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Established steady-state models of elimination of flowing substrates by 
Michaelis-Menten kinetics in the intact liver and kidney are extended 
to time-dependent situations. It is shown how time-dependent distributions 
of substrate concentration can be calculated using steady-state results and 
a knowledge of the motion of fluid through the organs. The result is 
simplest when time-dependence is due to changes in substrate concen- 
trations at the inlet, for example following injection or infusion. The case 
of the liver is treated in greater detail, and includes an evaluation of the 
instantaneous overall elimination rate. 

1. Introduction and Formulation 

A class of models describing elimination of flowing substrates from liver 
sinusoids (Bass, Keiding, Winkler & Tygstrup, 1976, and references therein) 
and from renal tubules (Burgen, 1956, and references therein) has been 
successful theoretically and experimentally in dealing with steady states. In 
the present paper we give the theory of these models for time-dependent 
distributions of substrate concentration. 

Although the physiological situations described by the hepatic and renal 
models are different, their mathematical structure is similar enough to permit 
a substantially common treatment. The physiological assumptions and 
justifications of the models given in the steady-state papers quoted above 
will be supplemented to cover situations varying with time at physiological 
rates of change specified below, with special reference to the elimination of 
galactose by the liver. 

We summarize the common features and then the differences of the models. 
Consider a number of identical tubes of length L arranged in parallel and 
perfused with uni-directional flow. We put the axis of x co-ordinates in the 
direction of flow, with inlets at x = 0 and outlets at x = L. The sum of all 
cross-sections being A, the fluid volume in the tubes is AL. Substrate of 
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concentration c carried by the flow is eliminated at the walls of the tubes by 
Michaelis-Menten kinetics. Between two infinitesimally neighbouring cross- 
sections placed at x and x+dx, substrate is therefore eliminated at the local 
rate of 

where dv,,, and K are the local Michaelis constants (dv,,, is the maximum 
elimination rate, K the half-saturating substrate concentration). While 
dv,,,/dx may vary with x, K will be kept uniform throughout each model. 
Because of rapid radial diffusion in the narrow tubes, the substrate concen- 
tration c near the walls is the same as throughout each cross-section: 

c = c(x, t). 

It is this circumstance that permits elimination to be represented in our wall- 
removal model as a distributed sink rather than in terms of a boundary 
condition. The flow F(x) across each cross-section is taken to be time- 
independent. Since diffusion effects are not rate-determining in the models, 
the longitudinal flux of substrate is Fc, and the local balance of substrate is 
expressed by 

- Adx E = dv,,, & + ; (Fc) dx: 

the rate of change of substrate quantity in the volume element Adx is 
due partly to elimination and partly to the difference between the fluxes 
across the two bounding cross-sections. 

In the liver, the relevant substrates (e.g. galactose, ethanol) are dissolved 
in blood which is confined to the tubes (sinusoids), so that the flow F is 
independent of x. The relevant enzymes are contained in parenchymal cells 
lining the walls of sinusoids, and the rate-determining step in the elimination 
is known to obey Michaelis-Menten kinetics. Steady elimination has been 
treated by Bass et al. (1976) for arbitrary enzyme distribution dv,,/dx. Since 
elimination depletes the substrate, c(x) falls monotonically with increasing x. 

In the kidney, the flowing solvent is water which is re-absorbed from the 
tubules, so that F(x) is reduced with increasing x, remaining positive. The 
substrate (e.g. glucose) is transported across the tubule surface by a meta- 
bolically driven carrier system capable of saturation and also described by 
Michaelis-Menten kinetics. Steady elimination from the tubules has been 
treated by Burgen (1956) for the case of uniform carrier density (dv,,,Jdx 
= const.) and linear dependence of flow on position (F = Fo( 1 -x/R), 
R and F. are constants, R > L). More generally, for the kidney in the steady 
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state (E = 0) (1) becomes 

F _d_c = dv,,, c dF dF 
dx 

- __ -~-~. _ CA 
dx c+K dx: 

;;<o: 

thus dc/dx may have either sign throughout the tubule, or it may vanish 
within the tubule so that the concentration profile may go through a mini- 
mum. This is because, depending on the detailed form of F(x), solvent re- 
absorption may concentrate the substrate faster than the carrier system 
depletes it, at some or all values of c(x) occurring in the tubule. 

