Local conformal-invariance of the wave equation for finite-component fields.
I. The conditions for invariance, and fully-reducible fields
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The conditions for local conformal-invariance of the wave equation are obtained for finite-
component fields, of Types Ia and Ib [in the terminology of Mack and Salam, Ann. Phys. 53, 174
{1969).] These conditions generate a set of locally invariant free massless field equations and
restrict the relevant representation of the Lie algebra [(k, D4 }D's1(2,C )] in the index space of the
field to belong to a certain class. Those fully-reducible representations which are in this class are
described in full. The corresponding Type Ia field equations include only the massless scalar field
equation, neutrino equations, Maxwell’s equations, and the Bargmann-Wigner equations for
massless fields of arbitrary helicity, and no others. In particular, it is confirmed {Bracken, Lett.
Nuovo Cimento 2, 574 (1971)] that not all Poincaré-invariant sets of massless Type Ia field
equations are conformal-invariant, contrary to some often-quoted results of McLennan [Nuovo
Cimento 3, 1360 (1956)], which are shown to be invalid. It is also shown that in the case of a
potential, the wave equation is never conformal-invariant in the strong sense {excluding gauge

transformations).

PACS numbers: 11.10.Qr, 11.30.Ly

1. INTRODUCTION

Much has been written on the theory and possible appli-
cations to particle physics of the conformal group of space-
time transformations: for reviews, see Kastrup,' Fulton,
Rohrlich, and Witten,? Barut,> Ferrara, Gatto, and Grillo,*
and Bayen.® These ideas were largely stimulated by observa-
tions that the wave equations satisfied by certain free, mass-
less fields are locally® conformal-invariant.

Bateman’ and Cunningham?® (see also Dirac®) showed
that this is so for the free-field Maxwell equations; and ac-
cording to Cunningham, Bateman knew then of the invari-
ance of the wave equation

Oygix) =0
x=(ct,x)=(x*) u=0,12,3 (1.1)

in the case of a scalar field ¥. We do not know who first
proved the invariance of the two- and four-component neu-
trino equations. (See, however, Schouten and Haantjes, '°
Pauli,'' and Bludman.'?) McLennan'? claimed to prove the
invariance of each of Garding’s'* “irreducible sets” of wave
equations for massless multi-spinor fields (at least, of each
set which admits plane-wave solutions, the remainder being
unsuitable as free-field equations.) These sets of first-order
equations are rather general and include ones described ear-
lier by Dirac'® and Fierz.'® Gross'” showed the invariance of
the Bargmann-Wigner'® equations for massless fields of ar-
bitrary spin. The invariance of particular sets of massless
field equations has also been argued by Lomont, '® Penrose,?°
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Kursunoglu,?' Mack and Todorov,?” Bayen,”® Barut and
Haugen,?* Lopuszanski and Oziewicz,? Post,”® Fegan,?’ Ja-
kobsen and Vergne,® and Budini.”® Kotecky and Niederle*
have found the conditions for conformal invariance of a Lo-
rentz-invariant equation of the form

L,3"x) =0,
& =3d/3x,, (12)

where the L, are matrices (not necessarily square), and isa
multicomponent field. However, they did not specifically re-
quire that ¥ be massless in the sense of Eq. (1.1).

It is clear that a body of opinion has developed to the
effect that wave equations for free, massless fields are confor-
mal-invariant in all possible cases [at least, in all cases where
the fields have (manifestly) Lorentz-invariant helicity®'—
there are known subtleties in the case of equations satisfied
by potentials??*?%], In the introductory remarks to many
papers on the conformal group and its applications, one can
find passing reference to “the well known fact that massless
wave equations are conformal-invariant.”

This opinion has no doubt been reinforced by the obser-
vation?23%33 that every zero-mass, discrete spin, unitary, ir-
reducible representation of the Poincaré group ISL(2,C) can
be extended to a unitary, irreducible representation of
SU(2,2), a group locally isomorphic to the conformal group.
Given a consistent set of field equations for a free, massless,
classical field with Lorentz-invariant helicity, one should be
able to exhibit a Hilbert space of solutions carrying a repre-
sentation of ISL(2,C) of this type. This solution space will
then be invariant under the action of an SU(2,2) group.

One might be forgiven for thinking that there is little
more to be said on this subject, at least in the case of fields
having Lorentz-invariant helicity. On the other hand, it is
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clear that the conformal invariance of the wave equation
(1.1), which is evidently scale- and Poincaré-invariant, will in
general require further, non-trivial, conditions to be satisfied
when ¥{x) is a multicomponent field. After all, the Poincaré
group extended by dilatations is a proper subgroup of the
conformal group, and we recall that in the case of Lagran-
gian field equations,’>*¢ scale- and Poincaré-invariance
does not guarantee conformal-invariance. We assert that,
contrary to the body of opinion mentioned above, the wave
equations satisfied by free massless fields are not in general
locally conformal-invariant, even for fields having Lorentz-
invariant helicity.

Some years ago, one of us showed*' that if the index
space of a field ¢(x) carries an irreducible, finite-dimensional
representation of s1(2,C) labeled (m,n) (in the familiar
scheme, where 2m and 27 are non-negative integers, as de-
scribed in the next section), then if mn #£0 the wave equation
(1.1) is not locally conformal-invariant. If this be so, then
some of the results of McLennan'? in particular must be
false. Indeed, it is not immediately clear that this result of
Ref. 41 can be reconciled with the invariance of the Barg-
mann-Wigner equations,'® though it turns out that there is
no contradiction there, as we show in Sec. 4, where we dis-
cuss the results of earlier works in relation to ours. There
also we point out some errors in McLennan’s work, invali-
dating some of his conclusions.

What of the second argument suggested above, con-
cerning the extendability of massless representations of
ISL(2,C ) to representations of SU(2,2)? The reconciliation of
this fact with the noninvariance (in some cases) of the equa-
tion {1.1), has been discussed earlier.*! Essentially, the point
is that the group SU(2,2) which arises in this way cannot
always be associated even locally with the conformal group.
Suppose, for example, we construct a realization of the zero-
mass, discrete spin, helicity A, positive energy, unitary repre-
sentation of ISL(2,C) in a Hilbert space of multicomponent
fields ¢(x), which have Lorentz-invariant helicity and whose
index space carries a single representation (m,n) of s1(2,C}.
According to a result of Weinberg,** (see also Lemma 3.2
below), it must be true that m — n = A, though not necessar-
ily that mn = 0. According to the results of Ref. 22, we can
find in addition to the ISL(2,C ) generators P, and M, oper-
ators D' and K/, acting on this space. Together these opera-
tors generate a unitary irreducible representation of SU(2,2)
in the so-called “ladder series.” Now what happens is this: If
mn#0, then K/, can not be identified with the generators of
special conformal transformations of the fields {x). Those
generators have rather specific forms, as described by Mack
and Salam.* (See Sec. 2.) In particular, the operators K ;, are
not local in space—time when mn 0. What is more, in those
cases they only satisfy the appropriate commutation rela-
tions within the representation space—this is, only weakly
on the fields, as a consequence of the free-field equations. In
contrast, in the cases when mn = 0, K|, (and D ') are identifi-
able with generators of conformal transformations.***
They are local operators, and they can be defined on all (suf-
ficiently smooth) fields of the given type, in such a way that
the appropriate commutation relations are satisfied, wheth-
er or not the fields satisfy the free-field equations. These
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properties are crucial if one is to be able to talk meaningfuily
about conformal-invariance being preserved in the presence
of interactions, when the free-field equations cease to hold.

Inshort, when mn = 0, the conformal group is a space—
time symmetry group of the field equations, while when
mn#0, SU(2,2) is only a dynamical symmetry group of the
one-particular Hilbert space. The difference between these
two concepts is quite fundamental, but in the present context
it has not generally been fully appreciated.

In view of the fact that not all possible Poincaré-invar-
iant massless field theories are conformal-invariant, the in-
variance of the equations governing the electromagnetic and
neutrino fields assumes, perhaps, a greater significance. Un-
fortunately, Ref. 41 seems to have been largely unno-
ticed,** ¢ and passing remarks persist to “the well known
fact that....” Indeed, after this work*' appeared, a proof of
the conformal-invariance of the field equations in the cases
mn 0 was presented by Post.” This proof'is deficient, as we
show in Sec. 4, and Post’s conclusions in this regard are false.

Recently there has been renewed interest in massless,
higher-spin fields,*’~>° and fields of spin $ and $ in particular
have been discussed in connection with “supergravity.”” The
question now arises as to whether or not the theories pro-
posed are conformal-invariant. While we do not examine
this question specifically, it seems timely to investigate in
detail the conditions under which the wave equation (1.1) is
locally conformal-invariant when ¢ is a finite-component
field, and that is our main object here. We do not restrict
ourselves to the cases where the index space carries an irre-
ducible representation of s}(2,C), but rather consider the
most general possible situation, according to Mack er al.,*!
where the field may be of Type Ib in their notation. (See Sec.
2.) Such fields have received comparatively little attention in
the literature,%2425:29.43.51-53 A ¢ free fields, their main inter-
est lies in the possibility that one might be able to use them to
describe spin multiplets of massless particles.*’ There are
discouraging difficulties in attempting to describe such fields
in any generality, because of the nature of the finite-dimen-
sional index-space representations of the Lie algebra 77,

W =k, B d) d sl2,0), (1.3)

which are involved. (See Sec. 2.) These representations are
not in general completely reducible, and no classification of
them is available. However, we find that only a certain class
of representations is directly involved in the case of free
massless fields obeying conformal-invariant equations.

Our main results are summarized in Theorems 3.1, 3.2,
3.3,2.1, 3.4, 3.5, 4.1, and 4.2 below. In particular, we find
that when Eq. (1.1) is locally conformal-invariant, then the
field ¥ must satisfy certain other equations. For example, ify
is an antisymmetric tensor field F,, (x), then conformal-in-
variance of Eq. (1.1) requires that F,,, satisfy a/l of Maxwell’s
free-field equations. Thus the imposition of conformal-in-
variance of the “mass condition” (1.1) can be a means of
defining complete sets of conformal-invariant free-field
equations. This fact leads us not only to well-known sets of
wave equations, but also to new sets of locally conformal-
invariant equations for massless fields of Type Ib with arbi-
trary helicity.
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In general the extra equations which ¥ must satisfy
place severe restrictions on the representation of %" carried
by the index space of ¢. Furthermore, they imply that in
every case ¥ is a direct sum of fields having Lorentz-invar-
iant helicity. Thus when ¢ is a potential, the wave equation
{1.1) is never conformal-invariant in the strong sense {i.e.,
excluding the possibility of gauge transformations to supple-
ment the conformal transformations). This generalizes a
well-known result??>%8 for the electromagnetic potential
A, (x). We do not address the problem of classifying for po-
tentials those equations which are conformal-invariant in
the weak sense, i.e., up to a change of gauge.

Notation: We adopt the diagonal metric tensor

8w =&, withgey= — g, = —g;;= —g3;=1.Theal
ternating tensor €,,,,,, is defined with €' = — ¢;;,; = 1.

