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A completely algebraic and representation-independent solution is presented of the si-
multaneous eigenvalue problem for H, L2, and L,, where H is the Hamiltonian operator
for the three-dimensional, isotropic harnomic oscillator, and L is its angular momentum
vector. It is shown that H can be written in the form Aw(2v'v + A"-A + 3/2), where '
and v are raising and lowering (boson) operators for v'v, which has nonnegative integer
eigenvalues k; and A" and A are raising and lowering operators for AT.A, which has
nonnegative integer eigenvalues /, the total angular momentum quantum number. Thus
the eigenvalues of H appear in the familiar form fiw(2k + [ 4+ 3/2), previously obtained
only by working in the coordinate or momentum representation. The common €éigenvec-
tors are constructed by applying the operators v" and A' to a “vacuum” vector on which v
and A vanish. The Lie algebra so(2,1) @ s0(3,2) is shown to be a spectrum-generating
algebra for this problem. It is suggested that coherent angular momentum states can be
defined for the oscillator, as the eigenvectors of the lowering operators v and A. A brief
discussion is given of the classical counterparts of v, v', A, and A", in order to clarify their

physical interpretation.

1. INTRODUCTION

The eigenvalue problem for the three-dimensional, iso-
tropic harmonic oscillator Hamiltonian operator,

2
H= ;"ﬁ + }Mow?x? (1)

is often solved algebraically (see for example Stehle,! Sec. 8).
One introduces the boson creation and annihilation
operators

at = QM#w) ~ V¥ — ip + Mwx),
a = 2M#w) ~ *(ip + Mwx) )

which are Hermitian conjugate to each other, and which
satisfy the commutation relations

(a; a1 =0=[a],q]],

(3
l[a,,a]1=6,, ij=123.
Then one has
H = #w(N + 3/2), @
where
N=a'a=N, +N, +N,, %)

with, for example, N, = a{a,. The usual boson calculus
leads to the conclusion that the commuting operators N,
N,, and N,, have simultaneous eigenvalues n,, n,, and n;,
running over all nonnegative integers independently, so that
the eigenvalues of N appear in the form n, + n, + n;. The
corresponding normalized eigenvector may be denoted

|n,, n,, ny), and is nondegenerate. It may be obtained from
a normalized “vacuum vector” |0) as

Iny, ny,ny) = (ntnytny 1)~ V2(al )"(@})*(@)"|0), ©)
where

a,0) =0, i=123, )
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so that
N|O)=0=N,0), i=123. ®
The eigenvalue problem for H (equivalently, for N ) may
be solved also in an “angular momentum basis.” (See for
example Davydov,? Sec. 37.) One works in either the coordi-
nate or the momentum representation and looks for the com-
mon eigenfunctions of N, L?, and L,, where

L.' = %ﬁfuk ljk ’
ljk = (x;px — xip;)/# ®
= i(a;a}, —a,a)),
so that
(L., L] =ife y L, ,
(10)
f[gij’ ka ] = 5jklim + 6imzjk - 6£k1jm e 5jmlik .
The simultaneous eigenvalues are found to be
N:2k+1, L*:1(l+D#, L,:mh, (an
where &k and / run over the nonnegative integers indepen-
dently, and for a given /, m runs over /, / — 1,.-., — . The

corresponding normalized eigenfunction may be denoted
&.m and is nondegenerate.

In this paper we show how the simultaneous eigenvalue
problem for N, L?, and L, can be solved in a purely algebraic
way, with the introduction of operators which raise and low-
er the values of &, /, and m, rather than n,, n,, and n,. More
precisely we find that N can be written in the form [contrast
with Eq. (5)]

N=2ww+ATA, (12)
where v' and v are raising and lowering operators for v'v,
which has eigenvalues k; and A" and A are raising and lower-
ing operators for A*-A, which has eigenvalues /, the total an-
gular momentum quantum number. The normalized com-
mon eigenvectors, denoted |klm), are obtained by applying
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suitable combinations of the raising operators to a normal-
ized “vacuum vector” |0}, which satisfies

N{0) =L2(0) = L,|0) =0. (13)

[It is readily seen that this vector can be identified with the
vector defined by Egs. (7) or (8), hence the common nota-
tion.] In this approach, the fundamental dynamical variables
in the problem are v%, v, A", and A rather than a and a.

Of all the many investigations of the harmonic oscilla-
tor and related problems (for reviews and many references,
see Kramer and Moshinsky’ and McIntosh?*), the closest in
spirit to ours is that by Rose,® who examined the algebraic
structure of operators y7; satisfying

|k Im) = xii|0) .

However, Rose did not identify the elementary operators v,
v', A, and A" in terms of which the Hamiltonian operator and
all such y;; can be expressed [see our Egs. (12) and (53)], and
in terms of which the eigenvalue problem can be formulated
and solved completely.

The algebraic solution of this problem is of some intrin-
sic interest, being independent of the choice of a particular
representation space. Although one knows that any problem
in quantum mechanics can be formulated in a variety of
equivalent representations, and that the eigenvalues of any
particular operator are determined by the structure of the
relevant algebra of operators, rather than by the choice of
representation space, few problems have been analyzed com-
pletely in a representation-independent way. (For examples,
see the book of Green.® Of course, our constructions neces-
sarily also define in the coordinate representation, for exam-
ple, shift-operators associated with the differential operators
N, L? and L,. There is a point of contact here with the so-
called “factorization method.”” We note however that the
operator L which we introduce in the next section and which
plays a central role in our analysis, is an integral operator,
not a differential operator, in both the coordinate and the
momentum representation.)

Having an algebraic formulation, we readily identify a
hitherto unrecognized spectrum-generating algebra for this
problem, namely the Lie algebra so (2,1) @ so(3,2). Howev-
er, our motivation for this work is primarily to set up an
algebraic framework within which we can construct “coher-
ent angular momentum states” for the oscillator. The inves-
tigation of such states will be the subject of a subsequent
publication. They will be defined as common eigenvectors of
the lowering operators v and A, just as the usual coherent
states can be defined as common eigenvectors of the lower-
ing operators a. They have many interesting properties in
common with the usual coherent states, leading us to hope
that they also will prove useful. Further motivation for the
study of such states may be found in the work of Atkins and
Dobson,* and of Delbourgo,® where the idea of superposing
eigenvectors corresponding to all the possible values of the
total angular momentum quantum number of a system, to
form “coherent angular momentum states,” has been pro-
posed in a more general context.