The models of both organs give rise to the/ following mathematical problem. 
Abbreviating 

ch,,,,ldx = P, V,,,,, = J P dx-, 
0 

and rearranging (l), we wish to find c(x, t) satisfying the equation 

(2) 

in the spatial interval 0 s x $ L, for given positive functions p(x), F(x) 
of position. A visual representation of the problem is furnished by the 
characteristic.s of (2), which are the family of curves x(t) given by 

Adx/dt = F(x). (3) 
The characteristics describe the motion of any fluid element with the velocity 
F/A, and are sketched in Fig. 1; they are straight in the liver and curved in 
the kidney. The mean transit time of a fluid element is 

T = A i dx/F(x). 
0 

(4) 

For example, T is AL/F for the liver, and -(AR/F,,) In (1 -L/R) for 
Burgen’s linear F(x) defined above. The substrate concentrations should be 
envisaged as plotted vertically above Fig. 1. At any one time to the substrate 
in the model consists of contributions originating from the inflow at earlier 
times between to - T and to, arriving at appropriate spatial positions between 
x = 0 and x = L at time to along characteristics such as those arrowed in 
Fig. l(a), and affected on the way by the influences described in the right- 
hand side of (2). 

We shall consider two kinds of boundary conditions. 
(a) At the inlet x = 0, the concentration ~(0, t) is given at all times t. The 

variable input concentration is the only cause of time-dependence; all 
characteristics are the same shape [Fig. l(a)]. This is the case most common 
in hepatic physiology, with changes in input caused by injection or infusions 
combined with elimination, by the liver itself, from the volume of distribution 
of substrate in the body. 
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FIG. 1. The domain of elimination, and the characteristics of the elimination equation. 
Inlet at x = 0, outlet at x = L, time along the ordinate. (a) The undisturbed kidney. 
(b) Steady compression of the liver relaxed at t = 0. 

(b) The more general case is obtained when concentrations at the inlet, 
~(0, t), are given for t > 0, and the spatial distribution C(X, 0) is given at 
t = 0; the problem is to be solved for all positive t. This case includes (a) if 
c(n, 0) is itself merely the result of variable input concentrations at earlier 
times. However, (b) includes also the description of results of changes in 
properties such as J’(X) and P(X), which become time-independent from 
t = 0 onwards. The effect of a step-change in F in the case of the liver is 
sketched in Fig. l(b). In that case c(x, 0) may be obtained by calculation with 
conditions of the type (a), but it serves as an initial condition of the type (b) 
for calculating the distribution at t > 0. 

The representation in terms of characteristics illustrates why it will be 
easier to obtain the description c(x, t) of substrate concentrations, than to 
evaluate the overall instantaneous elimination rate V(t) 

b’(t) = j: pc dx/(c+K), (5) 
0 

even for boundary conditions of type (a). The whole (x, 2) domain (Fig. 1) 
on which c(x, t) is sought, is covered by characteristics which originate 
from the inlet x = 0 and along each of which the c-values may be found by 
an observer moving with the fluid. By contrast, the integration (5) at any 
one time involves simultaneously fluid elements which had passed the inlet 
at different times, moving along different characteristics. 

In the simpler case of the liver we use special methods leading to explicit 
results, including the evaluation of V(t) by a convenient series; this is done 
in Section 2, for boundary condition (a), with mathematical details given in 
Appendix A. A fully worked out example with further discussion is given in 
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Section 3. A more general treatment of both liver and kidney is given in 
Appendix B, with results permitting the calculation of time-dependent sub- 
strate concentrations from corresponding steady concentration profiles for 
boundary conditions of both types (a) and (b). 

In order to assess the range of applicability of the present calculations, we 
characterize the degree of time-dependence roughly, in orders of magnitude, 
by the absolute value of the characteristic time Ci/C, (the suffix denotes con- 
centration at the inlet) needed for an appreciable fractional change in input 
concentration. 

(i) If ci/~i is long as compared with the transit time Z-given by (4) then a 
succession of steady states, depending parametrically on time through ci 
alone, gives a sufficiently accurate quasi-steady description (Bass et al., 1976). 
In the liver, T is about 20 seconds, so that the quasi-steady description fails 
whenever Ci/~i is not longer than a few minutes. 

