0)=0, ¢0,1)=-ed(?) (32)

where e = (1,1,...,1).
The form of M automatically provides conserva-
tion of substance for eqn (30) if K,=0, since

N 0 0 " d n n
,-;1 ai<at ¢+ bfa Ci)—igl aia ¢ = Z Z amyc; = 0,

i=1j=1

as

n n n
Y amy=—a; Y, ki+a ) ki=0.
i=1 /=1

i=1

With a”" = (a,a,...,a,) we can write for M

a™ = 0. (33)

It is physically reasonable to expect that the only
uniform steady-state concentrations, possible in a
system of inter-connected tubes (if there is no
elimination) are ¢; = ¢y, i = 1...n, or ¢ = ¢e, where
¢ is some constant. That is if Mg = 0, g some vector,
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then there exists a real f'so that g = fe. Then we have
more properties for M:

Me =0, rank(M)=n— 1. 34)

Let us now consider the case max;,;(m;)>v./L,
where L is the length of tubes and v,, is the average
velocity v, = 1/4 Z!_,av:;, A=2X}_,a;. More pre-
cisely, suppose:

m; = kr;

where k>1 and max,.;(r;) ~ v./L. Obviously

R = {r;} must possess properties (33) and (34).
When k — oo, n tubes behave virtually as one with

the average velocity, so that if K, = 0 we expect that

X
c—>e5<t—v >, k — 0.

Given that, and the analysis of two tubes for
k — oo [formulae (26) and (27)], it is reasonable to
suggest for ¢ the asymptotic series expansion

c(x, 1) =ek"co(z, 1) + ¢z, t) + k"cP(z, 1) + - - -
(35)

where ¢”(z,t) =0(1) for z=L/v,O(l) and
"z, t) > 0 for |z|»L/v. as k — oo, with z=
k' (t — x/v.). The coefficient k"2 in the first term in
(35) provides that

f c(x,)dt »e, k- 0.
0

We will represent ¢” by two components, one
parallel to and one orthogonal to e

¢z, 1) = ec(z, 1) + d9z, 1), (36)
so that e”-d%(z, r)=0, and using (34) we can write
Re¥(z, 1) = RA(z, 1). (37)

Let us change variables in (30) to z and ¢, to get
klﬁz I— 1
v(ll

where I is a unit matrix.
Now we substitute ¢ in the form (35), (36) into (38)
and group terms with the same power of k:

> c(z, t)—i—ac(zt

= —K.c(z, 1) + kRe(z, 1), (38)

km£@@n=RW@O, (39)

k”z:b% c’(z, 1) + <l - vi V);; d%(z, 1)

+e % co(z, 1) = — K.eco(z, t) + Rd?(z, 1), (40)

1 0 a0
<l o V) 7s dV(z, 1)

+e£<’%z0+a &
= —K.ec{ "(z, 1) — K.d""(z, 1)
FRAOGE D), P2, (41)

where b = (I — (1/v,,)V)e is orthogonal to a:

a’*b= aTIe——aTVe—A——Zav,—O

av Vav i=1

Equation (39) can be solved for d® if ¢o(z, ¢) is a
known function:

Az, 1) = wi % oz, 1), (42)

where w is the solution of the linear algebraic
equations

Rw! =b, e’-w!=0. (43)

As we have a”-b=0, a’R =0, rank(R) =n — 1 and
Re = 0, it follows that w" exists and is unique.

Having multiplied eqn (40) by a” at the left, we get
h- w(”ico(z t)+A 0 co(z 1) = —Akauco(z, 1), (44)
where h = a’(I — (1/v,)V) and we have used (42),
a"-e=4, a™R =0 and a’K,e = 4k,,, with k, = 1/4
zl"l: laik€i~

Now we have an equation for ¢(z, t):

O A2
hAw aa L e, D) —kueo(z, 1), (45)

0
E CU(Z, l)

For the variables x, ¢ that equation has the form

0 0?
T cox, 1) = — Va5 co(x H+ D+ RRs co(x, 1)
_kaz'CU(xa l)a (46)
where
w
D= —h:; vk A7)

Equation (46) is the same as eqn (4) for the
dispersion model, with first order elimination kinetics
and with p = const. Thus the assumption k >>1 for the
inter-connected tubes model leads in zeroth-order of
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approximation to the convection-dispersion model. In
(47) we have an explicit expression for the dispersion
coefficient in terms of the parameters of the coupled
tubes.