In Sec. 2 we derive expressions for the operatorsv', v, AT
and A, and investigate some of their properties. Some proofs
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are relegated to Appendix A. The method used to determine
A" and A, in particular, depends heavily on techniques devel-
oped by Bracken and Green'’ for the analysis of vector oper-
ators. Indeed, the idea of constructing from the vector opera-
tors a’ and a other vector operators which form *‘creation
and annihilation operators for angular momentum” was
partly developed some years ago by them."

In Sec. 3, we present with the help of these operators the
solution of the common eigenvalue problem for N, L2, and
L,, relegating some proofs to Appendix B. Then in Sec. 4, we
discuss the time-dependence of these operators (in the Hei-
senberg picture) and the meaning of their classical
counterparts.

It is known'? that the Lie algebra sp(6, R ) is a relevant
spectrum-generating algebra for the oscillator Hamiltonian
when N, N,, and N, are to be diagonalized. In Sec. 5, we
show that the Lie algebra so(2, 1) @ so (3, 2) [=sp(2, R)

& sp(4, R )}isamore appropriate spectrum-generating alge-
bra when N, L?, and L, are to be diagonalized.

2. THE APPROPRIATE DYNAMICAL VARIABLES

In order to introduce the operators v', v, A*, and A with
the desirable properties described above, it is necessary in the
first place to define the operator L + 4, as the positive, sca-
lar, Hermitian square-root of the positive operator
30,1, + 3(=#%""L? + }), so that

L’=L(L+ D)#. (14)

It follows from the nonnegativity of L? that any of its eigen-
values can be written in the form / (/ + 1)#, with / nonnega-
tive. On the same eigenvector, the eigenvalue of L will then
be /. Of course, it will turn out that / runs over all the nonneg-
ative integers—but we deduce this, not assume it.

We define also the Hermitian operator

K=4N-1L), (15)

sothat N = 2K + L. Like all scalar operators, N (and hence
K') commutes with all /;;, and therefore with L.

However, the vector operator a (and likewise a™) can be
resolved into the sum of a vector operator which shifts the
eigenvalue of L up by one unit, and a vector operator which
shifts it down by one unit. This may be seen with the help of
the techniques developed by Bracken and Green'® as follows:
From Egs. (3) and the definition (9) of /, ; we have

€40l =0, (16)
or, equivalently,
aly +al; +al,=0. 17)

Contracting on the right with 4/,;, and using the commuta-
tion relations (10) and the definition of L, we find

al, by +ial, +a,L(L+1)=0, (18)
that is
0 =a[l; +iL+ DS 1 —iLd; ] (19)

=a; [Ifj - iL‘Sij ] [ljk + L+ l)‘sjk] .
We define the operators a‘*’ by
@ =a,[(L+18, +46,Fil;]2L +1] ' (20)
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(noting that [2L + 1] has a well-defined inverse, since L is
nonnegative). Then a' = is evidently a vector-operator so
that

e, 1) =008~ 8,01, )
and hence

[at*2, 4ty ] = 2iai Ly, — 207+ (22)
But, according to Egs. (19) and (20),

ia )l = a2 [§F L+ ). (23)

Combining Egs. (22) and (23), and using again the definition
of L, we have

[ LL+D]=—a*[1+£QL+ D], (29

or, equivalently,

LL+DaP=a D@L+ DHL+1+1). (25)
From the nonnegativty of L, it then follows that
La‘®’ =al* (L + 1), (26)

so that a' £’ is a vector shift-operator for L. We have from
Eq. (20) that

a:a(+)_+_a(~), (27)

which is the required resolution of a.
In the same way we find

al = a4 2t (28)
with
aj“i) =“:~r[(L + %)5:'1' + %‘SUZF”U][ZL +17

(29)
iaf VL, =a'®[§F (L + Y],
and
Lal(¥) = gt(£ )(L + 1) . (30)
In Appendix A we prove that
[a¢£)]" = a%™. 31
Now
Na=aN-1), (32)

and since N commutes with /,; and L, it follows from the
definition (20) that

Na‘®) =a (N —1). (33)
It then follows from Eq. (26) and the definition (15) of X,
that

[K) a( B )] =0 [}

(34

Katt) =a (K —-1).
In a similar way [or by conjugation of Eqgs. (34)] we deduce
that

[K’a+(+)] ZO’
(3%
Ka*(f)za“')(K-{— 1) .

1t is easily seen from Egs. (3) that
N(aa) = (a-a) (N —2), (36)

and that (a-a), being a scalar, commutes with L. Hence, using
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Eq. (15) we have

K(aa)=(aa)(K—1), (37a)
and, by a similar argument
K@ah=@ahK+1). (37b)

It now follows that a‘*’ and a' " ’(a-a) have the same shift-
ing properties for N, K, and L, so it is not surprising to find
that (see Appendix A for proofs)

A =a"@a) QK + 2L + 1), (38a)
and similarly
at ) —al@'a") QK +2L +3) . (38b)

We therefore isolate as fundamental the operator a™
and its conjugatea’ —’, which are raising and lowering opera-
tors for L, but which commute with K; and the operators
(a*-a") and (a-a), which are raising and lowering operators
for K but which commute with L.

[The operators a‘ *’ and a' ~’ are relegated to a secondary
position, and they may be regarded as defined by Eqgs. (38).]

However, the operators A, v, and their conjugates A, v',

defined by

A=a""f(K,L)= f(KL+ 1a' ",

A= f(KL)a" " =a"" f(K,.L+1),

(39)

v=(aa)g(K,L)=¢K + 1L)(aa),

v =g(K,L)(@"a") = @"a"g& + L),
may equally well be regarded as fundamental, for any rea-
sonable Hermitian operator functions fand g. They evident-
ly have the same shifting properties for K and L as havea‘ —’,
a'*’, (a-a), and (a'-a"), respectively, viz

LA=ML—-1), LA"=AL+1),

[Lyv]=0=[Ly'],

(40)
Kv=v(K—-1), Kv=+vIK+1),
[KA]l=0=[KA'].
Furthermore, for any f we have (see Appendix A)
[4,4;1=0= (21,471,
“n
AA=0=AMAT,
Ay =A(L+1),
(42)
——i/lllk, =ATL >
and also
iAo 11 =840 — 8ud;
(43)

AL L 1=6,A1 — Suhl.