2. Preliminaries. Index space representations of s|(2,C)
and 7~

Consider infinitesmal conformal transformations of
space-time,

X =x* 4+ ext + € + €"x, + (287x, x* — 0¥x"x,)

(symbolically,
x' = Xx + dgx), 2.1)
where €, €',%( = — ¢€**) and 8" are real infinitesimal pa-

rameters characterizing dilatations, translations, homogen-
eous Lorentz transformations, and special conformal trans-
formations, respectively. Suppose we are given classical
fields #(x), with a fixed finite number of complex-valued
components ¥, (x), and a cotransformation law of the general
form

Yalx) =4.(x) + ;55 (68:X)as ¥ (X). (2.2)

Mack et al.*? (see also Flato et al.>® and Kotecky and Nie-
derle®*) have shown that there is no loss of generality if the
following statements are assumed to follow:

(1) The index space of the fields carries a finite-dimen-
sional representation of the 11-dimensional Lie algebra®® %~
of Eq. (1.3), with basis %, (= — %, ,),4 and «,, satisfying

[ zyv’zpa] =gyp2va +gvaz;4p —gvpz;za —guazvp’

(2.3a)
ik, 2, ] = 8ok, — 8uuk,s (2.3b)
[K‘u *,]1=0, (2.3c)
[4.5,,]=0, 234)
i[k,,4 | =«,. (2.3¢)

(2} The infinitesimal field transformation (2.2) corre-
sponding to (2.1) can be written in the form

¥'(x) = y(x) + i[eD + P, + &M, + 0“K,, [¢(x),
(2.4
where
P, =id/ox*, M, =x,P, —x,P, +2

uv?

D=x"P, +4, K,=2x,D—x"x,P, +25, %" +«,.
(2.5)
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These statements (1) and (2) form the starting point of
our analysis.

When we refer to “the field 1(x)” we always have in
mind the general element of the complex vector space & of
smooth fields of a given type, i.e., fields whose components
have partial derivatives of all orders, and which correspond
to a given finite-dimensional representation of %#". This
space & is the tensor product of the index space, with opera-
tors %, .4, etc., and the space of smooth functions f(x), with
operators x“,d, etc. In Eqs. (2.5) the operators 4 and x*, for
example, really denote the extensions in the obvious way to
the tensor product space, of the index-space operator 4 and
the function-space operator x*. We abuse the notation in this
way and rely on context to make precise what we mean in
any given case. We remark also that a complex numerical
multiple of the identity operator on any of these spaces will
be denoted by the appropriate complex number; again we
rely on context to make the meaning precise.

It can be seen that & is a common, invariant domain
for the operators Pﬂ M ”V,D, and X, On this space, the fol-
lowing commutation relations hold**:

i[DP,]=P, {2.6a)
i[K,,D]=K,, (2.6b)
[DM,, ] =0, (2.6¢)
i[P,M,,]=¢,P —8.P, (2.6d)
iK,.M,,]=g,K, — 8. K, (2.6e)
i[MuV’MPG] =guvaa +gv0M#p

—8wMu —8uM,,, (2.6f)
[P.,P,]=0, (2.6g)
[K..K,]=0, (2.6h)
i[P.K,]=2M, —2,D. (2.6i)

It follows that the operators D, P, ,K,,, and M, (of which 15
are linearly independent) span a Lie algebra .«7, which pro-
vides a representation in & of the Lie algebra of the confor-
mal group.

The representation of % in the index space may also be
regarded as a representation of the s1(2,C ) subalgebra of %7,
with basis 2, . As such it will not in general be irreducible,
but like any other finite-dimensional representation of
sl(2,C) it will be fully reducible to a direct sum of irreducible
representations. In any representation of sl{2,C ), with basis

Z,,, we can introduce the two Casimir operators*®

C = %E;wzuv
C, = i€, ,, 22", (2.7)

Let (m,n) denote the irreducible representation, of dimen-
sion (2m + 1) (2n + 1), in which these Casimir operators
have the form

Ci=2mm+ 1)+ 2nn+1)

Cy,=m(m+ 1) —n(n+ 1). (2.8)
Here 2m and 2n are non-negative integers. Any given finite-
dimensional representation % of sl(2,C )}, with representation

space 77, will be a direct sum of such irreducible representa-
tions, for various distinct ordered pairs (m,n) in a finite set §
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determined by #, and with various positive integral multi-
plicites r,,,, determined by . Symbolically,

R = i Vrun(M,11)
(m,n)eS

Let P, denote the projector onto that subspace 7,
of 7~ which carries all the r,,, multiples of the irreducible
representation (m,n). Then

(2.9)

S P =1,

mn

(m,nleS
PmnPkl = Pmnsmkanl’ (m’n)’(k’l )GS
[PonrZ,, ] =0. (2.10)

The space 7 is a direct sum of the subspaces 7~,,,. Now
define the operators

M =

{m,njeS

mP,,N= Y nP,, (2.11)
(m,n)eS

and note from Egs. (2.10) that
M2, ]1=0=[NZ,]
[MN]=0. (2.12)

Thus M and N are commuting sl(2,C ) scalars. We note also
from Eqgs. (2.8) and (2.11) that on all of 77,

C,=2M(M+1)+2N(N + 1),
C,=MM+1)—N(N+1). (2.13)

These operators M and N are more convenient than C,
and C, as labeling operators for the subspace 7~,,,, of 7.
While M and N by definition are functions of the projectors
P, ,itisimportant to see that, because the eigenvalues (m,#)
of the pair (M, N ) distinguish the subspaces 7", onto which
the P, project, these projectors can be regarded as func-
tions of M and N. Any operator which commutes with M
and N must commute with all the P, , and vice versa. A basis
in 7" can be adopted, in which (the matrices of) all the opera-
tors 3, have the same block diagonal structure, each block
corresponding to an irreducible representation of sl(2,C). In
such a basis, the operators M, N, and P,,, are diagonal.
Within any one of the blocks mentioned, M and N are multi-
ples of the identity by the approporiate m and » values. We
shall call such a basis an sl(2,C ) basis, although it must be
noted that M and N do not form a complete set of commuting
operators on ¥ if some of the r,,, are greater than unity.

In the case of interest, where 7 is the index space of the
field ¢, and we have therein a representation of %~ which is
being regarded as a representation Z of sl(2,C ), we see from
Egs. (2.3d) and (2.13) that

(.MM + 1)} =0=[4,N(N+ 1]]. (2.14)

It follows that A commutes with the positive, diagonalizable
operators (M + })* and (N + ). But if a matrix 4 commutes
with a diagonal, positive matrix B, then 4 commutes also
with the positive, diagonal, square root of B. Thus A com-
mutes with (M + 1) and (¥ + 1), and we have

[AM]=0=[4,N] {2.15)
and hence
(4,P,,.]=0. (2.16)
1928 J. Math. Phys., Vol. 23, No. 10, October 1982

It is not possible to prove that 4 can be taken to be
diagonal in an sl(2,C) basis, as Mack et al.** claim to do in
their Lemma 1, using Schur’s lemma. The possible occur-
rence of repeated irreducible represenations of s(2,C ) causes
the difficulty. A simple example counter to their result is
provided by the representation of %~ on two-component
fields ¥ with®’

50 9 - ) o0 Yo

which shows, indeed, that we cannot a priori assume the
diagonalizability of 4, and also that representations of %~
exist, more complicated than those described in Ref. 43.

A complete description of all finite-dimensional repre-
sentations of % is not available. However, we shall see that
only a subclass of such representations arises in connection
with massless fields obeying locally conformal-invariant
field equations. In particular, only representations’® of Class
2 (though not even all representations of this class) will
arise:

Definition 2.1: A representation of % will be called of
Class 2 if it is finite-dimensional and its basis operators Ky»
4 and 2, satisfy

K, i =0, (2.18a)
2" =4+ ik, (2.18b)
A+ (C,+ )42+ (C)* =0 (2.18c)

where C, and C, are the s1(2,C ) invariants defined in terms of
the X, as in Egs. (2.7).

The representation defined by Eqgs. (2.17) provides a
rather simple example of a Class £ representation, although
it is not one which arises in connection with locally confor-
mal-invariant massless field equations, as we shall see.

It is important to show that this definition is a sensible
one, to the extent that Egs. (2.18) form a % -invariant set.
These equations are evidently invariant under transforma-
tions generated by %, and 4. For transformations generat-
ed by «,,, the invariance of Eq. (2.18a) follows because
[«,..x,] = 0. Consider Eq. (2.18b) and the commutator

[x, 2k — (4 + K, ]
= ig, K K. (2.19)
When Eq. {2.18a) holds, this commutator vanishes, and the

invariance of Eq. (2.18b) follows. Now consider Eq. (2.18¢)
and the commutator

[£..4*+(C,+ 1A% +(C)] (2.20)
It can be deduced, using the commutation relations (2.3),
that
[.,4%)=(—4i4 3-64%+4id + 1)k,
[£,,(Ci + 1)4 %]
= (4 — iP[k,,C, + 1]+ (C, + )[k,.47]
= (4 — 22,6 + 3k,) +(C, + 1) — 2i4 — 1)k,
[k, ACP) =22, 2%3, & + 13,3, (2.22)
+ (20C, — 6i) 2, k" + 3Cik,,. (2.23)

(In deriving the last of these equations, we found it helpful to

(2.21)
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use the identity
(C2=1C\(C, + 1) — 12,272, 3, (2.24)

which follows from Eqs. (2.72) and (2.74) in Lemma 2.5 be-
low.) When Eq. (2.18b) holds, Egs. (2.22) and (2.23) reduce to

[x..(C,+ 14 2]

={(4 — 224 + 1) — (C, + 1)2id + )}k,  (2.22))
[«.(C.)*) = {204 + i)’ + 7(4 + i)
+ (2iC, — 6i)4 + i) + 3C, }K,,, (2.23)

and, when combined with Eq. (2.21), enable us to see that the
commutator (2.20) vanishes, so that Eq. (2.18¢c) is indeed #"-
invariant.

Let us investigate something of the structure of an arbi-
trary representation .7 of class £, with representation space
7". Regarded as arepresentation # of's1(2,C ), it will have the
form (2.9), for a finite set S and positive integers r,,, deter-
mined by 7. We introduce the projectors P,,, and the oper-
ators M and N as in the general discussion above. We first use
the P, to write 7" as a direct sum of subspaces in two differ-
ent ways:

(1) Let S, denote the set of distinct values 6 of |m — n|
obtained as (m,n) runs over S. Every such number @ is a non-
negative integer or semi-integer. For each € in S, define the
projector

Po= S P,. (2.25)
{m,n)eS
|lm—nl=86
It follows that
S Py=1, PyP, =Pybsp, 60'S, (226
6eS

Then 7" is a direct sum of the subspaces 7" ,,,0€S,, where
P e =P?. (2.27)
It can be seen that on 77, the operator (M — N )* has the
value 82,
(2) Let S, denote the set of distinct values v of
(m + n + 1) obtained as (m,n) runs over S. Every such num-
ber v is an integer or semi-integer, greater than or equal to 1.
For each v in S,, define the projector

P,= Y P, (2.28)
(m,njes
m+n+1l=v
It follows that

Y P,=1, PP, =P,6,, wWeS,. (2.29)
veSs,

Then 7" is a direct sum of the subspaces 7,,,v€S,, where

7 =P, 7. (2.30)
On 77,, the operator (M + N + 1) has the value v.

We are not concerned with possible orthogonality or
identity relations among the various P,, and P,,. However,
we note that as functions of the P, ,, they all commute with
each other, and with 4, 3 v+ M, and N. Now consider Eq.
(2.18c) which by definition holds in .7". Since the operators
M and N satisfy Eqs. (2.13), we can write Eq. (2.18c) as

[A2+M—-NPA2+(M+N+1P1=0.  (2.31)

1929 J. Math. Phys., Vol. 23, No. 10, October 1982

Define the operators

P,= —[4°+(M—NP1[4MN +2M + 2N + 11!