(ii) The present wall-removal model assumes that transport of substrate 
across the membranes of parenchymal cells is not a rate-determining step 
in the elimination. This remains true in time-dependence whenever ci/Ci is 
long as compared with the membrane equilibration time for the substrate. 
We show in Appendix C that the latter time in the liver is less than one 
second for galactose at moderate concentrations (below 4 mmol/l). 

In the representative example of galactose in the liver, therefore, (i) and 
(ii) together confine the range of applicability of the present work to inputs 
with ci/Ei between the orders of seconds and minutes; such inputs occur in 
physiologicai and clinical investigations. 

Radioactive tracer work (Goresky, Bach & Nadeau, 1973) shows that 
transit times of fluid elements passing through the liver have an appreciable 
dispersion from the mean value (4). The present work may be viewed either 
as an approximate treatment of the entire liver (neglecting this dispersion), 
or as a more exact treatment of groups of sinusoids which have transit times 
close to each other. Whenever the distribution of transit times is given 
empirically, the latter interpretation readily permits the computation of time- 
dependent relations between observables for the entire liver, by means of a 
convolution-type integral involving the observed distribution of transit times. 
(We replace ci with an @xtioe time-dependent input concentration, con- 
structed from the given time-dependent input as a weighted sum of those 
ci’s which contribute to the c0 observed at any one time.) 

2. Concentration Distributions in Liver Sinusoids 

Since the flow F is constant in liver sinusoids, the last term on the right- 
hand side of (2) vanishes. Dividing the remaining terms through by the factor 

T.B. 42 
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c/(c + K), (2) becomes 

Writing (l+ K/c) dc = du, it becomes apparent that the new dependent 
variable U, 

u=c+KInc, (6) 

yields the linear equation 

Ali+F; = --p(x). 

The general solution of (7) is the sum of the general solution of (7) with 
the right-hand side set to zero, and of any particular solution of (7). Writing 
T = AL/F for the transit time, it is easy to check that the general solution 
of (7) with the right-hand side set to zero is any function f of the argument 
~-TX/L. For the particular solution we choose the time-independent function 

which obviously satisfies (7). Thus the general solution of (7) is 

u(x, t) =f(t-- TX/L) - ; i+k (8) 

with an arbitrary (differentiable) function f. We now satisfy the boundary 
condition (a): let ~(0, t) be assigned at all times. Because of our choice of the 
lower integration limit on the particular solution, we have, from (8), 
~(0, t) =f(t) which determines the functional form off. Reverting to the 
argument Z-TX/L and to the original variable c, we obtain the solution of 
the liver problem in the form 

c(x, t)+Kln c(x, t) = ~(0, t- Tx/L)+Kln ~(0, t- TX/L) - k 5 p dx. (9) 
0 

Thus the quantity cfKln c at any place and time is obtained from the 
corresponding quantity at the inlet (reached along the appropriate charac- 
teristic by going back by the time-interval TX/L) by subtracting l/F times the 
elimination capacity of enzyme placed between the inlet and the position 
under consideration. In particular, if the enzyme density p is constant, WC 
subtract Q,,,x/FL. When the quantity c+Klnc is thus obtained, c is 
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obtained from it by standard numerical or graphical methods. The solution 
(9) is to be compared with that of the steady-state equation, obtained from 
(2a) by setting 2 = 0: 

c(x) + Kin c(x) = c(0) + Kin c(0) - fapdx. (9a) 

Substrate concentrations are observable only at the inlet and the outlet 
of sinusoids, so that the experimentally useful aspect of (9) is obtained by 
setting x = L. Using also the customary notation Ci(t) = ~(0, t) and 
c,(t) = c(L, t) (initials of “inlet” and “outlet” as subscripts), we obtain 

C,(t) + Kin C,(t),= Ci(t - T) + Kin Ci(t - 7) - V,,,/F, (10) 

which represents an important result under conditions (a): the relation 
between instantaneous inflow and outflow concentrations of substrate is the 
same as if these concentrations were steady, provided that the inflow con- 
centration is taken by the time T earlier than the outffow concentration. 
(Compare with (9a) at x = L, setting c(O) = ci, c(L) = co.) 