We choose the functions f and g so that, in addition to
Eqs. (40), (41), (42), and (43), the operators A, A", v, and '
have other simple algebraic properties, which make them
most useful for the solution of the problem at hand (and for
the construction of coherent states-see the comments at the
end of Sec. 5). Noting that 2K + 2L + 1(=2N + L + 1)is
positive definite, and so has well-defined negative powers,
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we take

f=1QL + 1)/QK +2L + 1)}'?,
(44)
g=(@K+4L+2) "7,

and find (see Appendix A)
v,v'l=1,
[A,v]=0=[1],+"],

(45)
[/{i’ V+] =0= [’1 ;(, V] 3

QANA + 1)[/1,., /lf] = (Q2ANA + )8,
and also

K=+,

— 2174,

i‘vi

L =A%,
(46)

i, =414, — A4, .

The definition of the operators A, A, v, and v' in terms
of a and a', as presented above, is rather complicated. How-
ever one may choose to regard them, rather than a and af, as
the basic variables. Then Eqgs. (15) and (46) become defini-
tions of ¥, K, L, and [, and it can be shown that all relations
in the algebra, such as those in Egs. (40), (42), and (43),
follow from Eqgs. (41) and (45). In particular, a and a*, which
from this point of view have the complicated definitions

a=A[QK + 2L + 1)/QL + )] + AW[2/QL + 3)]"2,
@7
2’ = A[Q2K + 2L + 3)/QL + 3)]'”?
+ MH2/QL + D12,

can be shown to satisfy the boson commutation relations (3).

The commutation relations satisfied by A and A" as giv-
en in Egs. (41) and (45) make these operators more difficult
to manipulate than the boson operators v and v'. However,
the last of Eqs. (45), although complicated in appearance,
has an important property in common with boson commuta-
tion relations: It does permit an annihilation operator 4, to
be shuffled through a product of creation operators A | act-
ing on a “vacuum” vector, with the accumulation of terms
which are free of annihilation operators. Using these opera-
tors we are able to solve the common eigenvalue problem for
K, L,an L, in a manner quite similar to that usually adopted
for ¥, N,, and N,.

The algebraic relations satisfied by the operators A and
A' as listed above, are the same as those satisfied by the
“modified boson operators” introduced in a quite different
context by Lohe and Hurst.”> Accordingly the algebraic
structure of the eigenvectors |k / m) defined in the next sec-
tion, in so far as it involves the variables A", is essentially the
same as the structure of the vectors Iﬁ,, ) of Ref. 13.

However, there is an important difference between the
two sets of operators (apart from the fact that no analogs of v
and v' appear in the work of Lohe and Hurst). The operators
A and A' have been defined in terms of boson operators a and
a' and act in the same space as those operators. While this
space can be taken to be that of the usual coordinate repre-
sentation of quantum mechanics, A and A" have been defined
in a representation-independent way, and are perhaps best
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thought of as acting in an abstract Hilbert space, not tied to
any particular representation. In contrast, the operators of
Lohe and Hurst are defined by modifying not only a set of
boson operators a and a', but also the particular space in
which they are taken to act. As a result, their modified boson
operators are only defined in a space of harmonic functions
of three variables. The reason that they satisfy the same alge-
braic relations as A and A" may be traced to the fact that
equivalent representations of the Lie algebra so(3,2) underly
the two structures. In our case this so(3,2) is a subalgebra of a
spectrum-generating algebra for the oscillator (Sec. 5),
whereas in the case of Lohe and Hurst, though not metioned
by them, it arises as a well-known invariance algebra of La-
place’s equation in three dimensions.

3. SOLUTION OF THE EIGENVALUE PROBLEM

Since K and L cannot have negative eigenvalues, we see
at once that there must be a vector on which the lowering
operators A and v vanish. Thus we assert the existence of a
normalized vector |0) such that

vi0) =0=4,0), i=123. (48)
Since K =v'v, L=A4"A,andil,; =A A, — A4, , we have
K|0)=L|0)=N|0)=0,
(49)
;00 =0=L,[0), ij=123.
The other common eigenvectors of X, L, and L, can

now be built up by applying the raising operators v and A’ to
this “vacuum” vector. We define

A, =@ tidy), A =@1+£id)), (50)
so that
LA, =4, (L, £%),
(51
LiAT, =AT. (L, +4%).
Now let k, 7, and s run over the nonnegative integers inde-

pendently and let € denote either + or — . Thenitis evident
that on the vector

(CONCINICRIIION (52)

K, L, and L, have the eigenvalues k, r + s, and erf;, respec-
tively. Setting / equal to r + 5, and m equal to er, we write

[k Im) = e, @Y A DMATY ]0) (53)

as the normalized common eigenvector of these operators,
corresponding to the eigenvalues &, /, and m#i. (We postpone
for the moment discussion of the values of the normalization
constants c,,,, .) Here k and / run over the nonnegative inte-
gers independently, while for a given value of /, m runs over J,
I —1,..., — [, and € is the sign of m. It is easily shown that for
fixed k and /, the 2/ +1 vectors |k ! m) form the basis for an
irreducible representation of the Lie algebra so(3) spanned
by the operators /;; of Eqgs. (46) (cf Ref. 13). [Alternatively
one can consider for any fixed k, the vectors

|k;aB,..., 7y = (WYALAL..AT|0), (54)
where the subscripts a, £, ..., 7 are / in number, and run over
1, 2, 3 independently. These vectors form a rank-/ tensor ba-
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sis for this representation of so(3). Note that in view of Egs.
(41), this tensor is automatically symmetric and traceless.]

For completeness, it is necessary to show that the vec-
tors |k I m) are, up to multiplication by constants, the only
common eigenvectors of K, L, L, which one can construct
by applying to |0) any operator in the algebra generated by
v, v!, A, and A'. To do that, it suffices to show that the sub-
space of all finite linear. combinations of the vectors |k [ m) is
invariant under the action of v, v, 4;,A{,4 , ,and A", ;and
this is true, for we see in Egs. (59) below that when any of
these operators is applied to any |k [ m), a constant multiple
of another such eigenvector is produced.