Equations for d“*"(z,¢) and ¢{(z,r) can be
obtained by considering components of eqn (41) for
i+ 1 and 7 respectively, orthogonal to and parallel to
a:

L a0 )+ L = an s d )
—kacd(z, 1) — % a’K.d"(z, 1), (48)
(+1) — e a®a’
Rd“*(z, 1) (2, 1) —|—< ala )
0 qiy Ly} 40
X |:0[ d" Pz, 0+ <I o V> s dz, 1)
+K(w“”@¢)+d“”@¢»} (49)

We need to solve first eqn (49) for d“*'(z, 1),
which is similar in structure to eqn (39) and can
be treated analogously, then substitute d“*"(z, ¢)
into (48). As a result we will have a generalized
convection-dispersion  differential equation for

Pz, 1).

5. Boundary Conditions

Equations (9) are first order partial differential
equations. In order to solve them we need only one
initial condition and one boundary condition per
equation. The result of the zeroth-order approxi-
mation to eqn (9) is the second order partial
differential eqn (46) and this equation requires two
boundary conditions. There are three types of
boundary conditions now in use for the dispersion
model (Roberts & Rowland, 1986a), namely Danckw-
erts (or closed), mixed and open boundary conditions.
They all have been derived supposing eqn (46) to be
exact for the liver kinetics. Now we have the
opportunity to consider the problem of boundary
conditions from the view point that eqn (46) is only
the zeroth-order approximation to the liver kinetics
described by eqns (9).

Consider again the zeroth-order approximation
solution (28) for two tubes, given by

w0+ D%
C]‘Z(xa l) = C()(x; l) = %

(x — ) k(y + 1)
4(v, — vyt

X exp<—

This is the solution of the partial differential equation

— km.t>. (50)

0 0 0?
Ecﬂ(xa S —Uauaco()ﬁ t) + Dﬁco(x’ t)

—kaco(x, t) + 0.0(1)0(x), (51)

for —oo <x< oo and ¢>0, with the boundary
condition

co(x, 1) >0, x— too, (52)
initial condition
c(x,0)=0, x#0, (53)
and with
(v2 —v1)Yy
D=——-Z" 4
O+ 1k (54)

This expression for D is in agreement with eqn (47).

Roberts et al. (1988) have recognized that the usual
boundary condition eqn (52) is not appropriate for
steady states arising from the steady infusion of a
non-eliminated substance. They have suggested the
boundary condition ¢’(x) — 0, x — oo for such cases,
and hence a weaker condition then (52), namely

2 1) > 0,

P X - o0 (55)

in the time-dependent case.
Note that (51) reduces to (46) for x > 0, and that
(50) is only valid anyway for

kx 1. (56)

These features of the two-tube case strongly suggest
that for bolus input we should adopt the boundary
conditions (52) and initial condition (53) with eqn (51)
in the n-tube case also, and keep in mind that the
solution obtained will only be valid far downstream
from the boundary at x = 0, or more precisely, where
(56) is valid.

In the case of a continuous infusion of substance at
x=0, at a rate M(¢) for >0, linearity of the
modelling implies that eqn (51) should be replaced by

0 0?
5 co(X, 1) = —Vp == 6 co(x, 1)+ D == s co(x, 1)
—kato(x, 1) + M(1)0(x), (57)

again with the boundary conditions (52) or (55) and
initial condition (53).
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6. Discussion

The major outcome of this work is the extension of
a distributed-tube model to include intermixing
between sinusoids. In the simplest case of identical
transit times through tubes [all v, equal in (9)],
intermixing has no effect. As heterogeneity of transit
times increases, the importance of intermixing
becomes more evident. In physiological situations, the
heterogeneity of transit times is significant and is
characterized by a normalized variance of about 0.5
(Roberts et al., 1988).

A second outcome is the identification of the
dispersion number used in the dispersion model
(Roberts et al., 1988), in terms of the rate of transfer
between interconnected tubes and distribution of
velocities. This identification throws new light on the
meaning of the “diffusion-like” coefficient used to
create the dispersion model.