P,=[4%+ M+ N+ 1P][4MN +2M + 2N + 1]},
(2.32)

noting that (4MN + 2M + 2N + 1)

[=(M + N + 1) — (M — N)*] has a well-defined inverse be-

cause M and N are commuting and non-negative. It follows

from Eq. (2.31) that

P, +P =1, PP, =PP, =0,

PP, =P, PP, =P,. {2.33)
Thus P, and P, are projectors, and with their help we can
write 7" as a direct sum of two subspaces 7, and 7", where

7, =P.7.7,=P7. (2.34)

It follows from Eq. (2.31) thaton 77,, [4 2 + (M + N + 1)]
vanishes, while on 77, [4 ? + (M — N )?] vanishes. We note
that P, and P, as defined commute with all P, ., and hence
with4,2,,, M, N, P4, and P,,.
Finally, we define the projectors

Pa9=PaP18=P19Pa’ €S,

P,, =P,P, =P, P, veS,. (2.35)
Since it follows that
S Py=P, > P,=P, (2.36)
€S, veS,
we have
Y (Pag + Py )= 1. (2.37)
feS,
ves,
Furthermore, it is easily seen that
PaGPaG’ = Paefsea'» 6,6 ’531
PbVva’ = va‘sw’ ’ V’VIESZ
PP, =P, P,=0, 06€eS,veS,. (2.38)

We can therefore write 7~ as a direct sum of subspaces
7 0,7 5 (OES,vES,) With

Vo =P, 7, =P, 7. (2.39)
Note that some of the projectors P,4,P,, could vanish identi-
cally. (Indeed, this could even be true of P, or P,.) Then the
corresponding 7", or 77, is the trivial subspace of 7.

It follows from what we have said above that on any
vector in 77,

[A’+M+N+1)P}=0 (2.40a)
M—-NP=6? (2.40b)
and hence, in particular,
B2—1) =[A2+2M (M + 1) + 2N (N + 1)}
=(4%+C). (2.41)
Similarly, on any vector in 77,
[A2+M—N)P1=0, (2.42a)
M+N+1)=yv, (2.42b)
and so
M7+ C)=(*—1) (2.43)
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We shall now show that each of the subspaces 7,7,
is # -invariant. The operator (4 > + C,) commutes with 4
and 3, . Consider the commutator

[42+Cik, ] =244 + ik, — 25, K" (2.44)

In the representation .7, the right-hand side vanishes by
virtue of Eq. (2.18b). It follows that in .77, the operator

{42 + C,)is a # -scalar. Since the subspaces 7", corre-
spond to distinct eigenvalues of this operator, they are not
mixed together under the action of %", Similarly, the sub-
spaces 7", are not mixed together, nor are the subspaces
7 . and 77, , with 0 #v. It remains to show that in a case
with 8 = v = p, say, the subspaces 7", and 77, are not
mixed together. Now on 7, we have (M — N )5’ =p?, 50
that any v,€7”,, can only have components belonging to
irreducible representations (m,n) of si(2,C) with

|m — n| = p, i.e., the representations (p,0), {p + 1,4}, and
(0,0), (10 + §),-+- Similarly, any v,€7”,, can only have com-
ponents in representations {(m,n) with (m + n + 1) =p, i.e,,
the representations (p — 1,0), (0 — 3,4),..., (0,0 — 1). But these
two sets of sl{2,C ) representations are disjoint, and moreover
cannot be linked by the operators 4, 2, and «,, : the opera-
tors 4 and X, cannot link inequivalent representations of
sl(2,C) since they commute with M and N; and the four-
vector operator ,, can link”® a representation (m,n) only
with(m + Ln + ), (m+Ln—4,(m—Ln+Landm — |,
n —4). Thus, 4, %, and «,, cannot link the subspaces 7~
and 77, which are therefore separately invariant under the
action of #". Thus we see that the decomposition

yzE?ynaBe;Sybv

geS,

(2.45)

is a decomposition of 7~ into % -invariant subspaces. It de-
fines a decompositions of .7 into a direct sum of subrepre-
sentations of 7.

It follows that if the given representation .7 is indecom-
posable, only one of the subspaces 7”,,,7",, is nontrivial.

Definition 2.2: A representation of #” of Class £ will
be called a (@ )-representation, where  is a non-negative
integer or semi-integer, if its basis operators 4, «,,, 2,,, and
the non-negative operators M,N defined by Egs. (2.11), sa-
tisfy Eqs. (2.40). It will be called a {v}-representation, where
v(v>1) is an integer or semi-integer, if Egs. {2.42) are satis-
fied.

Then we have proved the following:

Lemma 2.1: Any indecomposable representation of %~
of Class 2 is either a (@ )-representation for some 8, or a
{v}-representation for some v.

In the context of this work, we find that {v}-representa-
tions are not of interest. This is fortunate, because we shall
see that in every (6 )-representation 4 is diagonalizable,
while the same cannot be said of every { v -representation, as
the example of a { 1}-representation defined by Egs. (2.17)
shows. The structure of (@ )-representations is comparative-
ly simple. Let us look at this structure a little more closely,
for an arbitrary (0 )-representation .7, with representation
space 7. Noting that Eq. (2.40a) holds by definition, we
define the projectors
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P,= —L[A+iM+N+1M+N+117",

P_= +L[A—iM+N+1IM+N+1]7", (2.46)
which satisfy

P, +P_ =1 PP =P ,PP =P,

P.P_=P_P, =0 (2.47)

Then 7 is a direct sum of the corresponding subspaces 7~
and 77 _,

¥y ,.=P 7V, V_=P_7. (2.48)
On 77, we have

A= +iM+N+1), (2.49)
and on 7" _ we have

A= —iM+N+1). (2.50)

Because P, and P_ commute with 2, , the subspaces 7,
and 7 _ are separately sl(2,C )-invariant. It follows that we
can choose bases in these subspaces such M and ¥, and hence
4, are diagonal. This justifies our assertion above that 4 is

always diagonalizable in a (8 )-representation. Now on 7~

we also have, by definition of a (@ )-representation,
(M—-Ny =62 2.51)

and it then follows from Eq. (2.49) that on 7, —i4 has
eigenvalues belonging to the series (6 + 1), (6 + 2),

(6 + 3),..., while on #"_ it has eigenvalues belonging to the
series — (8 + 1), — {0 + 2}, — {6 + 3),~-. Consider the ef-
fectof 4,2, ,and«, ona basis vector in 77 _. Since 4 and
S commute with — i4, and so cannot change its eigenval-

ué, they must carry such a vector back into 7" _. Now Eq.
(2.3c) says that «, converts an eigenvector of — i4 with ei-
genvalue §, intoone with eigenvalue (§ + 1). Since any eigen-
value from the first series above is greater by at least two
units than any eigenvalue from the second series, it follows
that «,, carries no basis vector from 7”_ into 77, . In this
way we see that 77 _ is invariant under the action of the
operators of %", By a similar argument we deduce that 7~
is # -invariant, and we conclude that the decomposition
(2.48) defines a decomposition of 7 into a direct sum of
subrepresentations. If 7 is indecomposable, one or the oth-
erof 77,2 _ must be trivial.

Definition 2.3: A (9 )-representation of #” willbe called
a (@, + )-representation [respectively, a (6, — )-representa-
tion] if, with the same notation as before,

A= +i{M+N+1) {2.52)
[respectively
A= —i{M+N+1)]. {2.53)

0

Then we have proved:

Lemma2.2: Any indecomposable (8 )-representation is
either a {6, + )-representation or a (6, — )-representa-
tion.

Comment: A similar analysis cannot be performed for
an arbitrary [v]-representation. In place of the operator
(M + N + 1) in Eq. (2.46) above we would have (M — N),
which is not always invertible. [See again the example de-
fined by Egs. (2.17), for which M = N =0.]
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We can carry our investigation of (€ )-representations
still further. Consider a {6, + )-representation .7, with re-
presentation space 7”, which has 8 > 0 but is otherwise arbi-
trary. As for the general case of a Class 2 representation
described above, introduce the projectors P,,,, (m,n)eS. In
the present case, (im — 1)’ = @2 for every (mn)eS. Let us split
the set S of ordered pairs (m,n) into two subsets S, and S
according as (m — n) = + @ or — 6, and define the corre-
sponding projectors

P, = z P, . .Ps= 2 P,.. (2.54)
(m,njeSy (m,nleSg
Then
P, +P;=1, PP, =P, PyP;=Pg
PPy =PsP, =0, (2.55)

and we can write 7~ as a direct sum of the corresponding
subspaces 7", and 77,

V=PV, V=P 7. {2.56)
Then, on 77,

M—_N= +6, (2.57)
while on 77,

M—-_N= —0. (2.58)

It follows that vectors in 7~ belong to certain representa-
tions (m,n) of sl(2,C) from the series {6,0), (& + 1,3),

(6 + 1,1),~, while thosein 7" belong to certain representa-
tions (m,n) from the series (0,6 ), (1,6 + 1), (1,6 + 1)---. Itisat
once clear that 4 and 3, , which commute with M and N,
leave the two subspaces 7", and 7”4 separately invariant.
As we remarked before, x,, can only link the representation
(m,n) with (m + 4, n + }) and (m £ 4, n — 1). Then it follows
at once that, at least for 8> 4, «,, leaves 7", and 7", separa-
tely invariant. In the case 8 = }, it is at first glance conceiv-
able that «,, could link a vector in 7, belonging to (4,0) with
onein 7", belonging to (0,4), and one in 7~ belonging to(1,})
with one in 77, belonging to (},1) etc. However, we recall
that on 7, by definition of a (6, + )-representation,

A=iM+N+1) (2.59)

so that 4 has the same value 3i/2 on the first two vectors
mentioned, and the same value 5i/2 on the second two, etc.
But Eq. (2.3¢) shows that «,, cannot transform one eigenvec-
tor of 4 into another with the same eigenvalue. In this way
we see that for every 6, 8 > 0, the two subspaces 7", ,7 7, are
separately # -invariant, and the decomposition of 7~ de-
fines a decomposition of 7~ into a direct sum of subrepresen-
tation. If 7 is indecomposable, one of 7”,,7"; must be tri-
vial. (The case 8 = O is special: there is just one subspace, on
which M = N.) A completely analogous analysis can be giv-
en in the case of a (6, — )-representation, with 8> 0.

Definition 2.4: A (6, + )-representation of %" (with
6> 0 or @ = 0) will be called a [ + 6, + ]-representation if,
with the same notation as before, Eq. (2.57) holds:

It will be called a [ — 8, + ]-representation if Eq. (2.58)
holds:

M—-N= -6
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Similarly, we define [ + 8, — }-representation as a (6, — )-
representation in which Eq. (2.57) holds; anda[ — 8, — ]-
representation as one in which Eq. (2.58) holds.

Then we have proved

Lemma 2.3: Any indecomposable (6, + )-representa-
tion is either a [ + 6, + ]-representation, or a [ — 6, + ]-re-
presentation.

Rather than refer [ + 6, + ]-, [0, + ]-, and [ — 6, + ]-
representations, where 20 is a positive integer, we can hence-
forth refer simply to [4, + ]-representations, with 24 an in-
teger, positive, negative or zero. Such a representation is
characterized by Eqs. (2.18), and in addition®

M—N=4, (2.60a)
A= +iM+N+1) (2.60b)

Similarly, a [4, — ]-representation is characterized by Eqs.
(2.18) and

M-N=A4, (2.61a)

A= —iM+N+1) (2.61b)
We shall give one further result concerning the structure of
such representations. Recall that 4 is diagonalizable in these
cases.

Definition 2.5: A [A, + ]-representation will be called a
[A, + ;l,u)-representation, where / and u are non-negative
integers with u 3/, if the eigenvalues of ( — i4 ) are

AL 414+ LA+ 4 2| d |+ + 1. (2.62)

Similarly, a {4, — ]-representation will be called a [4, — ;/,u]-
representation if the eigenvalues of ( — id } are

—(AT+I+1), (A +1+2)..,
— (A +u+1) (2.63)
O

Lemma 2.4: An indecomposable [4, + ]-representation
is a [A, + ;1,u]-representation for some / and u; and an inde-
composable [A, — }-representation is a [A, — ;/,u]-represen-
tation for some / and u.