Turning to the calculation of the normalization con-
stant ¢, ,,, in Egs. (53), we see at once that

(<klmlklm) = k!|cy.|*(O|(4,) ~ ™
XA _ MA@ oy . (55)

Using the last of the relations (45), it is straightforward to
show by induction that

AALAFA LA LAT(0)
={BuA AT ATAL 4 8,A A AT AT 4
2
@/ —1)
+ aa‘yl{ E"‘A’ 2/1 11‘ + o + 6071 Bi 1?—’"%' ;
+ 8 Al ALAT 4+ 8 A LA LA
+ o+ 8, A LA FAL-)HO) (56)

where [ is the number of creation operators A [, 4}, -, A 1.
With the help of this result, we are able to show (see Appen-
dix B) that

8, ALALALAT)

Af@Buph A At

k! 20 — m! !
Q)
so that |k / m) as defined in Eq. (53) is normalized if we take
(with a convenient choice of phases)

20) 172
um = (= e)m(ku !(i—(m)!)(l N m)!2*') S
It is then found that (see Appendix B)
vik Im) = (k)"* |k —11m),
Vikim) =(k+1)"7?k+11m),
AtlkIm) = ((’“L ! '(’2’;)+(’1“)L ! +”’))’”|k1+1m>,
Uim+DUim+0y”

QI+ 1)
Xkl+1m+1),

o (1)

X|kl—1m+1). (59)

We close this section by remarking that we have chosen
phases in Eq. (58) in such a way that the vector |k I m) ap-

At |k Im) = x(
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pears in the coordinate representation as

— k 2a°k ! V2 —ame?
Bum = (=1) (r(k+1+3/2)) be
XLEYYP(ENY,,(0.4),
where a = (Mw/#)'?, £ = ar (.6 and ¢ are the usual spheri-
cal polar coordinates), L { *'/? is the generalized Laguerre
polynomial, defined as in Ref. 14, and the spherical harmon-
ic Y, is defined as in Ref. 15.

4. TIME-DEPENDENCE AND INTERPRETATION

In the Heisenberg picture, the time-dependence of an
observable 4 (or of any complex linear combination A4 of

observables) is determined by
# _4H].

Now the operators v, v/, A, and A" are shift-operators for H,
allowing us to deduce at once that

dv av'

== = 2iwv, — =2iov',
dt dt
(60)
ﬂ=—ia)k, ﬂ=ia)}»’°.
dt dt
Thus
Y= 'Voe ~ it , ‘VT — Vz;e?.icut ,
(61)
}\'zloe—i«)t’ A'Tz}\'z’)eiwr,

where the (constant) operators v,, v§, Ay, and A, satisfy the
same algebraic relations as v, v, A, and A",

We gain some insight into the physical interpretation of
these variables by considering their classical counterparts.
Denoting the classical coordinate and momentum vectors by
% and jp respectively and the classical Hamiltonian by H, we
define

i = (2Mw) " '*(p + Mwi), 62)

and its complex conjugate a*. [Note the extra factor of (#)'/?
in comparison with Eq. (2).] Then

H=oi*4. (63)
Introducing the classical angular momentum vector
L=%Xp, (64)

with length L, we define
E= L ). (65)
20
In the definitions of v, v!, A and AT above, we let #—0, with
H—sH and
(ﬁ "Za—>ﬁ , (ﬁ)l/ZaT_)ﬁt ,
#il, € 3 Ly s (66)
#L—L s #K—K ,

in order to obtain the classical variables corresponding to v
and A,

v =y@d)K+L) "
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_ (I€+£)—‘/2

[(M 2(02i2
4Mw

— §) + iQMo%-p)],

(67)
A =L&+L))*(La + iLxd)

= [8MwL (K + L)] ~ ' [(MwL% — LXp)
+i(Lp + Mol x3)] ,

and their complex conjugates v* and A*, which correspond
to v and A". Apart from the overall factors involving the
constants of the motion K and L, these expressions are rea-
sonably simple. It is straightforward to verify in particular
that

A ,
H = 0@9*5 + A*.h) (68)

and also that the time-dependence of the classical variables is
the same as that of their counterparts, as in Egs. (61). .

From the relations (68), it can be seen thatif & and B_
denote the real and imaginary parts of (v/2)A, then G and
are orthogonal, and of the same length (£ )!2. From the last
three of the relations (68), we see then that e = aL)-2,
f=BL) ", andg= (L) 'forma right-handed system
of orthogonal unit vectors, of which the first two are time-
dependent.

Classically, the motion is elliptical, in the plar}e perpen-
dicular toL, i.e., in the plane determined by & and 8. For any
particular motion we can choose time-origin and space-axes
such that the motion is anticlockwise in the X ¥-plane, with

& = (A4 coswt, Bsinwt,0), A>B>0.

Then
p = Mw( — A4 sinwt, B coswt, 0) ,
L =Mw(0,0,4B), L= MwAB,
] = Mw*(4%+ B, K=IMw(—B),
$ =1V Mo —Ble— % =V E ¢—2 (69)

A=VModBe-'(1,i,00=V iL e=(1,i,0),
e = (coswt, sinwt, 0),
g= (0’ O’ 1) .

The periodic variables A and A* have angular frequency w,
the natural frequency of the oscillator, but ¢ and ©#* have
angular frequency 2w. This is at first glance rather puzzling,
but we can understand it as follows, and perhaps at the same
time appreciate the geometrical significance of all these
variables.

The elliptical motion can be regarded as arising from
the superposition of two uniform circular motions, with an-
gular frequencies 2w and o, respectively. In the particular
coordinate system adopted above,

f = (— sinwt, cos wt, 0) ,

X =(A coswt, B sinwt, 0)
=44 + B)e + 3(4 — B) (cos2wte — sin2wt f) . (70)

Thus the particle can be regarded as moving uniformly
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clockwise, with angular frequency 2w, in a circle which is
fixed relative to the vectors e and f and has radius (4 — B).
This circle (epicycle) itself rotates anticlockwise (along with
e and f) about an exterior point 0, so that its center moves
uniformly, with angular frequency w, around the circumfer-
ence ofalarger circle (deferent) of radius 4(4 + B), centered
at 0. The point O is the center of the resultant anticlockwise
elliptical motion. (See Fig. 1.) X .

The relevance of the variables ¥, ¥*, A, and A* to this
decomposition of the motion can be appreciated when one
notes that Eq. (70) is [in the particular coordinate system of
Eqgs. (69)] just the real part of the formula

a=[(K+LYL)" A+ [L]-"%h* an
which is the classical equivalent of the first of Eqs. 7).