An important characteristic of liver models is
their ability to describe the concentration-time
profile after bolus injection of a non-climinated
substance (such as erythrocytes for example). The
exact solution for the interconnected-tubes model
in the simplest case of two tubes gives us an
opportunity to compare predictions of this model
with experimental data. In Fig. 3, we present the best
fit of cu,

_auy + 6,
vy + 0

with ¢, ¢, defined in eqns (22) and (23), to
experimental data (unweighted, and not corrected for
catheter effects) for bolus injection of sucrose into in

L1 °
15 20 25 30 35 40 45 50
Time (s)

0 5 10

F1G. 3. The best fit of experimental data using an exact solution
for two tubes (solid line) and its corresponding zeroth-order
approximation (dashed line).

situ perfused rat liver (Mellick & Roberts, 1997), for
various v;, v, y and k (solid line). The dashed line
represents the zeroth-order approximation to c¢,, as
given by (28). It is clear that, even in its simplest
non-trivial form, the interconnected-tubes model
gives sensible results. We point out that the estimate
of kT obtained from fitting this experimental data is
7.2. As we discussed in Section 2, kT = aN,.ix, SO with
o=~ 0.7 we have the estimate N,. ~ 10.3 for the
average number of mixing sites along sinusoids. This
result for N,, does not seriously contradict the
estimate of average number of mixing sites along
sinusoids calculated by Bass et al. (1987), Nux & 5.8,
when we bear in mind the approximate nature of the
estimation of the coefficient o in Section 2. When
known values of Dy (corrected for catheter effects
and appropriate weighting of data) of 0.15— 0.4
(Chou et al., 1993; Hussein et al., 1994) are used,
a value for N,, of 2—54 is estimated from
eqns (54) and (60). This calculation assumes v,>>v,
and y =1.35, obtained from fitting experimental
data as above. This difference in predictions is
not surprising as we are using here only the
simplest two-tube form of the interconnected-tubes
model.

A particularly interesting result of the intercon-
nected-tubes model is its ability to predict the change
of dispersion coefficient with change of hepatic blood
flow. Suppose that a change of hepatic blood flow F
is small enough not to change the distribution of
velocities v; in sinusoids, more exactly v; oc F for all
i. Then, for the average velocity (15) we also have
Uw o F. From the definitions of vectors h and b in
Section 4,

h—a(1—Lv) b=(1-Lv)e (9
U Vay

it is clear that they are independent of flow rate, as
V/v,, = diag(v:/v,,) does not change with F. It was
shown in Section 2 that T max;  k; oc N,., and with
N, unchanged and T'= L/v,, oc 1/F, we have for the
coeflicient of exchange k; oc F, and thus r; oc F, as we
expect k to be flow-independent. Using eqn (43) we
now obtain w oc 1/F, and for the dispersion
coefficient, defined in eqn (47), we have D oc F.
Equation (46) for the dispersion model is usually used
in dimensionless form:

2

% a(X,1) = —%/ co(X, 1) + DN(%_H co(X, 1)

—Ryco(x, 1), (59)
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where X = x/L, 1 =1t/T, Ry=k,T and the dimen-
sionless dispersion number (Roberts et al., 1988) is
given by

D

DN = LT‘JL

(60)
As we have D oc F and v, oc F, the dispersion
number Dy is flow-independent. This result is in
agreement with experimental data (Roberts et al.,
1990; Chou er al., 1993; Hussein et al., 1994,
Evans et al., 1993) and the theoretical result of
Bass et al. (1987), based on a comparison of the
distributed and the dispersion models. The outcome
of this analysis is an explicit definition of the
dispersion number in terms of micromixing through
interconnections between tubes. From eqns (47),
(60)

h-w'o,,
Dy = Ak (61)
Hence, Dy is a function of a number of parameters
including: (i) distributions of tube cross-sectional
areas and velocities in h, as in (58); (ii) distributions
of velocities and interconnections in w as in (43); (iii)
the average velocity in the organ wv,; (iv) the
parameter k characterizing strength of interconnec-
tions between tubes; (v) the total cross-sectional area
A of all tubes; and (vi) the length of tubes L.
Accordingly, we have now expressed in explicit form
the determinants for Dy which have previously been
ill-defined mathematically.

The reader may note that there are some similarities
in structure of our model and Taylor dispersion
processes in axial flow (Taylor, 1953). Indeed, if a
flow in a tube of circular cross-section is considered
as flow in n concentric annular shells, then diffusion
in the radial direction will produce exchange of solute
between neighbouring shells. Equations for concen-
tration in each shell will be similar to eqn (9) with
k. = 0. However, it is important to note that in this
case each shell will be connected to just two
neighbouring shells with closely similar values of
velocities, whereas in our model any one tube may be
connected to any number of other tubes with
arbitrary values of velocities.

It is hoped to test the model against experimental
data more fully in the future, in particular by
obtaining estimates of N,; from experimental data
such as that of Koo et al. (1975), and comparing
predicted and measured dispersion numbers. It is also
planned to investigate the predictions of the
interconnected-tubes model for steady-state exper-
iments.
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