Proof: Consider an indecomposable [A, + ]-representa-
tion, with representation space 7". Then Eqgs. (2.60) hold, so
that

—iA=2M+1—-A)=2N+1+4+24). (2.64)
Because 2M and 2V have non-negative integral eigenvalues,
we see that every eigenvalue & of ( — i4 ) in this representa-
tion is of the form

S=A|+r+1 (2.65)

with 7 a non-negative integer. If there is only one such ¢, we
set / = t = u and the proof is complete. If there are more
than one, we order them thus:

<K=t <t,<<t, =u. (2.66)
Then we have to show that ¢, ¢,---r, comprise all the integers
from / to u. Suppose this is not the case, so that for some
integral value of { between 1 and n — 1,

Loa>t+ L (2.67)
Since ( — i4 ) is diagonalizable, 7" is the direct sum of the
eigenspaces of ( — id ). Let 77, be the direct sum of the eigen-
spaces corresponding to values of ¢ not greater than ¢;, and

A. J. Bracken and B. Jessup 1931

Downloaded 16 May 2007 to 130.102.128.60. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



7"} the direct sum of those corresponding to values of ¢ not
less thant, . Then

=907 (2.68)

Since 4 and 3, commute with ( — id ), they leave 7”; and
7! separately invariant. According to Eq. (2.3e),

AK# =K, (4 + i),
so the action of «,, is to increase the eigenvalue of { — id ) by
one unit. Because of the inequality (2.67), it follows then that
K, cannot carry a vector from 7, into 77/, nor from 7/ into
7";: these spaces are also separately invariant under the ac-
tion of k,, . In this way we see that Eq. (2.68) defines a decom-
position of 7" into a direct sum of # -invariant subspaces.
Since the given representation is indecomposable, we have a
contradication, and the inequality (2.67) cannot hold. An
analogous proof applies in the case of an indecomposable
[A, — J-representation.

Combining Lemmas 2.1, 2.2, 2.3, and 2.4 we have

Theorem 2.1: An indecomposable representation of %~
of Class £ must be one of the following types:

(i) [A, + ;Lu] or [A, — ;,,u], for some integer or semi-
integer A (positive, negative or zero) and some non-negative
integers / and u (u>1).

(i) {v], for some integer or semi-integer v(v > 1). O

Comments:

1. We are not concerned at this stage with proving the
existence of any of these representation types. The only Class
2 representation we have exhibited so far is the {1}-repre-
sentation defined by Egs. (2.17).

2. Itis, of course, not true that a given representation of
any one of these types need be indecomposable. Moreover,
we have not proved that any two given representations of the
same type (for example, any two [, + ;/,u]-representations
having the same values of A, /, and u) are necessarily equiva-
lent, even if they are both indecomposable.

3. We shall refer to ¥(x) as an (indecomposable) Class £
field if its index space carries an {indecomposable) represen-
tation of #~ of Class 2. Similarly, we shall refer to (inde-
composable) [, + ;/,u]-fields, {v}-fields, etc.

We complete this section by presenting some results
valid for any representation of the Lie algebra sl(2,C)
{(whether or not finite-dimensional, and whether or not con-
tained in a representation of %7). These results will be re-
quired below.

Lemma25:Let2,, (= — 2, )belinear operators de-
fined everywhere on a vector space, and satisfying there the
commutation relations (2.3a) of s1(2,C). Define the Casimir
operators C, and C, as in Egs. (2.7). Then the following iden-
tities hold on that vector space:

W3, 2"*=3,3"=iCs,*+i3,* (2.69)
where

3, = 16,2 (2.70)

(i) 2,, 2" =C8,* + 3,3 - 23,% (2.71)

(iii) 2,3 *3,, 2" — 45, 23, +(C, - 5)%,, 2"
—2(C,—1)2,"— [C,—(C)*]8,"=0; (2.72)

(iv) 3,372, 37— (C, + 1)3,. 2 +(C,)8,” = 03;
(2.73)
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v)2,,27*E "= —2C,. (2.74)
If, in addition, the vector space is finite-dimensional, so that
the operators M and N can be introduced as in Eqgs. (2.11)
and (2.13) above, then the following identities also hold:
(vij[ —iZ,, —(M—N+1),,]
X[ —iZ”"+(M—N—1)g¥]
X[—iZ,, —(M+N+2g,]
X[—iZ7+M+Njg”] =0 (2.75)
(vii) [Z,, — (M —Ng,.]
X [X* + (M — N)g**]
X[2p0 —(M+N+1)g,,]
X[Z+ M+ N+1g"]=0. (2.76)
Proof. (i) This result is obtained by substitution of var-
ious values for 1 and A, and use of the commutation relations
(2.3a). For example, with z = 0, A = 1 we have
S#VZVA =3‘0222l +3~0323l’
— _23122[ +2‘21231’
— IZ 23’
=i3,, (2.77)
as required.
(ii) We note that

E;Wp,,é‘”aﬁ = (ZZ? - (iz_g) + (jzg)
Q,
- (Jff) N (;ﬁ) - (Upf), 278)

where, for example,

(Mﬁ ) =5,%6,%5,°. (2.79)
upo
Then we have

42 Itvz = e-;tv;ooewmgz poza ’

=8, %P3 5 —~ T3 )
+3%3, —3¥3,
+ 33 5 - 23,,, (2.80)
which yields the result (2.71), with the help of the commuta-
tion relations (2.3a).

(iii) Define
A= —iX,"—6,"
B, =3, {2.81)

and, suppressing tensor indices for the moment, write
AforA,", 1ford,”, Bfor B,

AoA forA#’lAA”, A°cB forAH‘BA”, (2.82)
and so forth. Then Egs. (2.69) and (2.71), respectively, read as
A°B = BoA =C,, (2.83)
BoB = — A°A+ C, + 1. (2.84)

It follows from the second of these, multiplying on the left or
right by 404, that

AoA4oA404 = — A°A°BoB + (C, + 1}404. (2.85)
Using Eq. (2.83) twice in succession we see that Eq. (2.85)
reduces to
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Aododod — (C, + 1)404 + (C,)* =0,

which is equivalent to Eq. (2.72).
{vi) On substituting for C, and C, in Eq. (2.72), in terms
of M and N from Egs. (2.13), we get

[4— (M —N)o[4 + (M — N
[A—(M+N+ 14+ (M+N+1)]=0,

which is equivalent to Eq. (2.75).
(iv) Multiplying Eq. {2.84) on theleft or right by BoB, we

(2.86)

(2.87)

get

BoBoBoB = — BoBoA4°cA4 + (C, + 1)B°B. (2.88)
Again using Eq. (2.83) twice, we get

BoBoBoB — (C, + 1)BoB + (C,)* =0, (2.89)

which is equivalent to Eq. (2.73).
(vii} On substituting for C, and C, in Eq. (2.73} in terms
of M and N from Egs. (2.13), we get
[B—(M~Nl°[B+(M—N]°
[B-M+N+1o[B+M+N+1)]=0,
which is equivalent to Eq. (2.76).

(v) Using the commutation relations (2.3a), it is straight-
forward to show that if

(2.90)

r,=2,>"3, —323,°%, —iCg,., (2.91)
then

r,=-r,. (2.92)
It follows that I, =0, whence

2.2 33, T* —4iC, =0, (2.93)
which is equivalent to Eq. (2.74). O

Comment:

1. Some of the identities given here were presented ear-
lier by Bracken and Green® in the general context of identi-
ties for the generators of representations of SO(n). O

3. CONDITIONS TO BE SATISFIED FOR LOCAL
CONFORMAL-INVARIANCE OF THE WAVE EQUATION

We are concerned with massless fields, and we shall
take that to mean that they satisfy®' the wave equation

Oy = — PP, =0. (3.1)

Definition 3.1: This equation will be said to be locally
conformal-invariant on a vector space % (C &) consisting of
solutions, if % is .« -invariant; that is to say, if €% implies
Xye% , where X is any element of the Lie algebra .« spanned
by D, P, K, and M,,,. U

Comments:

1. We do not require that % must consist of all the
solutions of Eq. (3.1) which lie in &. Nor do we require that
if Y is a solution, then so is X1, where X is any element of
/. As we shall see, such requirements would rule out of
further consideration such interesting cases as the free elec-
tromagnetic field £, (x), where conformal invariance of the
wave equation holds not on the space of all smooth solutions
of that equation, but only on the subspace of fields satisfying
certain extra equations, viz., Maxwell’s equations.

2. If ¢ is to be a potential for a massless field y of a
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different type [e.g., with index space carrying a different fin-
ite-dimensional representation of s1(2,C )], then it may not be
appropriate to require that ¢ satisfy the wave equation; nor,
when it does, to require local conformal-invariance of this
equation in the manner defined. One might only expect these
requirements to be met, roughtly speaking, “up to a change
of gauge” of ¥. Our results are relevant to a potential ¢ only
in the restricted situation where one chooses a gauge such
that ¢ satisfies the wave equation, and asks if this equation is
locally conformal-invariant when 3 transforms as in Egs.
{2.4) and (2.5}, supplementary gauge transformations being
suppressed. It is known that in the case of the four-vector
potential of the free electromagnetic field, the equation
04,, = 0 is not conformal-invariant in this sense.”>*>** We
shall see that this result generalizes to all potentials. The only
fields for which the wave equation is locally conformal-in-
variant are fields ““having invariant helicity.”

In order to prove our first result, we exploit the isomor-
phism of .« and the Lie algebra so (4,2). Following Mack et
al.,** we define J ,( = — Jp,), 4,B =0,1,2,3,5,6 by

S =M,,, Jos =D,

T =3Py —K,), Jou = 4P, +K,).

Then the commutation relations (2.6) can be written as

i[Jagden ] =8acdsp + 8spJac — 8acdap — &andaes
(3.3)

(3.2)

where the extended metric tensor is diagonal, with
8ss= — 1, 8e6= + 1.

Theorem 3.1: (1) The wave equation (3.1) is locally con-
formal invariant on a vector space % C & if and only if % is
</ invariant and every field ¢ in % satisfies

WAB',} = 0! A’B = 0,192y315;6’ (34)
where
Wis =Jacd S +Jscd S0 + a5 cnd P (3.5)

(2) Any one solution in & of Egs. (3.4) generates under
the action of . an .«/-invariant space of such solutions, on
which the wave equation is locally conformal invariant.

Proof: (1) Suppose that the wave equation is locally con-
formal invariant on %, and €% . It follows from Definition
3.1 that

["'[[P#P,"Xl],lea-an ]¢=0 (3.6)

for any finite set of operators X,, X,,....X, in .«&. Now from
Egs. (3.2),

PuPu =(Jsu +J6y)(‘]5#+"6#)
= "JSAJAS _JMJA() _JSAJA(; _JGAJAS
= = Wss — W — Wi (3.7)

Since W, 5 by construction is an so (4.2)-tensor operator, we
have (on &)

i[W s o 1=840Wcs — 84cWhns
+ 80 Wac — 8acWap» (3.8)
and so
i[P;;P“’J5v] = - WS‘V h st
[[PFP”’JSV ]9‘]5p ] = %v +gvp WSS + gvp W65' (3'9)
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It then follows from Eq. (3.6) that

W, =0, p#v (3.10)
and

(Woo+ Wss + Weslp = 0,

(Wi — Wss — Weslo =0,

(W — Wss — Weslb =0,

(Wi — Wss — Weslb =0. (3.11)
Similarly, from the commutator

[[PMP#’JS()]rJ(u()] = Wee — Woo + Wes (3.12)
we deduce that

(Wee — Woo + Weslh = 0. (3.13)

From Eq. (3.9) we also have, provided p #v,

i[[ [P.PHIs, ) s, 150 ] = 8o Wsy + 8o Ws,, (3.14)
from which we deduce (taking o = p#v) that
Ws, v =0.
Similarly, from the commutator {p # v here)
([[[P.P"Ts5, 15y 16w ] =8po Wer + 8us Wy, (3.16)
we deduce that

(3.15)

We¥=0. (3.17)
Finally, from the commutator
[[[[P.P"Tso]Is1]51)e0] = Wes
we have
Wesp = 0. (3.18)

Noting from the definition (3.5) that
WAA =Woo— Wi — Wy — Wy — Wi+ Wi, =0, (3.19)

we can readily see from Eqgs. (3.10-3.13, 3.15,and 3.17-3.19)
that all of Eqgs. (3.4) hold.