The resolution of the harmonic motion into two circu-
lar motions can also be seen and understood in the following
way. The equation of motion for the oscillator is

d %

m

dt’

Since the force on the particle is central, the motion isina
fixed plane perpendicular to the angular momentum L. We
make a change of reference frame, to the frame rotating anti-
clockwise, with angular frequency w, about a unit vector n
which passes through the origin and which is parallel to I.. In
the rotating frame, the equation of motion for the particle at
ris

d T

dt
with @ = wn. Here the second term is the Coriolis “force,”
and the third is the centrifugal “force” on the particle

Now o X (0 Xr) = — o,
since o is orthogonal to £, and hence tor. Thus in this frame
the centrifugal force exactly cancels the true force, and the
particle moves under the Coriolis force alone, with

= —mo’k. (72)

= ——m(ozr—me)(%—mmx(er), 73)

dr dr
— = 20X — 74
% X (74
Then
dr dr
dr? dr?
dr
= =2 ( 20 —)
oX X i
dr
= —4p*—. 75
@ dt (75}
Integrating once we have
d’R
— = —40°R, 76
e (76)
where R = r —r,,, with ry an arbitrary constant vector,

which must be orthogonal to e in view of Eq. (74).

We see that in this rotating frame the motion is harmon-
ic with angular frequency 2w, about an arbitrary fixed point
r, in the plane of the motion. That this motion must actually
be circular (it is the motion around the smaller circle in Fig.
1.) follows from the fact that we also have, from Eq. (74)
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d’R dR
= —2(1) —_—, 77
dt? X dt an
so that
_40R= —20x R . (78)
dt

implying that R-(d R/dt ) = 0. and hence that R?is constant.
We also note from Eq. (78) that

dR 1 ( dR) dR
padi jadininll BV i 79
X~ s loX = )X (79

dt
1 (d R)Z
— — m s
2% \ dt

so that the circular motion is in the opposite sense to @, i.e., it
is clockwise about an axis which passes through R = 0 and
which is parallel to n.

5. ANEW SPECTRUM-GENERATING ALGEBRA FOR
THE OSCILLATOR

For the treatment of the common eigenvalue problem
for the operators V|, N,, and N,, a spectrum-generating
(Lie) algebra is the 21-dimensional Lie algebra sp(6,R ), with
Hermitian basis

tahy tot
(a,a; + ala;), i(a;a; —aja)),

(80)
(ala; +a,a)), i(ala; —afa;).
The vectors [n,, n,, 1y ) with odd (#, + n, + n;) span one
irreducible representation of this algebra, and those with
even (n, + n, + n,) span another.'
For the common eigenvalue problem for N, L?, and L,
another Lie algebra is more relevant. Define the Hermitian

2176 J. Math. Phys., Vol. 21, No. 8, August 1980

FIG. 1. Resolution of elliptical motion
into two circular motions. The particle,
whose position is marked X, rotates
clockwise with angular frequency 2w
around the smaller circle, whose center
moves anticlockwise with angular fre-
quency o around the larger circle. Posi-
tions are shown at (1) wt = 0; (2)

ot =1/4;, (3) ot = 1/2; (4) wt = 37/4.

operators

A=QL+1D)VA=A2L —1)'7,

C2Y)
A'=AQL +1)2 = QL - 1)l

and note that, as well as commuting with v and v!, and hav-
ing the same shifting properties for L as A and A', they satisfy

[4.,4,]=0= [A IsA;T]’
[4,A]]1=CL+ DS, 2,
AA =0=A%AT,
ACA=LQ2L-1),

A,TAj —AJTA[ =il ;2L —1).

(82)

The proof of the results (82) is elementary, with the use of
Eqgs. (41), (45), and (46).
Now define

A, =3owv+ Y, 4, =L —vIVh,
A; =30+ D),

B, =3, +A])= —~B,,

B, = li(A,. —A :r) = —B;,

B, =1 By, =(L+3 = —B,s.

It is easily checked that these operators span an Hermitian
representation of the Lie algebra so(2,1) & s0(3,2)
[~sp(2,R ) & sp(4,R )], withtheonly nontrivial commutation
relations being

(83)

i ijo

[4,.4,]1= —ids, [4,,45])=i4,, [4;,4,]1=i4,,
(84)
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i[Bw" Bpo ] = g"thw + gI‘UB"P - g#vao - gvaB#P ’
where u, v, p, and o run over 1,2,3,4,5, and the metric tensor
8, is diagonal, withg,; =83 =g53 = —&u = —&ss
=1
The quadratic invariant of the so(2,1) algebra has the
value
) + (4, — A, = 4.
There are two irreducible Hermitian representations of
s0(2,1), labelled 2+ ’( — 1/4) and 2+ ’( — 3/4) by Barut
and Fronsdal,'® for which the invariant has this value, and in
which the spectrum of 4, is bounded below (as it evidently is
in the present situation). In the representation ‘
D+ — 1/4), A, has eigenvalues 1/4, 5/4,9/4, ...; and in
the representation &+ ( — 3/4)it has eigenvalues 3/4, 7/4,
11/4, ---. It can be seen that representations of both types are
involved in the problem under discussion—the former asso-
ciated with even-integral eigenvalues of K ( = v'v), the latter
with odd-integral eigenvalues.

(85)

A simple calculation shows that the quadratic invariant
of the so(3,2) algebra has the value

1 —
iB, B = —3.

Moreover, the two invariants of the so(3,1) subalgebra
spanned by the B,; and B,;, have the values

%BijBij - B4iB4i = - % ’

(86)

(87)
%eijkBijB‘tk =0,

indicating that any irreducible representation of so(3,2)
which appears here, remains irreducible when restricted to
the s0(3,1) subalgebra. In the commonly used?’ [k, c] label-
ling of the irreducible representation of so(3,1), these two
invariants have values (k5 + ¢? — 1) and ik,c, respectively.
Thus the irreducible representations of so(3,1) appearing
here can only be [4, 0] or [0, 1]; and since the eigenvalues of
B,, are integral, only the representation [0, 4] can be in-
volved. It is known (see for example B6hm,'*) that this repre-
sentation of so(3,1) extends to either of two irreducible Her-
mitian representations (two of the four Majorana rep-
resentations) of so(3,2), each consistent with Eq. (86). Butin
only one of these—let us call it .7 —is the spectrum of B,
bounded below, as it evidently is in the present situation. In
this representation .7, Bs, has eigenvalues 1/2, 3/2, 5/2.-..