In Appendix B we extend this result for any choice of F(X) in equation (2) 
using the transit time (4). These results are transparent: once a fluid element 
has passed the inlet, the amount of substrate it carries is changed indepen- 
dently of events in fluid elements that entered earlier or later. 

Even simpler is the description of the time-change of u = c+Kln c, since 
the last term of (9) vanishes on taking a time derivative : u(x, t) = &(t - TX/L ) 
or, in full, 

Yx* f>( l+ K/c(x, f>> = Cci( l+ K/ci)lt - TX/~, (11) 

where the suffix on the square bracket denotes the time at which all quantities 
in the bracket are to be taken. In particular, at the outlet we obtain 
Go(t) = tii(t-T), which permits a clinical determination in situ of the 
constant K from observations made after a single injection of suitable 
substrate (Bass et al., 1976). 

The results (10) and (11) hold for any distribution of enzyme along the 
flow; we may therefore include with the liver, blood vessels containing no 
enzyme. When Ci and ce are obtained from blood samples taken some 
distances upstream and downstream of the liver, the transit time T refers to 
transit between the sampling instruments, and may be appreciably longer 
than the mean transit time through the liver. 

As the next step we evaluate the instantaneous elimination rate, which is 
also the rate of creation of the product of the enzymatic conversion of the 
substrate In order to outline the method without inessential complications, 
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we now specialize the enzyme distribution along the sinusoids to a uniform 
one : 

dv,,,/dx = p = f&JL. (12) 
Together with the uniformity of F in the liver model, (12) reduces (2) to the 
form 

(13) 

We give a simplified approximate treatment of the instantaneous elimina- 
tion rate, reserving a fuller treatment for Appendix A We deviate from 
quasi-steadiness by retaining the C-term in (13), but we estimate it from the 
quasi-steady approximation by replacing the argument ~-TX/L with t on 
the right-hand side of (11): 

L: = L di(l + K/Ci)* 
c+K 

Substituting in (13) and rearranging we obtain 

F ;t = - + [V,,,,+ALC,(l +K/c,)J $K. (14) 

The square-bracket is x-independent in the present approximation, so that 
(14) may be viewed as a form of the quasi-steady theory with V,,, replaced 
by an apparent (time-varying) V,a,, 

V,$, = Vm,, + F Tii( 1 + K/Cl), (15) 
using also AL = FT, valid for the liver. When E, is positive (ci rising), the 
apparent steady V,& overestimates V,,, because a quasi-steady treatment 
attributes to elimination the lowering of c which is in reality due to Ci having 
been lower at relevant earlier times (Fig. 1). The discussion of negative ei 
is similar. 

Integration of (14) from inlet to outlet yields, after some rearrangement 
and the use of definition (5) of V(t), simplified by (12): 

F(ci - cO> 
’ = 1 +(FT/I’,,‘,,.&(l +K/ci)- . . . ’ (16) 

where all quantities refer to time t, and the dots indicate correction terms 
obtained in Appendix A. 

The instantaneous rate (16) differs from its quasi-steady approximation 
implicitly in the numerator and explicitly in the denominator. In the numera- 
tor, c,, is taken simultaneously with ci, while the co(t) curve is shifted, as 
compared with the quasi-steady approximation, towards later time by the 
transit time T. The denominator shows the effect of the history of the input, 
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between t-T and t, upon elimination at t (Fig. 1). When it is positive 
(negative), each sinusoid contains fluid elements carrying earlier lower 
(higher) inputs, whereby the instantaneous rate at t is reduced (increased) 
by an amount depending also on the degree of saturation. A more complete 
description of the history of c, involves higher time derivatives, which 
appear in the more accurate result (26) in Appendix A. The overall balance 
of these time-dependent effects will be elucidated in the next section. 

3. Specific Example 

We illustrate our general results by an example in the liver. For conciseness 
we introduce the dimensionless quantities 

z = ~/~,,x, a = ci/K, y = CO/K, T = t/T, 

a = V,,,/FK, wi = a + In a. 1 
(17) 

Dots will now denote differentiation with respect to r. Note that wi differs 
from q/K only by the constant term InK. We choose the input a (Fig. 2) 
such that 

Wi = 10-r2/5, (18) 

so that the highest non-vanishing derivative is tii = -2/5: the series in the 
denominator of (16), obtained from (26) in Appendix A, breaks off after 
three terms. We choose also CY = 5, and we approximate Z/L by its maximum 
value 4 (Appendix A). This completes the specification of the example. 