Conversely, suppose that every ¥ in a vector space
U (C D) satisfies Egs. (3.4). Then by Eq. (3.7) every ¢ in%
satisfies the wave equation. If in addition % is .&/-invariant,
then the wave equation is by definition locally conformal-
invariant on % .

(2) Suppose (€7 ) satisfies Eqgs. (3.4). Then it is obvious
from the relations (3.8) that ¢’ = X X,---X, ¢ also satisfies
these equations, where X\ X,,.... X, is any finite set of ele-
ments of .. Let %, be the vector subspace of & consisting
of all finite linear combinations of all such ¢. Then % , is an
&/ -invariant space of solutions in & of Egs. (3.4), and so by
the first part of this theorem, is a space on which the wave
equation is locally conformal-invariant.

Comments:

1. This theorem enables us to replace the problem of
finding for which field types there exist ./ -invariant spaces
of solutions of the wave equation with the simpler problem of
finding for which field types there exist any solutions of the
Equations (3.4). This is the advantage of having found an
irreducible .7 -tensor set of equations.

2. There is an obvious generalization to any situation
where one has a representation .«/’, on a vector space &', of
the so(4,2) Lie algebra, with basis P/, ,K ;,,D ", and M },,. The

nr
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equation
P, Py =0, ¢e’ (3.20)

will hold on an .7’-invariant subspace %' of &' if and only if
every vector ¢’ in %' satisfies

WAB’l// =0, (3-21)

where W,," and J, ;' are defined in terms of P, etc., as in
Eqgs. (3.2)and (3.5). And any one vector in &’ satisfying Eqs.
(3.21) will generate under the action of ./’ an .&/’-invariant
space of such vectors.

3. Barut and Bohm®* have shown that the self-adjoint
generators j,,( = — jp,) of any irreducible unitary repre-
sentation of SU(2,2), in the ladder series, satisfy (on a suitable
domain)

jACjCB +jBCjCA + %gABjCDJCD =0 (3.22)
These representations are associated with the mass-zero re-
presentations of ISL(2,C ), as remarked in the Introduction,
and this result can be seen to be a corollary to Theorem 3.1—
or rather, to its generalization described in Comment 2.
However, we emphasize that we do not assume the represen-
tation (unitary or otherwise) of any group on the fields ¢ and
we are not concerned with any Hilbert space structure for
such fields.

We proceed to investigate the content of the (20 linearly
independent) equations (3.4), writing them out in SO(3,1)-
tensor form. We have:

A =p, B=v:(M,_ M", +M,_M", —iKP

up v

— K P, — P K, —P.K, )Y
= — g, Ucpd PN (3.23a)
A=y, B=5[—M, (P*—K")+ (P —K"M,,
—(P, +K,)D—D(P, +K,)]¢=0. (3.23b)
A=u, B=6[—M, (P +K")+(P"+K"M,,
—(P,—K)D—D(P, —K,)|¢=0. (3.23¢)

A =5 B=5[D?+yP*P, —K"P, — P"K, + K"K, )¢
= — Wepd P, (3.23d)
A=5B=6P*P, )=K"K, (3.23¢)
A =6,B=6:[D>—(P*P, + K"P, + P"K, + K"K,) ¢

= - %(JCDJ CDW’- (3.23f)
Also, we note that
Jepd P = M, M" + K*P, + K*P, — 2D?,
=M, M" + 2K*“P, + 8D — 2D 2 (3.24)

using Eqgs. (2.6). A set of equations equivalent to Egs. (3.23)
and more convenient than them is obtained by taking certain
linear combinations and using the commutation relations
(2.6) to reorder factors in some products. We get

P*P, 9 =0, (3.253)

K“K,¢=0, (3.25b)

M, P =(i—D)P,¢, (3.25¢)

M, KYy=(i+D K, ¢, (3.25d}
M M, +M M —K,P, — K. P W

= — g, M, M —2D+2D ), (3.25¢)
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and
K P'yYy=M, M" —4iD + 4D . (3.26)

We note also that when Eq. (3.26) holds, we have from Eq.
(3.24)

Jepd P = (3M,,, M*” + 6D ). (3.27)

Finally we note that Eq. (3.26) is redundant, as it follows
from Eq. (3.25¢) by contraction. We therefore drop it from
the set, leaving again (1 + 1 + 4 + 4 + 10 = )20 equations
to be satisfied by ¢.

We now obtain an equivalent set of 20 equations involv-
ing the generators £, ,4, and «,,, by substituting into Egs.
(3.25) the expressions (2.5) for M,,,,D and K, . At first sight it
appears that the resulting equations will be very complicat-
ed, but great simplifications occur. For example, consider
the third equation. We have from Egs. (2.5)

M, P =x,(PP)—(x,P)P, +2, P (3.28)
and
(i—D)P,=(i—x,P"—A)P,, (3.29)
and so
M, Py =(i—D)P,y=[x,P,P)+ 2, P"]¢
=(i—A4)P, ¢ (3.30)

Since we shall retain P, Py = 0 as one equation in our set,
Eq. (3.30) reduces to

3. PY=(i—A)P,V. (3.31)

It is no surprise that all x-dependent terms disappear in the
transition from Eq. (3.25c) to Eq. (3.31): as Eqgs. (3.25) are
locally conformal-invariant, they are locally translation-in-
variant. This can be exploited in the reduction of the remain-
ing equations in the set (3.25). We obtain

Theorem 3.2: Equations (3.4) are equivalent to Egs.
(3.25). For fields on which the generators of infinitesimal
conformal transformations have the form (2.5), they are also
equivalent to the following:

P,P'y=0, (3.32a)
K,k =0 (3.32b)
z,uvPV'/’ = (l -4 )Py ¢y (332C)
2 Y =(+A4)k. 9, (3.32d)
(2,37, +2,2°, —&,P, —k L)W

= — 8. (2,27 +24% - 24 . (3.32¢)

Proof: Suppose Egs. (3.25) hold, and consider Eq.
(3.25d)

M, Ky =(i+D)K,¢,
=K,(2 + D)y, (3.33)

using Eq. (2.6b). Noting the forms (2.5) of M,,, and K, we
proceed to simplfy the left-hand side. We have

(x, P, — x, P )K"Y
= [2x,(x,P*) + 8ix, (x,P”)
—2ix,(x,P*) + 2x,(x, P4 + 8ix, A
+2x,x,(4 —i))P¥ + x,,(P,k") — 2(x,x")P,, (x,P*)
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—2ix,(x,P") + (x,x")(x, PP)P, + 2ix,(x,P")

- 2(x,x")P,A — 2ix, A + 2x,P,x°2," — (x,k")P, |,
(3.34)

and
3. K= 20, PA3,, — (x,x)i— 4)P,
+ 2%, 4+2x,3, 37" +3, 4,
(3.35)

noting Eqgs. (3.32a) and (3.32c), already seen to follow from
Eqs. (3.25). The right-hand side of Eq. (3.33) is

[2x,(x, P + 2x,(x,P")A + 4ix,, (x,P") — (x,x")P, (x,P*)
— (x,x")P, 4 - 2i(x,x"P, + 2x,(x,P")A
+2x,4% + 4ix,A
+ °(x, P42, +2x°2, A + 4ix’ S,

+ (x, Pk, + &, 4 + 2ix, |¢.
Combining these results, we see that Eq. (3.33) is
[x.(P.") + 2ix, 4 — (x,&")P, +2x,%,, 3"

+ 2,6 — 2,47 - 2ix°%,,

— (%, Pk, —K,4A — 2k, J¢ =0,

which we write as AY = 0.

Now we note that since Egs. (3.25) form an &/ -invariant
set, P, ¢ satisfies those equations whenever 3 does. There-
fore it is also true that

(3.36)

AP, =0, (3.37)
and hence that
[4,P; ]y =0. (3.38)

Evaluating the commutator appearing here, we then get
from Eq. (3.36)

[gl,u (KVP V) + ZIgAMA - KAP,u + 22;11/2 VA

-2, 47 =23, —x, P, 19 =0, (3.39)
and Eq. (3.36) then implies further that
[Z.6"—k,2i+4)]¥ =0, (3.40)

which is Eq. (3.32d). Contracting Eq. (3.39) with g** we get

k,PY=(2,2"+44% — 4id )y, (3.41)
and combining this with Eq. (3.39) we get
(22,2 =22, — kP, — K, P )¢

= —g,,(2,27+24% 24, (3.42)

which we see is equivalent to Eq. (3.32¢), using the commuta-
tion relations (2.3a). Note that Eq. (3.42) is equivalent to Eq.
(3.39), as it also implies Eq. (3.41) on contraction with g**.

In a similar way we first reduce Eq. (3.25b) to
[4x°x,Z,, 3> + 4ix,x")A — 4(x,x")4*

+ 2(x, x*)(P,k°) — 4(x, P")\x k) |t = K, K. (3.43)

But the left-hand side of this vanishes, as is seen by contract-
ing Eq. (3.39) with x*x*. Therefore Eq. (3.32b) holds. Equa-
tion (3.25¢) yields no equations not included in Egs. (3.32).
To complete the proof, we need to show that Egs. (3.32)
imply Eqgs. (3.25). It is easy to see that this is so for Egs.
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(3.25a)3.25d), essentially by reversing the arguments
above. In order to prove it so for Eq. (3.25¢), we can proceed
in the same way, or, more simply, as follows:

If ¢ satisfies Egs. (3.32), then so does P, ¥. But Egs.
(3.32) imply Eq. {3.25d), and hence

[M,WKV—(H—D)K“ 1P.y=0 (3.44)
as well. But then it follows that
[MMK Y—(+D)K,,P, l¢=0, (3.45)

or, using Egs. (2.6),

[2M;4VMVI. - 2iM,u/. +g/.;4 (KVP v)
+2ig,,D —2g,,D - K,P, —K,P, 1¢y=0. (3.46)

Contracting with g¢* we get Eq. (3.26), and substituting this
back in Eq. (3.46), and noting the relations (2.6), we get Eq.
(3.25e) as required.

Note: We also find that for fields satisfying Eqs. (3.32),
Eq. (3.24) reduces to

Jend CD¢ =6(C,+4 2)¢

Comments:

1. In view of Theorem 3.1 (2), any one (smooth) solution
of Eqgs. (3.32) generates an ./ -invariant vector space of such
solutions. Our main problem is to find for which field types,
i.e., for which finite-dimensional representations of %~ with
basis operators X, «,,, and 4, there exist any solutions of
Eqgs. (3.32).

2. Any finite-dimensional representation of %" can be
reduced to a direct sum of indecomposable representations,
not necessarily irreducible, and correspondingly, any field ¢
can be written as a direct sum of # -indecomposable fields.
Now as far as the index space of the field ¥ is concerned, Egs.
(3.32) involve only the %~ operators. It follows that when
these equations hold, they hold separately on each # -inde-
composable component field in the direct sum decomposi-
tion of ¢. In addition to this, consider the above-mentioned
&/ -invariant space % , of solutions of Eqgs. (3.32), generated
by one solution # in the manner described in the proof of
Theorem 3.1. The operators in .7, as far as their action on
the index space of ¢ is concerned, only involve the % -opera-
tors, according to their definitions (2.5). Therefore % , is the
direct sum of the .&/-invariant spaces generated by the #"-
indecomposable components of ¥. For these reasons it is
sufficient at the outset to consider fields ¢ which are % -
indecomposable, i.e., whose index space carries an indecom-
posable representation of #".