The representation of s0(2,1) & so(3,2) associated with
the harmonic oscillator in an angular momentum basis can
now be identified, in view of the nondegeneracy of the eigen-
vectors |k I m), as simply

(2= 1/8), 7)o (D H)(—3/4),T). (88)
The Hamiltonian operator appears in the form
H = #iw(44; + By,), (89)

and its eigenvalues are immediately deducible from the
known spectra of 4, in the representations Z¢*)( — 1/4),
P )(—3/4), and of B, in 7.

The reader may wonder why we did not, in Sec. 2,
choose to work with the operators A and AT rather than A
and A". A simple change of the function fin Egs. (44) {to
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SK,L)=[(4L*> — 1)/(2K + 2L + 1)]""?} would have ac-
complished such a substitution. The commutation relations
satisfied by A and A" are simpler than those satisfied by A
and A%, and the connection with the spectrum-generating
algebra is more immediate. For these reasons it may be ar-
gued that the operators A and A" are more suitable for the
algebraic treatment of the eigenvalue problem.

Our preference for the operators A and A" is mainly
determined by our intention to define in a subsequent publi-
cation, “‘coherent angular momentum states” for the oscilla-
tor as eigenvectors of the lowering operators. The expecta-
tion values of the important operators H, K, L, and /,; will be
very simple in such states, if we diagonalize the operators A
and v, because

K=vv, L=AA, il ;=414 —414,. (90)

On the other hand, if we diagonalize the operators A, we
shall need to work with the expressions

L=l+%(1+84*.4)‘/2,

on
il,=QL—1)""AJA, —A'A),

whose expectation values will not be simple.
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APPENDIX A

Here and in Appendix B we present the derivations of
some of the results stated above. The ends of proofs are indi-
cated thus: a

From the definition of a'*’ in the first of Egs. (29), it
follows that

(aJT(+))T=(2L+ 1)—1[(L+ 1)5,-j +l'1,-j]a,, . (A1)
Using Eqs. (21) and then Eqs. (23) we see that
l'l,-jagi) — jagd:)lij _ 20](:,:)
= —d®[32+L+Y]. (A2)

Now using Eq. (27) in Eq. (A1), we have
(ajT(+))‘r =L + 1)_1(L+ 1) (aj('+)+aj(7))
+Q@L+1)" I(ilfjag AR ilijag )
=QL+ 1) '[a L +2)+da"L

—a (L +2)+a (L -1)
[using Eq. (A2)]
=QL+1)"'a{’QL - 1)
[using Eq. (26)].
Inasimilar way we show that (a' =)' = a‘*’, so completing
the verification of Egs. (31). |
From the definition in Eqs. (20) we have that
a@)QL+ 1) =a,L +ia,l,;
=aq,L —a,(a,a] — a,a]

— (=)
=a;

[using Eq. (9],
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= —aj@a) +a,(N+L+1)

[using Egs. (3)]. (A3)
Similarly, we find
g (2L +1) = aj(aa) —a,(N - L),
a QL +1) = a(a™a") —af(N — L +2), (A4)

af QL +1)= —a @) +a/(N+L+3).

It is easily deduced from the definitions (9) and the rela-
tions (3) that

%lijlij =N*+N-— (af'a*) (a-a)
=N?4+5N+6—(aa)(a™ah).
Since 4/;,/;; = L (L +1), it follows that

(ava) (@ a) =W —L +2) N+ L +3),
(AS5)
(@ a) @a) =WV —LYW+L+1).

Multiplying on the right by (a™-a’) in Eq. (A3), we get
al (a"a") 2L +1)

= —al(aa) (@"a") + g, (N + L +1) (a™a")

= —af(N—L+2)(N+L+3)+ a(a™a’)

XN + L + 3) [using Egs. (AS5) and (3)]

=al' QL +1) (N + L + 3) [using Egs. (A4)].
Thus

al™ )(a’r.a\‘) = gt~ )(N+ L+3),
and in a similar way we show that

2’ (aa) = a DN + L +1),

establishing Egs. (38). O
Consider the product 4,4;, with A having the general
form given in Egs. (39):

AA; =al f(K,L)al 7 f(K,L)
= fKL+1D)fKL+2)a al.
From Eq. (A3) we have (recalling that N=2K + L)
al QL +1al QL +1)
=[—al(aa)+a,2K +2L +1) Ja{ QL +1)
= —aj(a:a)al QL +1) + a;al QL +1)
X (2K +2L —1) [using Egs. (26) and (34)]
= —al(aa)[ — af(aa) + ;K +2L +1) ]
+a,[ —dl(aa) + a,2K +2L +1) ]
X (2K 4 2L —1) [using Eq. (A3) again]
= alaf(a-a)* + a,a;2K +2L +1) 2K +2L — 1)

— (dla; + a,a)) (a-a) QK +2L —1)
fusing Egs. (3)]. (A7)

The right-hand side of this equation is symmetric in i and j.
Thus

&l OQL + 1)a$ QL + 1) =a§ QL + 1)a{ QL + 1),
that is,

QL +3) QL +5)[di ", ai’] =0,
which implies that [a{~, a{ =] = 0. It follows at once from

(A6)
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Eq. (A6) that [4,, 4;] = 0; and in a similar way we deduce

that [A],A]]=0.
We see also from Eq. (A7) that

QL +3)(2L +5)a‘a ™’
=@Ma)@a)y+@aWV+L+DHWN+L-1)

—(2N+3)(aa)(V+L —1)
=[(N-—LYWN+L+1)+N+L+3)
X(N+L+1)—-QN+3)NV+L+1) (ara)

=0.