The dimensionless counterpart of (10) is 

a(z)-y(z+ 1) + In ~ = a 
Y(z+ 1) 

which defines y and its quasi-steady counterpart ys simultaneous with a 
(solid and broken lines, respectively, in Fig. 2). In practice it is easiest to 
calculate y, from ys + lny, = ~~-a, and then obtain y by shifting y, by one 
unit towards later time. Solving such transcendental equations is inescapable 
(but not difficult) both in the time-dependent and steady-state theory. Next, 
the dimensionless form of (26) of Appendix A is, for the present example, 

a-y a-y z= = ~.__ 
a+3i-~~i 5 - 2z/5 + l/5 

with its quasi-steady counterpart z, = (a-y,)/a (solid and broken lines, 
respectively, in Fig. 2). 

While a, y, and z, share the symmetry of wi with respect to z = 0, y is 
shifted without change of shape by one unit from y, toward later time. As 
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FIG. 2. Example of elimination by the liver with V,,,/FK = 5. Input concentration 
a = s/K, output concentration y  = co/K, instantaneous elimination rate 102 = lOV/V,,,,,, 
all as functions of time t/T. Broken lines give corresponding quasi-steady approximations 
y. and lOz.,. The common scale of the ordinate refers to all five independent variables (all 
dimensionless and suitably scaled). 

a result, a-y is larger than a--~‘, for z < 0, and smaller for z > 1. Never- 
theless, z is smaller than zS for r < 0 and larger than z, for r > I as a 
result of the deviations from the steady-state theory appearing in the 
denominator of (20). The overall result is the shift of z towards later times 
as compared with z,, but by less than one unit, and not without distortion, 
of which a salient feature is the lowering of the peak value of z as compared 
with z, These features of the present example have wider validity, as we 
now show by a simplified argument 

When the element of fluid containing the peak input is carried along a 
sinusoid, the fluid elements immediately before and after it carry lower 
inputs. The instantaneous elimination rate of the whole sinusoid is therefore 
lower than it would be if the peak input was maintained for at least the full 
transit time. For this reason the peak elimination rate in a transient is over- 
estimated by the quasi-steady approximation. This consideration depends 
on second time-derivatives of concentrations, but small first derivatives 
suffice to elucidate the overall relation of z and zS, as we show next. 
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In order to compare z and z, by means of (20), we develop 

Y(T) = Y,(Z - 1) = Ys(4 - 3s(9* 

647 

Moreover, from G,(t) = ai(t-T) of Section 2 we have, in the quasi-steady 
approximation, j&l+ I/y,) = pi; using also gz, = a-ys, we obtain 
from (20) 

z-z, = a-h + ~*Ysl(l+ Y,) 
Or+Si 

-zs~~(+---zs), (21) 

where, in the last expression, we have retained only first powers of the 
derivatives. Now, the last bracket is never positive because (returning to the 
original variables) 

that is : a sinusoid filled throughout with the concentration actually occurring 
at the outlet would have an elimination rate smaller than (or, at saturation, 
equal to) the actual quasi-steady rate V,. Thus z-z, and Gvi (and hence ci) 
have opposite signs, as is illustrated by the example of Fig. 2. 

We are grateful to Dr S. Keiding, Dr K. Winkler, Professor N. Tygstrup and a 
referee for helpful discussions. 
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APPENDIX A 

The Instantaneous Elimination Rate 

We wish to calculate the instantaneous rate (5), simplified by the uniform 
enzyme distribution (12), 

(54 

in which c(x, t) satisfies (13), with ~(0, t) = cl(t) being given at all times. 
From (11) we obtain 

E = 2% [q+ :)I,-,,,, (114 

where the subscript on a bracket indicates the time at which all quantities 
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in the bracket are to be taken. Substituting (1 la) for C in (13) and rearranging 
slightly, we find 

As the next step we refer all quantities in (22) to the time t. For this purpose 
we expand the square bracket in (22) in a series about the time 1, reverting 
to the abbreviation tii: 

[Ei(l + :)1,-,,, = [tii],-r,/L = zi,(t)-iii(t)Tx/L+fu”i(t)(Tx/L)2. * * (23) 

where the higher derivatives are obtained explicitly by differentiating iii with 
respect to time, thus: 

iii=i.fi(l +E)-($)Pj,CtC. 