In examining the implications of Eqgs. (3.32), we begin
with (3.32¢), which we write in the form

(3.47)

T =11, (3.48)
with
Ty =220, + 2,27, +8,,Cp
=23,3°% —2%, +8,.C, (3.49)
rww =4, P, +x,P, —g,G, (3.50)
G=C, +24% - 2iA, (3.51)

and C, as in Egs. (2.7).
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We note that

Ty =Ty TH= 0,

Tuy =71y (3.52)
Then Eq. (3.48) implies that

r, Y =0, (3.53)
or equivalently,

Kk, PHp=2Gy." (3.54)
Equation (3.48) also implies that

T =T, 9. (3.55)

Using Eqgs. (3.52) we see that
™7, =223 22,20, -2, +¢,C)
=4zHex F"y  —4iZre¥, 3V, — 4(C,%
= 4{C,)* — 16(C,), (3.56)
using Eqgs. (2.72) and (2.74) of Lemma 2.5. Now consider
2., =2, kP, +2, k,P"—23 Gl
=P, 2, k" +k,2, P"—ig Kk P
+ ix,P,—2,Gl
[using Eqgs. (2.3b)]
=[Pi+4k, +k,(i—A)P, +ix,P,
- (z/up + 2igm, G ]'vl'
[using Egs. (3.32) and (3.54)]
= [4 kP, —Kk,P,)+ 2K, P, +&,P,)
(3, +2ig,,)G |¥
[using Eq. (2.3¢)]. Then
ze3 r, ¢ = [AZ*Kk,P, —k,P,)—Z*3, G ¥
=[24(i+4k,P*+2CG ¢
[using Eq. (3.32d)]
=2(24 % 4+ 2i4 + C,)Gy

(3.57)

=2[44* + 4C, + 1)4 * + (C,/l¢. (3.58)
Now
TVPer ¢ = Tpvrvp¢
=235 7, 1, (3.59)

using the definition (3.49) and noting Eqs. (3.52) and (3.53).
Combining Eqgs. (3.55), (3.56), (3.58), and (3.59) we get

[4(C\) — 16(C ]y = 4[44 * + 4(C, + 1)4* + (C\)/ W,
ie.,

[A%+(C,+ 147+ (Cfl¢=0. (3.60)

Now consider this equation, together with Egs. (3.32b)
and (3.32d). Any field satisfying Eqgs. (3.32) must satisfy these
three equations in particular. In Sec. 2 we have shown that
this set of equations is # -invariant, and in fact character-

izes what we have called a representation of % of Class 2.
Therefore we have

Theorem 3.3: The nonzero components of any field
satisfying Egs. (3.32), belong to a representations of %~ of
Class 2.
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Comment:

1. In the context of free, massless fields satisfying local-
ly conformal-invariant equations it follows that we can,
without significant loss of generality, limit ourselves at the
outset to fields whose index spaces carry indecomposable
representations of % of Class 2. Then Egs. (3.32b), (3.32d),
and (3.60) hold identically. However, we must bear in mind
that such an indecomposable Class £ field may represent
only some of the components of a given field, whose index
space carries a larger indecomposable representation of #7;
and whose extra components, though set to zero by Eqgs.
(3.32b), (3.32d), and (3.60) when the field is free and massless,
could become operative when the field is “in interaction.”
Such a possibility exists because the algebra % has represen-
tations which are not fully reducible. A classification of all
such possibilities would require a classification of all inde-
composable representations of %~ which “contain” a repre-
sentation of Class 2. Such a classification will not be at-
tempted here, and we restrict our attention henceforth to
indecomposable Class £ fields.

We know that an indecomposable representation of %~
of Class 2 is of one of the types listed in Theorem 2.1. We
shall show that if Egs. (3.32) are required to admit plane
wave solutions, then representations of all types except
fA, + ;0,u] are eliminated. The existence of plane wave solu-
tions is essential if the associated fields are to be able to de-
scribe free, massless particles (at the many-particle or one-
particle level, according as the fields are quantized or not).

Definition 3.2: A massless plane wave is a field ¥(x) of
the form

¥(x) = dhoexp ( — ik x,), (3.61)

where 9, is a constant nonzero field and the & * are real

constants, not all zero, satisfying
k*k, = 0. (3.62)

H

Lemma 3. I: Let ¢f(x) be a field whose index space carries
the irreducible representation (m,n) of s1(2,C ), with basis op-
erators 2. If the equations

2,0 =lia+1)d,¢, (3.63)

where « is a constant, admit a massless plane wave solution,
then
= —(m+n+1). (3.64)
Proof: In the notation used in the proof of Lemma 2.5,
Eq. (3.63) reads as

A0y = ady. (3.65)

Suppose that these equations admit a solution in the form of
a massless plane wave (3.61). Then it follows that

Aoky, = aky,. {3.66)
Now in the representation {m,n), according to Lemma 2.5,
Eq. (2.87),

[4 — (m — n)]o[4 + (m — n)]o[4 — (m + n + 1))

A+ (m+n+1)]=0. (3.67)

Applying the operator on the left-hand side of this identity to
ki, we get from Eq. (3.66)
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la — (m —njlla + (m —n)lla — (m +n+1)]

(@+(m+n+1)]k, =0 (3.68)

Since &, ¥, by assumption does not vanish for all i, it follows
that
aefm —n,n—m,m+n+1, —(m+n+1)}. (3.69)

Case (1): a #0.
Multiply Eq. (3.66) on the left by B (again in the nota-
tion of Lemma 2.5). Then we get

BoAoky, = aBoky, (3.70)
whence, with the help of Lemma 2.5, Eq. (2.83) we have

Boky, = a™'C.kih, (3.71)
or, in view of Egs. (2.8),

2,k Yo =a""(m —n)m + n + 1k, ¥,
ie.,

2, k"o = Bk, ¥o (3.72)
where

B=a'm—nm+n+1). (3.73)

In view of Eq. (2.90), we then have in addition
Belm —n,n—m,m+n+1, —(m+n+1)}. (3.74)

Consider the u = 0 component of Eq. (3.72):
SOEk i'/’o = ﬂko¢0

ie.,

S.k¢0 = — ﬂk0¢o (375)
where

S= (S,ojzojso) = (223,231,212)

k=(k'k2k?. (3.76)

Let (s) denote the (25 4+ 1)-dimensional irreducible represen-
tation of su(2). It is known that the representation (m,n) of
sl(2,C), when regarded as a representation of su{2) with basis
operators S, is a direct sum of those irreducible representa-
tions (s) with

sefm+n,m+n—1,..|m-n|}, (3.77)

each such representation occurring once. It is also known
that if nis a real unit vector, then in the representation (s), the
operator S-n has eigenvalues s, s — 1,..., — 5. It follows that
in the representation (m,n) of sl(2,C ), S-n has eigenvalues
m+n,m+n— 1,..., — (m + nj; in particular, the largest
eigenvalue of (S-n)* equals (m + n)*>. Now Eq. (3.75) implies

(Sk)*g = Bk-key, (3.78)

since, by assumption, (k,)? = k-k. Thus on ¢, (S-n)? has the
eigenvalue 32, where

n=k/|k|. (3.79)
It then follows that
B*<(m + n). (3.80)

Next consider the # = 0 component of Eq. (3.63),
Zoik Yo = e + 1kothy
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ie.,

Tky, = ila + 1)kgiy, (3.81)
where

T = (Zo1,202:203)- (3.82)
Let us define the operators

S, =4S +/T). (3.83)

Then it is easily checked from Eqgs. (2.3a) that the S ; (and
likewise the S _ ;) satisfy the su(2) commutation relations.
Moreover, the S, ; commute with the S _;, and

S.S, =}SS—TT+28T)

=43, 3" + iS5, 3+
=4(C, + 2C))
=m(m+ 1) (3.84)
in the representation (m,n). Similarly,
S_S_=nn+1) (3.85)

in this representation. We can regard S, as the basis opera-
tors of a representation (m) of su(2), and S_ as the basis
operators of a representation (n) of su(2). Then, by the argu-
ment employed above for the operators S, we can deduce
that if n is any real unit vector, the maximum eigenvalue of
(S..-n)* is m? in the representation (m,n); and the maximum
eigenvalue of (S_-n)’ is n°. But according to Egs. (3.75) and
(3.81) we have

S, kify= — 4B +(a + U1kt (3.86)
whence
(S, )ty = 1[B + (@ + 1)1, (3.87)

with n as in Eqgs. (3.79). From this we can conclude that

B +a+1f<m?

I8 —a — 1ygn’. (3.88)
The only pair of numbers a3 satisfying the conditions (3.69),
(3.74), (3.80), and (3.88) is

a=—(m+n+1),f=n-—m

Case(2):a=0

According to the Lemma to be proved, there should be
no massless plane wave solutions of Eq. (3.63) in this case,

since (m + n + 1)is never zero. Suppose on the contrary that
such a solution does exist. From Eq. (3.81) we have

T-ky, = ikytts, (3.90)
while from the u = (1,2,3) components of Eq. (3.63) we get
(zijk I+ ok 0)'/’0 = ik; o

(3.89)

ie.,

(kAS — kT = — ik (3.91)

Now take the dot product of Eq. (3.91) on the left with T,
noting Eq. (3.90), to obtain
(T-kAs — koT-Thpy = kotfy. (3.92)

Next take the cross product of Eq. (3.91) on the left with k to
obtain

[(S'k)k — (k-K)S — kofk ATt = O. (3.93)
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Noting that (k-k) = (k,)°, and that
S(kATW, =[~— T(kAS)— 2Tk,
= — Tk AS)y + 2keto, (3.94)

we take the dot product of Eq. (3.93) on the left with S to
obtain

[(S'k)? — (ko)*S'S + koT-(k AS) — 2(ko)*]t, = 0. (3.95)
Combining this equation with Eq. (3.92), we get
SK9o = (kof’[1 + S8 — T-Tlyo. (3.96)

But if @ = 0, it follows from Eq. (3.69) that m = n = r, say.
In the representation {r,7) of sl(2,C),

C, =42, 2" =88 ~TT=4rr+1) (3.97)
so that we have from Eq. (3.96)
(S-n)iy = (2r + 1)¢,, (3.98)

with n again as in Eq. (3.79). However, as argued above, the
maximum eigenvalue of (S-n)’ in the representation (r,7) is
(2r)%. Thus we have a contradiction, and there is no massless
plane wave solution if @ = 0.

A closely related result is

Lemma 3.2 (Weinberg’s Lemma): Let ¢(x), 2, be asin
Lemma 3.1. If the equations

2,3 = B3, v, (3.99)
where S is a constant, admit a massless plane wave solution,
then

B=n—m. (3.100)

Proof: On a massless plane wave solution, Egs. (3.99)
reduce to

Boki, = ki, (3.101)
(again in the notation used in the proof of Lemma 3.1). Mul-
tiplying on the left with 4 and using Eq. {2.83) we have

BA°ky, = Crkify

=(m — n)m + n + 1)ki),. (3.102)

Suppose B = 0. Then Eq. (3.102) implies m = n, so that
B = n — m as required. Suppose 8 #0. Then Eq. (3.102) be-
comes

Aok, =B ~m — n)im + n + 1)kih, (3.103)
and by Lemma 3.1,

B m—nm+n+l)= —(m+n+1) (3.104)
whence = n — m as required. O

Comment:

1. Weinberg*? considered free, quantized, positive-ener-
gy, massless fields, belonging to the irreducible representa-
tion (m,n) of s1(2,C ). He showed that if such a field has (Lor-
entz-invariant) helicity 4 then, in our notation, A = m — n.
Now the covariant statement that the field has invariant he-
licity A is Eq. (3.99), with B = — h [as Eq. (3.75) shows when
ko, = |k| > 0]. Furthermore, the possibility of quantizing a
field ¥ which satisfies Egs. (3.99) is, in the usual formula-
tions, dependent upon the existence of plane-wave solutions
of those equations. For these reasons it seems appropriate to
call Lemma 3.2 “Weinberg’s Lemma”, as we have done
here.
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Theorem 3.4: If ¢ is an indecomposable Class 2 field,
and Egs. {3.32) admit a massless plane wave solution, then ¢
is an indecomposable [4, + ;0,u] field, for some integer or
semi-integer A, and some non-negative integer u.

