eConsider again

Using Stirling’s approximation for /K! when K is large, we can show

that when IV and |m/| are large, with m?/N not too large, then

This is a good approximation even for quite small values of |m| and NV:-
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MATH3104 Lecture 2-3  (Bracken)

eWe had

as N — oo and |m| — oo with m*/N fixed and finite.

eWenowsetx =modandt = N7,andletd — 0and 7 — 0 while N — o0
and |m| — oo, in such a way that x and ¢, as well as m*/N, stay fixed and

finite at values of our choosing. Make sure you can see that this is possible!



eBecause

this requires that

also remains fixed at some (positive) finite value.
eNow consider Az such that 6 < Az < |z].

What is the probability P(x,t)Az that the particle is in (z, 2z + Ax) at

time t?
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e'The formula

o~ /ADt
P(az,t):\/m
is exact in the limit
N —o00, |m|l—00, 6d—0, 7—0,
with 52 .
mo=x, Nt=t, gZD’ N

all fixed and finite.

At any time we have a Gaussian (or normal) distribution of probability

along the X-axis — the graph is a bell-shaped curve:-
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oThe area under the curve is always 1 (conservation of probability):—
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eAst — 0y, we have P(x,t) — d(x) (infinite spike). This corresponds

to a “bolus injection” of a finite quantity of diffusate at x = 0 at ¢t = 0.

eNote that the distribution spreads over a distance L in a time determined
by L ~ 2Dt or t ~ L? /2D. To go twice as far takes four times as long!
To go ten times as far takes a hundred times as long, and so on.

This is the characteristic behaviour of the random walk that we saw before.

(See p. 1.13)



eThe constant D is called the diffusion coefficient. The bigger is D),

the faster is the diffusion (spreading). Particles with D twice the size,
spread in half the time.

eFor a big molecule like lysozyme in water, D ~ 107 %m?/sec. To get
across a swimming pool of width L ~ 10m ~ 1000cm would take about

5 x 10" sec, or 15, 000 years. (Contrast with p. 1.3)

eBut to get across the width of a bacterium, ~ 10~ *cm, takes only

5 x 10 3sec.

This is why diffusion is such an important transport mechanism on

microscopic biological scales.



e Aside: While P(xz,t) is a nice smooth function (infinitely differentiable),
the path x(¢) in the limit is typically continuous but nowhere differentiable.

Such a path is said to describe (a realisation of) Brownian motion.

(Look again at the figure on p. 1.15)

eSuppose now that there is a very large number N of particles, all

performing 1-D random walks (independently), parallel to the X-axis:—
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eThe net number crossing L to R across a plane of cross-sectional area A

at x, in the time interval [t, ¢ + 7] is
~INP(x—8,1)0 — INP(x+4,1)8

The net flux L to R per unit area per unit time, at position = at

time ¢, is therefore

Ji(z,t) ~ —IN [P(x+4,t) — P(x — 4,t)] 6 /AT

52 J\/P(x+%,t)—/\/'P(x—%,t)
27 AS

_ D {/\/’P(x—l—%,t)f;sj\/P(x—%,t)}




eNow the number of particles per unit volume at z, ¢ is the

concentration of diffusate

NP(z,t)d
Ao

clx,t) ~

Then we have

— Fick’s first equation.




eAside: partial differentiation:—

Given a function of several (independent) variables

F(x,y,0,t,...),
then ‘g—]; means: differentiate with respect to x, treating v, 6 ,¢, ... like
constants.

Similarly %—g means: differentiate with respect to 6, treating =,y .t ...

like constants. And so on.



EX: F(x,y,0) = 3%y cos(0) + €%

= %—]; = Gay cos(6), %—5 = 32° cos(f) + 6e

%—]g = —32%y sin(6).

Then (order of differentiation doesn’t matter!)

0’F - _O%F
J60r — —oTY sin(f) = 9200
and
PF :
m — 637 Slﬂ(e), etc.
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As7— 0,0 — 0, we get
Oc(z,t)  0Ji(z,1)
ot Ox

— Fick’s second equation.

Subsituting in from Fick’s first equation, we get

de(zt) _ 0 [_Dﬁcéa:,t)}

ot Oz
oc(z,t) B D(92c(:1:, t)

= ot Ox?

— 1-dimensional diffusion equation.




oThis is a partial differential equation (PDE) with

1 dependent variable c

2 independent variables x, t.

The PDE expresses conservation of number of particles during their random

walks.

o]t is important to see that this PDE must hold whenever we have a very
large number of ‘random walkers,” no matter how we distribute their

starting positions on the X-axis.



eIn the special case that we start them all at = 0 at £ = 0, we know that

NP )y N 1 —22/4Dt
c(x,t) <~ y >~ A\/me .

[t follows that the function

1
P(x,t) = ——— g~ /4Dt

Var Dt

must satisfy the 1-D diffusion equation:—
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eMany other simple functions satisty the 1-D diffusion equation,
for example

(1) e(z,t) = e P! sin(az), o= const.

(2) c(x,t) = Ax+ B, A, B = consts.

(3) c(x,t) = Aerf (%), A, a = const.,

where ) .
erf(z :—/ e_yzdy
(%) VT Jo

— the error function. See the graphs of y = erf(2z), y = erf(z), and

y = erf(z/2) in the next figure:—






o A typical mathematical problem in diffusion is to find ¢(x, %) in some
region of interest, for times ¢t > 0, given some information about the
initial state, at t = 0, and about what is happening at the boundaries

of the region. This is called an initial and boundary value problem

for the diffusion equation (IVP & BVP).

e A great many problems of this type have been solved, by various
methods. [See for example,

H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids
(Oxford UP, 1959),

and

J. Crank, The Mathematics of Diffusion (Oxford UP, 1975)]