Next, in preparation for integrating (22) term by term with respect to 
position, we define convenient mean values of position on the sinusoids: 

(24) 

fern= I,n=2,.... If needed for accuracy of evaluating V(t), these mean 
values can be computed numerically from (9). However, for estimates of 
effects of time-dependence the essential feature of (24) is that 2 is less than 
L” for all n. More precisely, 2 is largest for the rectilinear concentration 
profiles occurring when co 9 K, which yield readily 2 = C/(n+ l), so that 

x”/c 5 l/(n + 1). (25) 

We now substitute expansion (23) in (22), integrate through from 0 to L 
and make use of (24) and of the definition (5a) of V(t): 

P(Ci-CO) = 1’ 1 + ~. [lii-iiiT(~/L)+~EiT’(x”/L”)-. . .] 
{ > 

) (26) 
max 

with all variable terms now referring to time t Dividing through by the curly 
bracket and returning to the original variable c, we obtain the final expression 
for V(t). In Section 2 we write AL = FT and discuss the result (26) in the 
form (16), in which higher derivatives of U, are indicated by dots following 
the leading term. The magnitude of these correction terms may be readily 
estimated from any given c,(t), using the inequalities (25). 
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APPENDIX B 

Joint Treatment of Liver and Kidney Models 

We return to the problem of distributions of substrate concentrations in 
the general class of liver and kidney models with any prescribed E’(x) and 
p(x) in (2). Supposing that steady-state concentration distributions are known, 
we deduce effects of time-dependence for boundary conditions of both 
types (a) and (b). 

We note in passing that the more general transformation corresponding 
to (6), with a conveniently chosen lower integration limit b, 

u=j 
de 

b pc/(c + K) - c dF/dx (6a) 

linearizes the full equation (2) when the integrand in (6a) does not depend 
explicitly on x, that is, when F is linear in x and p is independent of x 
(Burgen’s original kidney model, 1956). In view of the general results obtained 
below, we shall not pursue this special approach. 

Recalling the discussion of fluid elements moving along the characteristics 
(end of Introduction), we replace time by a new independent variable which 
is a constant along each characteristic: the independent variables are trans- 
formed? to 5, u, 

t=x, tj=t-Ajdx/F. (27) 
0 

Transforming (2) (most easily by equating the total differentials of c(x, r) 
and c(<, q), using the differentiated form of (27) and comparing coefficients 
of dt and dx) we find 

(28) 

which is the equation for the steady-state concentration distribution. Let the 
solution of (28) be written in the form 

J%, 5) = G, (29) 
with G independent of 5. For example, in the case of the liver we have 
(Section 2) I: 

E(c,r)=c+Klnc+1EpdS=G, 
0 

where G may be determined at the inlet. Now, (28) is a partial differential 
equation, the general solution of which involves an arbitrary function: 

t I f  A is inserted under the integral sign in (27), results similar to those described in this 
paper can be- derived in the case when both F and A in (2) depend on x. We are indebted 
to Mr C. J. Burden for this observation. 
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G in (29) is independent of { but it is an arbitrary function of 4. In the 
original variables (29) becomes 

E(c, x) = .(,-A [dx/F). (30) 

Next, we choose G so as to satisfy the initial condition (a), that is, 
c(0, t) = q(t): 

ECc,(O, 01 = (30 
determining the functional form of G. Altogether, 

E(c,x)=E Ci t-Ajdx/F PO 
[( > I 

(31) 
0 

is the implicit solution of the problem including the initial condition (a). In 
particular, at the outlet x = L, c = c,(t), 

E[co(t)y L] = E[ci(t- T), 01. (321 
In the steady state, G in (29) is constant in space and time, so that E(c,, L) 
= E(Ci, 0). The meaning of (32) is, therefore, that co is related to ci at any 
time as if they were both steady, provided that ci is taken by the transit time 
T earlier than co. This generalization of the result given for the liver at the 
end of Section 2 permits the determination of outflow concentrations from 
steady-state theory and from the history of the inflow concentrations. The 
method of proof based on transformation (27) was chosen for readers 
unacquainted with relevant theorems on quasi-linear equations of the first 
order (Sneddon, 1957), which may be used instead. 