Proof: In view of Theorem 2.1, it suffices to show that ¢
cannot be {1} a [4, — ;Lu] field, (2) a [4, + ;/,u] field, where
I>0, 0r (3)a {v} field.

1. Suppose that ¢ is both a [4, — ;/,u] field and a solu-
tion of Egs. (3.32). Then Egs. (2.61) hold, and Eq. (3.32¢)
yields

3, P =iM+ N+ 2)P, .

{3.105)
Let P,,,,; denote the projector onto the ith one (in some order-
ing) of the r,,, multiples of the irreducible representation
(m,n) of s1(2,C) carried by the index space of ¢. (cf. Sec. 2).

Then P,,, commutes with X, M, and N, so that

mni

E&up"d’mni =im+n+2)P ¢, (3.106)
where
¢mm’ = Pmni¢" (3107)

Now if 3 is a massless plane wave, so is ¢,,,;, if it does not
vanish. But Lemma 3.1 shows that there are no massless
plane wave solutions of Egs. {3.106). Thus ¢,,,,; vanishes, for
every / and every possible (m,n). But then ¢ vanishes, and we
have a contradiction. Thus ¥ cannot be a massless plane
wave.

2. Suppose that ¢ is both a [4, + ;/,u] field (with /> 0),
and a solution of Egs. (3.32). Then by Definition 2.5 the
smallest eigenvalue of — idis{jA | + 1 4- /), whichis greater
than (|4 | + 1). Since Eqgs. (2.60) hold here, it follows that the
least eigenvalue of (M + N ) is greater than |4 |, and that the
least eigenvalues of M and N are both greater than 0. Hence
the operator (MN | is invertible. Now let P, be the projector
onto that subspace of the index space associated with the
eigenvalue (|4 | + 1 + 1) of —id (I<t<u). Since ¢ satisfies
Eq. (3.32¢), it satisfies (by contraction)

(3.108a)
(3.108b)

K P =(Z,,Z* + 447 — 4id )y,
= — 8MNy.
If 4 is nontrivial, then not every P, can annihilate . Of those
P, satisfying
Py£0 (3.109)
let Pbe the one having the smallest value of £. Since Eq. (2.3¢)

implies that «,, shifts the eigenvalue of — i4 (and hence the
value of ¢} upward by one unit, it then follows that

Px,P*y =0. (3.110)
Eqgs. (3.108) and (3.110) together imply
PMN ) =0. (3.111)

But the projectors P, evidently all commute with M and N,
so that

MNPy =0, (3.112)
and since (MN ) is invertible, we have
Py =0, (3.113)

contradicting the definition of 2. Thus ¥ cannot be a nontri-
vial solution of Egs. (3.32). [Note that we did not need to
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assume ¥ to be a massless plane wave solution. There are no
nontrivial solutions to Egs. (3.32) if ¢ is a [4, + ;/,u] field
with /> 0.]

3. Suppose that $isboth a { v} field and a massless plane
wave solution (3.61) of Egs. (3.32). Contracting Eq. (3.32c)on
the left with 3 7, using Lemma 2.5, Eq. (2.69), and noting
Eqgs. (2.13), we obtain

AS k"Yo=(M—N)M+ N+ 1)k, ¢ (3.114)
The p = 0 component of this equation is
ASky,= (M~ N)M+ N+ 1)k, (3.115)

where S and k are defined as in Eqs. (3.76). Since the opera-
tors 4, Sk, M and N all commute, we get from Eq. (3.115)

A¥SKPh=(M ~ NP(M + N+ 1P(kof'tho.  (3.116)
Since Eq. (2.42a) holds in a {v} representation, we then have
[introducing n as in Eq. (3.79)]

(M — NSy = (M — NPM+ N+ 1), (3.117)
Now introduce, as in Sec. 2, the projector P,,,, onto that
subspace of the index space associated with the totality of
representations (m,n) of sl{2,C ) that are contained in the giv-
en {v} representation of #". Recalling that, for each chosen
m and n, this projector commutes with4, M, Nand 3, we
get from Eq. (3.117)

(m — n(Sn)*Y,,, = (m — n)*(m + n + 174, (3.118)

where

¢rrm = Lomn ¢0' (3119)
If m#n we have then
(S0 Yy = (M + 1+ 14, (3.120)

But, as remarked in the proof of Lemma 3.1, the largest
eigenvalue of (S-n)? in the representation (m,n) of s1(2,C) is
equal to (m + n)>. It follows that

Ymn =0, m#n. (3.121)

Now ina {v} representation of 77, Eq. (2.42b) holds, and we
see that the only representation (m,m) of sl(2,C) which can
occur have

m=n=}v—1) (3.122)
Thus we have

P o=1ve r=iv-—1), (3.123)
whence

Mipy = Npy = rif,. (3.124)

We recall again that the four-vector operator «, can link a
representation (m,n) of s1(2,C) only with (m + , » + 4) and
(m £ 1, n — }). It follows that

P k., P, =0.

et

Now # satisfies Eq. {3.108a), so that
kK, ktpy =4[MM+ 1)+ NN+ 1)+ 4% —id 1y,
=4[2MN + M + N —i4 1o, (3.126)

using Eq. (2.42a). Multiplying on the left by P, , using Egs.
(3.123) and (3.125), and noting that P,, commutes with M, N,
and A, we get

(2MN + M + N — iA b, = O.

(3.125)

(3.127)
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Then Eqgs. (3.124) imply

Ao = —2irr + )¢, (3.128)
Now, since Eqgs. (2.42a} and (3.124) hold, we have

A%y =0. (3.129)
Consistency of Eqs. (3.128) and (3.129) requires

r=0=v=1) (3.130)
and

Ay, =0. (3.131)

Now consider Eq. (3.32c), which is supposed to be satisfied
by #. On a plane wave solution, we have

2k =i — A )k, ¢, {3.132)
so that Eq. (3.131} implies

2k Yy = ik, . (3.133)
But Eqgs. (3.124) and (3.130) imply

Pootbo = Yo (3.134)
so that we have

2,k Pogthy = ik, . (3.135)
Since (0,0) is the trivial representation of sl(2,C),

2, Py =0, (3.136)
and Eq. (3.135) yields

ku¥o=0, (3.137)
providing a contradiction. Thus ¥ cannot be both a {v] field
and a massless plane wave solution of Egs. (3.32). UJ

Comment:

1. We have yet to show that indecomposable [4, + ;0,4]
representations exist, and that plane wave solutions of Eqgs.
(3.32) exist if ¢ is a [, + ;0,u] field. These questions will be
examined in full in subsequent papers. In the next section we
shall see that well-known sets of conformal-invariant free-
field equations do provide illustrative examples, but all cor-
responding to cases with u = 0.

Now if ¢ is a [4, + ;0,u] field, then in particular,

A=iM+N+1), (3.138a)

M—-N=A4, {3.138b)
and Eq. (3.32¢) becomes

2. PY=iM+N)P,y. (3.139)

Contracting on the left with ) ' and using Lemma 2.5, Eq.
(2.69), we get

ICPY= —iM+ N+ 15, Py (3.140)
Using Egs. (2.13) and (3.138b), and noting that (M + N + 1)
has a well-defined inverse, we then obtain

3. PY= —AP 4. (3.141)
If this ¢ is a positive-energy (resp., negative-energy) plane
wave, Eq. (3.141) is a covariant statement that ¢ has helicity
A {resp., — 4.} {cf. Comment 1 following Lemma 3.2). Not-
ing Theorems 3.1, 3.2, 3.3, 2.1, and 3.4, we therefore have

Theorem 3.5: If the wave equation (1.1) is locally con-

formal-invariant on a vector space % C &, then the nonzero
components of any plane-wave solution €% belong to a
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direct sum of indecomposable [4, + ;0,u] representations of
#", for various values of 4 and u. Moreover, if ¢, is a direct-
summand of such a plane wave solution, corresponding to
the representation [A, + ;0,4] for some u, then ¢, has Lor-
entz-invariant helicity A or — A according as the plane wave
has positive or negative energy.

Comment:

1. In this sense we justify our assertion in the Introduc-
tion that Eq. (1.1} is not locally conformal-invariant when ¢
is a potential, since such finite-component fields do not have
(manifestly) Lorentz-invariant helicity,*' i.e., they do not
satisfy equations of the general form of Eq. (3.141). O]

4. CONNECTION WITH EARLIER WORK

Most earlier works on the conformal-invariance of
massless field equations have been concerned with fields cor-
responding to representations of #” of Type Ia, in the nota-
tion of Mack et al.**, i.e., representations in which the «,,

= 0. In the light of Theorem 3.5, the following result is sig-
nificant for such fields:

Theorem 4.1: An indecomposable [A, + ;0,u]-represen-
tation of %" is of Type Ia if and only if # = 0. For each
integral and semi-integral A, there exists exactly one (up to
equivalence) indecomposable [1, + ;0,u]-representation. It
is in fact irreducible, and remains so when restricted to
sl(2,C), thesl(2,C )contentbeing (4,0)whenA >0,and (0, — 4 )
when A <O0. In either case, the basis operator A satisfies

A=iA]+1) (4.1)

Proof: In an indecomposable [4, + ;0,u] representation,
the eigenvalues of — i4 are, according to (2.62),

A+ LA+ 20 | +u+ 1

Since — i4 is diagonalizable, the representation space is a
direct sum of the corresponding eigenspaces. But if x, =0,
Eqgs. (2.3) show that these eigenspaces are separately invar-
iant under the action of the % algebra, contradicting the
assumed indecomposability unless # = 0.

Conversely, when u = 0 the representation space con-
sists of the single eigenspace corresponding to the eigenvalue
(4] + 1) of — i4. Since the action of «,, is to increase the
eigenvalue of — iA by one unit, it follows that in such a
representation

x, =0, (4.2a)
A=iA]+1). (4.2b)

In view of the defining relations {3.138) of such a repre-
sentation, we have then

M+N=|A|, M—N=24 (4.3)
so that if >0,

M=A, N=0, (4.4a)
and if A <0,

M=0 N= —A. (4.4b)

It follows from the meaning of M and N that if A0, the
representation [A, + ;0,0], regarded as a representation of
sl(2,C), is a direct sum of replicas of (4,0); while if 1 <0, itisa
direct sum of replicas of (0, — 4 ). But when Egs. (4.2) hold,
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the corresponding irreducible s1(2,C ) subspaces are also %#"-
invariant, so that if the given representation of %" is inde-
composable, it must consist of a single irreducible represen-
tation (4,0} or (0, — 1) of s1(2,C).

It can now be seen that there exists exactly one (up to
equivalence) indecomposable representation of % satisfying
all these conditions for a given value of A. It consists of the
representation (4,0) of s1(2,C ) [or (0, — A4 ), if A < 0], extended
to a representation of %" by defining «,, and 4 via Egs. (4.2Ejj
It is evidently irreducible.

For an irreducible [4, + ;0,0] field then, Eq. {4.2b) holds
and it can be seen from the cotransformation law (2.4) and
(2.5) for the field under changes of scale in particular, that
such a field has the length dimension — (j4 | + 1). Thisis the
*“canonical” dimension of a field corresponding to a repre-
sentation (|4 |,0) or (0,4 |) of s1(2,C).