Thus a‘~+a‘~’ = 0, and it follows from Eq. (A6) that

A+A = 0. In a similar way, we deduce that A+AT = 0.
Equations (41) have now been confirmed. Their valid-

ity can be seen also from more general arguments. Since A

shifts the value of L down by one unit, the vector operator
6, = €; ik [ij'ik ]

shifts the value of L down by two units. But a vector operator

can only have components which commute with L, or shift

its value up or down by one unit. Thus 8, and hence [4,, 4, ]

must vanish. Similarly, the scalar A+A shifts the value of L

down by two units. But a scalar operator commutes with L;

and therefore A<A = 0. O
Equations (42) follow trivially from Egs. (23) and (29),

since f(K,L )isascalar operator, commuting withthe/,;; and

Egs. (43) follow at once from the fact that A and A" are vector

operators by the manner of their construction. g
Consider now

w' = (a-a)g’(K, L) (a'a")
= (a-a) (a™aNg*(K +1,L)
=2K+1D)QRK+2L+3)g(K+1,L)
[using Egs. (15) and (AS)].
Similarly we find
vy = (a*a') (a-a)g* (K, L)
=2KQK+2L+1)g (K, L).
With g as in Egs. (44), these two equations reduce to
wh=K+1, vv=K,
establishing the first of Egs. (45) and the first of Egs. (46). O
Next consider the products
Av =a 7 f(K, L) (aa)gK, L)
=a/ @a)fK—-1, LK L),
vA; = (a-a)g(K, L)al " f(K,L)
= (a-a)a{ 8K, L —1)f(K,L)
=a{ Na-a)g(K,L —1)f(K,L)
[using Egs. (3) and (20)] .
With fand g as in Eqgs. (44) we have

gk, L-1)f(K,L)= f(K—1,L)gK L)

and it then follows that [4,, v] = 0. Taking the Hermitian
conjugate of this equation, we deduce that [1 ], v'] = 0,and
the second set of Egs. (45) is verified. O
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Consider next the products
AVt =a 7 fK, L)@ aNg& +1,L)
=aYata") f(K+1,L)gK +1,L),
vid, =@l g(K+1,L -1 f(K, L)
= [a{~a™a") — 24} Jg(K +1,L —1)
X f(K,L) [using Egs. (3) and (20)],
= [a{~a"a") —2a{~@"a") 2K +2L +3) ~']
xgK+1,L-1)f(K,L) [using Eq. (38b)].
Thus
[Aisv'] =da! (a%a) QK +2L +3) !
X[QRK+2L +3)gK+1,LYf(K+1,L)
—QK+2L+1)gK+1,L-1)f(K,L) ]
=0 (A8)
because of the form of fand g in Egs. (44). Taking the Hermi-

tian conjugate of Eq. (A8) we deduce also that [ ], v] =0,
so that the third set of Eqs. (45) is confirmed. ]

Now consider the product
A2 = fK,L)alVa{ f(K,L)

=al'""QL + l)a}_)fz(K,L)(ZL -1 !

=[—a;@"a)+alW+L+3) lai ™
X YK, LYQRL -1) ! [using Egs. (A4)]

=[—a,a™aNa{ 2L +1) + alai (2L +1)
XN+L+D]IfAK L)AL —1) !

={—a@" )] —df@a) +a,NV+L+1)]
+af[—df@a) +a(N+ L+ 1)}V +L+1))
X fAK,L)(4L*—1) "' [using Eq. (A3)]

= {a,a](a"a") (a-a) — a,q;(a™aY W+ L +1)
+2a,a{(N+ L +1) — ala(aa) (N + L +1)
+ala,(N+L+1)?) fAK,L)(4L: —1) "

= {20,6}(K +1) + ala,2K +2L + 1)
—a,0,(a™a") — afal(a-a))

X UK, LYK +2L +1) 4L2 —~1) ! (A9)
[using Eqs. (A5) and (15)].

In a similar way, we show that

AA] = {2ala,K + a,a]2K +2L + 3) — a,a,(a™a")
— alal(a-a)}f*(K, L +1) 2K +2L +3)
XQL+1D)'@L+3) . (A10)

It follows from Eqs. (A9) and (AS5) that
AYA = {2QK+L+3) (K + D+QRK+L)
XQ2K+2L +1) —2(K +1) 2K +2L +3)
—2K (2K +2L + 1)} _
XK, LYK +2L +1) 4L% — H-!
=LfYK, LYK +2L +1) QL +1)"".
Thus A™A = L for the choice of fin Egs. (44), verifying the

second of Eqs. (46). ]
It can also be seen from Eqs. (A9) that

ATA; —AJA, = (2a,af ~a;a}) (K +1)
+ (ala; — afa;) QK +2L + 1)}
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X fAK,L)Y (2K +2L +1)
X@L*—1) !
=il fAK,LYRK+2L+1) QL+ 1!,
so that, again with fas in Eqs. (44), we confirm the last of
Egs. (46). _ a
From Egs. (A9) and (A 10), we see that with this choice
of f,
CL+D[A,A]]+2 14
=QL+1DAA - (L - DAJA, +2(4 14 —AJA)
=2a]a;K + a,a](2K +2L +3) — a,a;(a™a")
—alal(a-a) — 2a,a/(K + 1) — a}a,2K +2L +1)
+ a;a,(a%a") + alal(a-a) + 2il;
= —2a;af —2K5, +2a,a
+6,QK+2L +1)+2i
=Q2L+1)s,,
thus confirming the last of Eqs. (45). ]

APPENDIX B

In order to derive Eq. (57) from Eq. (55), it is necessary
to calculate the effect of 4 __ on the vector

@hH™@ty -'moy.
We note that
A_ AL =@, —ied,) AT +iedl)

=AM - A4 +ie(l A — 4,4 0).

It follows from Egs. (45) and (46) that

MM =QL+)L+1) QL+ !,

LAY —AAl = —iQL+3) 2L +1) 7',
so that
A_Al=L+1+€el,)QL+3)QL+1) "' — 4,41,

_ (B1)
We now see that if [m|>1 (which requires /> 1),
A_ QDM@ "0)
=(+|m -DQ@+1 @-1)""
XAD™ ALY =0y — 4, @ D~
X@3'-m+o). (B2)

Working from Eq. (56), we deduce that if , 5, and ¢ are
nonnegative integers, then

AATYAAL)|0)
=[2r+s+0)—1]1""{e@+2r+25) AIYAL)y
XA ™' —rnr - @y 2@Ayaty
—sG6—1D ARy AL o). (B3)
Now
@nmay-mjoy = 3" _Imit__

o r(lm| -
XA YA D)™ =@ 1)~ o),
(B4)
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-and so

A A DALY o)
= -1 i |m]! 2 2 r
=@ =1 r;o m{(l —m)(A 1)

X(ed D" @AY - 1) @1y
X (ied )™= @Y 4 (| — 7
X(Im| —r—1) Ay @A) 2
X@AD o)
= (= m) QL= 1) "' @D"ALy
1 [m] ml! .2
—GI=DT S, (r—2)1(|n|1| o 4D
X(iel;r)!m\—ra;)l‘lmul
!
=Dy r!(|m||Tlr"—2)!
XA @A™ 2@ 1)~ "+ 1110)
=P —m) @ -1 'AH"AH "0y, (BS)
since the two sums cancel.

