
•Consider again

P (m,N) =
(

1
2

)N N !

(N+m
2 )!(N−m2 )!

.

Using Stirling’s approximation for K! when K is large, we can show

that when N and |m| are large, with m2/N not too large, then

P (m,N) ≈
√

2

πN
e−m

2/2N .

This is a good approximation even for quite small values of |m| and N :–

11





0 2000 4000 6000 8000 10000
−250

−200

−150

−100

−50

0

50

100

150

200

250

t / τ

x 
/ δ





MATH3104 Lecture 2–3 (Bracken)

•We had

P (m,N) =
(

1
2

)N N !

(N+m
2 )!(N−m2 )!

) ≈
√

2

πN
e−m

2/2N

as N →∞ and |m| → ∞ with m2/N fixed and finite.

•We now set x = mδ and t = Nτ , and let δ → 0 and τ → 0 while N →∞
and |m| → ∞, in such a way that x and t, as well as m2/N , stay fixed and

finite at values of our choosing. Make sure you can see that this is possible!
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•Because

m2/N =
(x
δ

)2 (τ
t

)
=

(x2/t)

(δ2/τ )
,

this requires that
δ2

2τ
(= D , say)

also remains fixed at some (positive) finite value.

•Now consider ∆x such that δ � ∆x� |x| .

What is the probability P (x, t)∆x that the particle is in (x, x + ∆x) at

time t?
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•The formula

P (x, t) =
e−x

2/4Dt

√
4πDt

is exact in the limit

N →∞ , |m| → ∞ , δ → 0 , τ → 0 ,

with

mδ = x , Nτ = t ,
δ2

2τ
= D ,

m2

N
all fixed and finite.

At any time we have a Gaussian (or normal) distribution of probability

along the X-axis — the graph is a bell-shaped curve:-
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•The area under the curve is always 1 (conservation of probability):–

∫ ∞
−∞

e−x
2/4Dt

√
4πDt

dx =
1√
π

∫ ∞
−∞

e−y
2
dy = 1

•As t→ 0+, we have P (x, t)→ δ(x) (infinite spike). This corresponds

to a “bolus injection” of a finite quantity of diffusate at x = 0 at t = 0.

•Note that the distribution spreads over a distance L in a time determined

by L ≈
√

2Dt, or t ≈ L2/2D. To go twice as far takes four times as long!

To go ten times as far takes a hundred times as long, and so on.

This is the characteristic behaviour of the random walk that we saw before.

(See p. 1.13)
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•The constant D is called the diffusion coefficient. The bigger is D,

the faster is the diffusion (spreading). Particles with D twice the size,

spread in half the time.

•For a big molecule like lysozyme in water, D ≈ 10−6cm2/sec. To get

across a swimming pool of width L ≈ 10m ≈ 1000cm would take about

5× 1011 sec, or 15, 000 years. (Contrast with p. 1.3)

•But to get across the width of a bacterium, ≈ 10−4cm, takes only

5× 10−3sec.

This is why diffusion is such an important transport mechanism on

microscopic biological scales.
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•Aside: While P (x, t) is a nice smooth function (infinitely differentiable),

the path x(t) in the limit is typically continuous but nowhere differentiable.

Such a path is said to describe (a realisation of) Brownian motion.

(Look again at the figure on p. 1.15)

•Suppose now that there is a very large number N of particles, all

performing 1-D random walks (independently), parallel to the X-axis:–
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•The net number crossing L to R across a plane of cross-sectional area A

at x, in the time interval [t, t + τ ] is

≈ 1
2NP (x− δ

2, t)δ −
1
2NP (x + δ

2, t)δ

The net flux L to R per unit area per unit time, at position x at

time t, is therefore

J1(x, t) ≈ −1
2N
[
P (x + δ

2, t)− P (x− δ
2, t)
]
δ/Aτ

= − δ2

2τ

[
NP (x+δ

2 ,t)−NP (x−δ2 ,t)
Aδ

]

= −D
[
NP (x+δ

2 ,t)−NP (x−δ2 ,t)
Aδ

]
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•Now the number of particles per unit volume at x, t is the

concentration of diffusate

c(x, t) ≈ NP (x, t)δ

Aδ
.

Then we have

J1(x, t) ≈ −D

[
c(x + δ

2, t)− c(x−
δ
2, t)

δ

]
.

As δ → 0, we get

J1(x, t) = −D∂c(x, t)
∂x

— Fick’s first equation.
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•Aside: partial differentiation:–

Given a function of several (independent) variables

F (x, y, θ, t, . . . ),

then ∂F
∂x means: differentiate with respect to x, treating y , θ , t , . . . like

constants.

Similarly ∂F
∂θ means: differentiate with respect to θ, treating x , y , t , . . .

like constants. And so on.
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EX: F (x, y, θ) = 3x2y cos(θ) + e6y

⇒ ∂F
∂x = 6xy cos(θ), ∂F

∂y = 3x2 cos(θ) + 6e6y ,

∂F
∂θ = −3x2y sin(θ).

Then (order of differentiation doesn’t matter!)

∂2F
∂θ∂x = −6xy sin(θ) = ∂2F

∂x∂θ

and

∂3F
∂θ∂x∂y = −6x sin(θ), etc.
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As τ → 0, δ → 0, we get

∂c(x, t)

∂t
= −∂J1(x, t)

∂x

— Fick’s second equation.

Subsituting in from Fick’s first equation, we get

∂c(x,t)
∂t = − ∂

∂x

[
−D∂c(x,t)

∂x

]

⇒ ∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2

— 1-dimensional diffusion equation.
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•This is a partial differential equation (PDE) with

1 dependent variable c

2 independent variables x, t.

The PDE expresses conservation of number of particles during their random

walks.

•It is important to see that this PDE must hold whenever we have a very

large number of ‘random walkers,’ no matter how we distribute their

starting positions on the X-axis.
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•In the special case that we start them all at x = 0 at t = 0, we know that

c(x, t)

(
≈ NP (x, t)

A

)
≈ N
A

1√
4πDt

e−x
2/4Dt .

It follows that the function

P (x, t) =
1√

4πDt
e−x

2/4Dt

must satisfy the 1-D diffusion equation:–
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•Many other simple functions satisfy the 1-D diffusion equation,

for example

(1) c(x, t) = e−α
2Dt sin(αx), α = const.

(2) c(x, t) = Ax + B, A, B = consts.

(3) c(x, t) = A erf
(

x−a√
4Dt

)
, A, a = const.,

where

erf(z) =
2√
π

∫ z

0

e−y
2
dy

— the error function. See the graphs of y = erf(2z), y = erf(z), and

y = erf(z/2) in the next figure:–
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•A typical mathematical problem in diffusion is to find c(x, t) in some

region of interest, for times t > 0, given some information about the

initial state, at t = 0, and about what is happening at the boundaries

of the region. This is called an initial and boundary value problem

for the diffusion equation (IVP & BVP).

•A great many problems of this type have been solved, by various

methods. [See for example,

H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids

(Oxford UP, 1959),

and

J. Crank, The Mathematics of Diffusion (Oxford UP, 1975).]
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