For boundary conditions (b), we are given ~(0, I) for t > 0, and c(x, 0) 
= f(x) for 0 I x < L; the solution is sought for positive time only. We 
note first that the domain (x, t) of interest is divided into two parts by the 
characteristic C starting from the point x = 0, t = 0 [Fig. l(b)], viz. the 
regions 

t >< A j dx/F. (33) 
0 

The solution in the upper part (upper inequality sign) is given by (31), since 
the initial distributionf(x) cannot influence the domain beyond the charac- 
teristic C (f(x) is swept out by the flow). It remains to determine the solution 
in the lower part (lower inequality sign) of the domain. This is done by 
inserting the conditions (b) in the general solution (30), 

E(Ax),4=+++‘) (34) 

which determines the functional form of G for any given F(X). 
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We clarify the rather abstract result (34) on a useful example concerning 
the liver with p = V,,,/L. Suppose that at t = 0 the flow F through the liver 
has attained a new constant value (for example, by the relaxation of a steady 
compression of the liver). As shown in Fig. l(b), the characteristics break 
at t = 0, with c(x, 0) = f(x) calculable by (31) using the flow value before 
c = 0. Because of the lower inequality (33) it is convenient to replace the 
arbitrary function G in (30) by the closely related arbitrary function /-I, 
inserting at the same time the special features of the liver: 

c + Kln c + V,,,x/(FL) = H(x - FL/A) (35) 

which is to hold in the domain x > Ft/A > 0. Inserting the condition at 
I = 0 in (35) we obtain 

determining the form of H. Returning to the general argument s- Ft/A we 
thus obtain the desired solution (after some cancellation,) : 

c + Klnc = f(x - Ft/A) + KlnJ(x - R/A) - I&J/(LA) (36) 

which joins on to (31) along the characteristic C. In particular, at the outlet 
we insert x = L in (36), remembering that the result is relevant only in the 
time-interval 0 I t I AL/F. The solution does not contain ci explicitly 
because of the event at t = 0 (earlier cI’s are implicit inf(x)). 

APPENDIX C 

Hepatocyte Equilibration Time 

In order to estimate the characteristic time of galactose equilibration 
between sinusoidal blood and adjoining cells containing enzyme, we assume 
facilitated equilibrative membrane transport with overall Michaelis constants 
V* lnw.X~ K” for the liver as a whole. Assuming that carriers are distributed 
uniformly along the sinusoids, and considering only the rapid effects of 
membrane transport for a region bounded by cross-sections at x, x+d.u 
(Section 1), we have 

(37) 

where c’ and c are local substrate concentrations in the cells and in the blood, 
respectively; A’ is the sum of cross-sections of all relevant cells while A is, 
as previously, the sum of cross-sections of all sinusoids. 
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Rearranging (37) and forming the difference of the concentrations we 
obtain 

T* ,di(d-C) = -(c’-cc), 

where T* is a time given by 

T* = AG (C+K*)(c’+K*) &. 

max 
(38) 

Using results of Goresky et at. (1973) we estimate, for a typical liver, 
K” - 4 mmol/l, r;,*,, - 80 mmol/min, both having some 40 times the values 
of K and of V,,, of the galactose phosphorylation system in the liver 
(0.1 mmol/l and 2 mmol/min, respectively). For c and c’ below K*, the 
time T* varies slowly with concentration and at lower concentrations tends 
to the constant equilibration time (l/T* tends to the exponential constant 
of equilibration) : 

T’ = ALK*/v,.,( t + A/A’). (39) 
The approximation (39) gives an estimate of the equilibration time for 
concentrations up to 4 mmol/l (from zero to about 40 K), within which all 
elimination regimes of galactose are represented (Bass et al., 1976). 

Assuming further A - A’ suggested by liver anatomy, and taking 
AL N 0.2 1 for the blood volume of the liver, we obtain 

T* z ALK*/2V,*,, z O-3 sec. (40) 
With a safety margin for somewhat higher values of c, c’ sometimes used in 
practice, and for the roughness of the anatomical estimate, we arrive at 
T* of less than 1 sec. 