Combining this result with Eq. (Bz,, we see that if
im|>1,

A_ @ADLy Im0)
=[(+|m =)@+ @ =1) "' —(—|m| +1)
XU+ [m]+1) 2 =1 ' JA D™ @A )=o)
=(+|mD U+ ml —1) @ ~1) "
XA D™ AL o) .
It follows that, if |m|>1,
(0](A;) ™A _ )™'(A DA 1)~ '"|0)
=+ |m) U+ |m| —1) 2 —1) " '(O0](A;3)' ™
XA _ @D @A L o)
It —2i+ |m|)({ -2+ |m| —1
=[ ,t[o <( +|(2P—(2i—1;L| | ))]
X {0[(A3)' ™A Y~ ™0y .
We see from Eq. (B3) that
A @A TIM0Yy = (20— [m[) =11 7' — |m|)
X@A D ~m=to),

|m| —2

(B6)

(B7)

so that
O[(A;) A1)y ~ o)
=[2(0—|m| =] ' - |m|)
XA(0|(A;) ~ ™ @A DY - = o)

- (s oo

We now combine Eqgs. (B7) and (B8) to obtain (for |m|>1)
O(A;) ~ (A _ )@ YA 1y~ ™ [0)

(B8)

(B9)
_ 2N+ |mhid — |m))!
B Q) '
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It is seen from Eq. (B8) that this result is valid also if m = 0.

Combining Egs. (B9) and (55), we obtain Eq. (57). 0
The first two of Egs. (59) are well known in the boson

calculus, and require no derivation here. Consider

ALk Im) = Alcy, @D @A DM@ ~"0)

= K ki+1m)

Critim
— 172
_ ((l+1 m)(l+1+m))/ k14 1m),
QI+
verifying the third of Egs. (59). O
Next consider, for m=40,

AlkIm) =247y, WY @AD™AT~™0)

¢
=$—|k I+1 m+e)

Ciltim+e
- (—o (Ltlml+ D i+ D)2
@+
Xlki+1l m+e).
From this equation we have
i imy = (CEMEDUEmeD Yo

Ql+1)
Xlkl+1 m+1), for m>0,

(B10)

At kim) = +[(1—m+2)(1—m+1) ]wz

QI+1
Xlkl+1m—1), for m<0.

Now consider, also for m =0,
AtV kIm)y =47 ¢, WD @A D™AT ~™0)
AT A D, O A D™ 1AL ™|0)
= — A D N @AD" ALY - "0)
[using the last of Egs. (41)]

fI

- k4t m—e)

Crlyim—e

=_(_@{a—wﬂ+aa—MA+nyﬂ
QI+

Xk l+1 m—e).
From this equation we have

2 etmy = — (LMD Cem D )
N QI+
Xk 1+1 m+1), for m<O,

(B11)
— —_ 172
At lkIm) z((l m+2y(l—m+1) )
2I+1)
Xk l+1 m—1), for m>0.
Next consider (withe = + 1)
A :Ik 10y =Aley oW @AY |0)
= SO k41 €) (B12)
Cui1e
ESIEDNCN
=(— )| —————— +1e€).
(=9 ( QI+1) | )
Combining Egs. (B10), (B11) and (B12), we arrive at the
fourth set of Egs. (59). O
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From Eq. (B5) we have
A |klm) =c Qz___”ﬁ(vf)k(,ﬂ)lmt(/lt)l—\m|_1|0>
3 kim Qi—1) € 3
_ (12_m2) cklm
B Q=1 ¢y im
=((1—m)(1+m))vz|k I—1m),
Ql-1)
as in the fifth of Egs. (59). 0
Using Eq. (B6), we see that, for |m|>1,
A Jklmy =4 _ ey, DA DAL~ ™0)
_ Ut mpd+im—1)  Cum
Q-1
X|kl—1m—e)
— ()¢ (+|mDU + |m| —1)\?
=(-¢ ( QI—1) )
Xlkl—1m—e).

k1—1 m)

Chl—1m—¢

From this equation we have

A_lkim) = _((l+m)(l+m—1))1/2
@I-1
X|lkl—1m—1), for m>0,

(B13)

A lkim)= ((l— m()2§l——1,)n -1 )1/2

Xk 1—1m+1), for m<0.
Now consider the vector
Ak Im) =4 i (WA DALY ™0,
on which L has the value / —1, and L, the value #fi(m + €).
Since °L (L + 1) = (L,)* + (L,)* + (L, ), the value of L,
cannot be greater in modulus than that of #iL. Therefore, this
vector vanishes unless / —1>|m + €| = |m| +1; i.e., unless
I>|m| +2. Supposing this inequality is satisfied, we write
Aclkim) = cy, A ATP@) A DH™AT) " ~210)
= — Cmh AT @D AT M 210)
[using the last of Egs. (41)].
Now using Eq. (B1) (with € replaced by ~ €), we have
AJkim) = —cp {(L+1—€l,) 2L +3)
XQL+1) ~ 'Y @D ALy - im 2
— A @D A o)
= —Cum {U—|m| =) QI +1) @I -1) !
~ [P =(m|+1D)*]@-1) "}
XOYAD™ AN I 0)
[using Eq. (B5)]
_U=mhl—=|m|=1) _ um

Q-1 Cri1m e
Xk I—1 m+e€)
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e (= Of (= |mp)—|m|— 1)\
- (o @—1 )

X|ki—1m+e).

From this equation we see that

A, lkIm) = ((1— M()Zfl_—lr)n — 1))1/2

Xlkl—1m+1), for m>0,

(B14)
_ 172
i fetmy = - (MO m =)
Q-1
Xk 1—-1 m~1), for m<O.
It is easily seen from Eq. (56) that
-1 _
ALADN0) = — —ZAY AD~%0),
QY10 = — HERAL A )
so that
AL k10) =2, clo(WN (A1) ]0)
I0=1) Cuo
= — ki—-14+1).
@ =1 iy |
From this equation we see that
(- 1))'/2
A, |kI0) = (———— kl—-14+1), B15
+ [k10) =y | +1) (B15)
and combining Eqs. (B13), (B14), and (B15) we obtain the
last of Egs. (59). O
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