Combining Theorems 3.5 and 4.1, we have (cf.
Bracken*!):

Theorem 4.2: If ¢ is a field of Type Ia, and the wave
equation (1.1} is locally conformal-invariant on a vector
space % C &, then the non zero components of any positive-
energy (respectively, negative-energy) plane wave solution in
% belong to a direct sum of irreducible representations of
s1(2,C) of the type (m,0) or (0,n), with the corresponding
length dimensions ( — m — 1) and (— n — 1), and corre-
sponding Lorentz-invariant helicities m and — » [respec-
tively, — m and n].

What is the content of the critical Egs. (3.32) for irredu-
cible [4, + ;0,0] fields, or direct sums of such fields for var-
ious values of A ? Equations (3.32b) and (3.32d) are satisfied
identically. We note that since the only representations (m,n)
of s}(2,C) involved here have mn = 0, then

MN =0, (4.5)

and Eq. (3.32¢) can be written with the help of Eqs. (4.2a),
(3.138a), (4.5), and (2.13) as

Tuw¥ =0, (4.6)
with 7., as in Eq. (3.49). But in a representation of the type
under consideration, 7,,, vanishes identically because of the
following:

Lemma4.1:Let 3, bebasis operator of a finite-dimen-
sional representation (m,0) or (0,n) of s1(2,C ). Then the tensor
T, defined as in Eq. (3.49), vanishes identically.

Proof: In the representation (m,0) we have [cf. Eqgs.
(3.83) and (3.85)]

S, =—i3, (4.7)
and Eq. (2.69) of Lemma 2.5 becomes

b izﬂvz VA - ZM = ingM

=im(m + 1)g,;
=4iCi8,1,
ie.,
Tuw = 0.
The argument is similar for the representation (0,n). O

It follws that for fields which correspond to a direct sum
of irreducible [4, + ;0,0] representations of %, Eqs. (3.32)
reduce to (3.32a) and (3.32¢), i.e.,
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P, PHy =0, (4.8a)
2 PY=(i—A)P,y=—iM+ NP, ¢. (4.8b)
And furthermore, if the direct sum of fields contains no sum-
mand ¢, with A = 0, then Eq. (4.8a} is implied by Eq. (4.8b),
since
M+ Ny, =(—id - )y, = |1, (4.9)
and contracting Eq. (4.8b) on the left with P* gives
— M+ N)P*P, ¢, =0. (4.10)

We now consider the results of earlier investigations in
relation to ours.

A. The scalar field

The index space is one-dimensional in this case, and
carries the trivial representation (0,0) of s1{(2,C). This can be
extended to the nontrivial representation [0, + ;0,0] of #,
by takingx, = Oand 4 = + i. The dimension of the field is
then ( — 1). Eq. (4.8b) is trivial in this case as
2,., =0=M = N. Weare left with the single Eq. (4.8a), i.e.,
the wave equation, in our locally conformal-invariant set.

B. The two- and four-component neutrino equations

Consider the two-component neutrino field y, with in-
dex space carrying the representation (3,0) of s1(2,C) with
basis operators

S=1}0,T= —lJio 4.11)
in the notation of Lemma 3.1. Here o are the Pauli matrices.
This representation can be extended to the representation
[1, + ;0,0)of #°, by takingx, = Oand 4 = 3i/2. Theny has
dimension ( — 3/2). A locally conformal-invariant set of
equations (implying Cly = 0) is then Eq. (4.8b), which is
(since M = §, N = 0 here)

2, dy= —kid.x (4.12)
or equivalently

oVy = —duw, (4.13a)

(CAV +iody)y = —iVy, (4.13b)
where

V = (d,,0,,0;). (4.14)

Eq. (4.13b) is implied by Eq. (4.13a), so we can consider Eq.
(4.13a) alone, the Weyl equation, as a locally conformal-in-
variant equation. It implies that a positive energy field has
helicity ( + 1).

The case of a two-component field corresponding to the
representation (0,3) of s1(2,C), and [ — 4, +;0,0] of #7, is
similar. Again the field has dimension ( — ). The four-com-
ponent (Dirac bispinor) neutrino field ¢ is the direct sum of
these two two-component fields. The appropriate represen-
tation of %" is [§, + ;0,0] ® [ — 4, + ;0,0], with basis
operators

Z,, =lilrv.7r.], x. =0 4=0), (4.15)
where y,, are the Dirac matrices, satisfying

Yulv VoV = 284, (4.16)
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Equation (4.8b) reads

cltl[}/p ’7’\/ ]aV¢ = - %iay 1/17 (4 17)
which, with the help of Eq. (4.16) can be reduced to
Vulr,d =0,
or equivalently,
Yy =0. {4.18)

The two-component fields are recovered with the use of the
projectors

P, =4{1xvs) (4.19)
where

Vs = — VoV1V2Vs (4.20)
Thus if

v, =P, (4.21)
then ¢ , satisfies

s, = ¢, . (4.22)

and corresponds to the representation [ + 4, + ;0,0] of #”.
This can be seen by evaluating

C, =43, 3" =} (4.23a)
Cy =45, 5" =l — iys3,,) 2" = ()ys.  (4.23b)
A comparison with Eq. (2. 13) shows thaton¢, ,M = land

N=0,whileont¢_, N=1and M =0. The fields ¢ , have
helicity + 1 (for positive energy) in accordance with Theo-
rems 3.5 and 4.2.

C. Maxwell’'s equations for the free electromagnetic
field

The index space of the electromagnetic field
(x)[ = — F,,(x)] carries the representation (1,0} & (0,1}
of s](2 C). We can extend this to a representation
[1, +;0,0]@[ — 1, +;0,0] of 77, by taking x, = 0 and
A = 2i. Then F,,, has dimension { — 2). Since (M + N} =1
here, a locally conformal-invariant set of equations (imply-
ing OF = 0) is, from Eq. (4.8b),

3, 0F= —id,F. (4.24)
The sl(2,C) operators act on F; as
( F)aﬁ_(zyv)aﬁ po? (425)
where
- Zi(zuv)aﬁpa = (gya v gva " )6[3
*‘éa @ﬁﬁava ngMq
- (gy,Bévp - ng(Syp) aa
- 5Bp(gua 8v —&va 6;1 o)’ (426)

and on substituting this expression in Eq. (4.24) and using the

antisymmetry of F,,, we get

g#aaprﬁ - gﬂb‘apra == auFaﬂ aaFBu - aBFua :
{4.27)
Contracting both sides with g, we find
&F,, =0, (4.28)
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and Eq. (4.27) then implies also
0, Fop + 0pF,, +3,F5 =0 (4.29)

Egs. (4.28) and (4.29) are the free-field Maxwell’s equations.
They are written in compact form in Eq. (4.24) [or Eq.
(4.27)]. Note that by Theorems 3.5 and 4.2, the [ + 1, +;0,0]
component F, ' of F,, satisfies also

2 LOF' == g, F'*), (4.30)
an equation which is also locally conformal-invariant, and

which states that the invariant helicity of {positive energy)
fields F,,'*'is + 1. Itis easxly checked that

1y

F;:vli 2%( ;zv+l )’ (431}
where
F = 16,0,.F". (4.32)

Thus F'* (respectively, F ‘7)) is the right (respectively, left)
circularly polarized component of F.

D. The Bargmann-Wigner equations

The index space of the fields & used by Bargmann et al."®
to describe massive and massless particles with spin s{ > 0) is
the symmetrized tensor product of 2s identical, four-dimen-
sional Dirac bispinor spaces, which we may label with
a = 1,2,...,2s. Let 7,'* be the Dirac matrices acting on the
ath four-dimensional space. Then for each o, the relations
(4.16) are satisfied, and y,'” commutes with y,”" if a #8.
Introduce also 5\, @ = 1,2,...,2s, by analogy with Eq.
(4.20).

For massless particles with helicity + s, Bargmann et
al. further required that £ { = £, now) satisfies

yiE L = £, a=12..,2s. (4.33)

Since the eigenvalues + 1and — 1, respectively, of y5'* la-
bel the representations (4,0) and (0,}) of s1(2,C ) carried by the
ath factor space, it follows that the index space of £, carries
the symmetrized tensor product of the representation (4,0)
with itself (2s) times. This is the representation (s,0). Similar-
ly we may introduce & _ satisfying

P&, a=12,.,2s,

and associated with the representation {0,s) of sl(2,C ).
Thesl(2,C ) basis operators in both cases are (restrictions

(4.34)

of)
= _, Z, [7’,,(”’, |
= —isg,, + 1 2 yu“’ v, {4.35)
a=1
so that
25
=S, I =+ )= S O
a<f=1
(4.36)
According to Egs. (2.8), on the representation (s,0) or (0,s),
=2s{s + 1). (4.37)
It follows that
25
S N, =0 (4.38
a<fB=1
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Now 7, and iy,'® { j = 1,2,3) can be taken to be Hermitian,
without loss of generality, for each value of a. Thus
(v,,'”¥**#)) is Hermitian. It then follows from Eq. (4.38) that

¥, PPN =0, a#p. (4.39)
Conversely, it can easily be seen that if £ satisfies Eqgs. (4.39),
then it belongs to that part of the tensor-product space assoi-
cated with the representation (5,0} & (0,s) of sl(2,C). Eqs.
{4.39), and equivalently the symmetrization conditions and
Eqgs. (4.33)and (4.34) of Bargmann ez a/, are not to be thought
of as dynamical conditions, but rather as statements defining
the index space of the fields to be used to describe massless
particles. One could, of course, start with 2(2s 4+ 1)-compo-
nent fields corresponding to this representation of sl(2,C),
but the advantage of the approach used by Bargmann et
al.—introducing redundant components and then imposing
conditions which set them to zero—is simply that one can
employ the familiar algebra of the Dirac matrices.

The representation (s,0) @ (0,s) can be extended to the
representation [s, + ;0,0] ® [ — s, + ;0,0] of 7, by setting
k, =0and A4 = + i{s + 1). Then § has the canonical dimen-
sion ( — s — 1). Since (M + N) = s here, alocally conformal-
invariant set of equations for £ (implying 0& = 0) is then,
from Eq. {4.8b},

2,.0¢= —is. (4.40)
Substituting for 2, from Eq. (4.35), we get
2s
> 7Ny, M) =0. (4.41)

a=1

Contracting on the left with ), using the commutation

and anticommutation relations between the y,'®), and noting
Egs. (4.39), we get
(1, PIME =0, B=12,.2s. (4.42)

Conversely, if Eqs. (4.42) hold, then so do Egs. (4.41) and
hence Eqgs. (4.40). Thus the locally conformal-invariant Eq.
(4.8b) is in this case equivalent to Eqs. (4.42), which are the
Bargmann-Wigner equations.'® The component £ _ corre-
sponding to the representation [ + s, + ;0,0] of % can be
obtained as

£, = ] 11+ 7)€

a=1

(4.43)

It satisfies the locally conformal-invariant equation (3.141)
with A = + s [and also Eqgs. (4.33) or (4.34)], and so (for
positive energy) has helicity + s as expected.

The Egs. (4.40), where the index space of £ carries the
representation (s,0), (0,s), or {5,0) ® (0,s) of s1(2,C ), were consi-
ered before the work of Bargmann ef al. by Dirac,'® Fierz,'®
and Garding,'* using the dotted—undotted spinor formalism.
The complete equivalence of these different ways of writing
the same equations must be emphasized. Those sections in
other works,'92*?® concerned only with showing the confor-
mal invariance of these equations, were repeating in different
formalisms part of the work of Gross.'” McLennan'® had
previously shown the local invariance of these same equa-
tions.** Note also that for s = | and s = 1 the Bargmann-
Wigner equations are completely equivalent to the neutrino
equations, and Maxwell’s equations, respectively, as can be
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seen from our discussion above.

When we write all these equations in the forms (4.12),
(4.17), (4.24), and (4.40), we see most clearly that they belong
to one family—the family of conformal-invariant equations
for Type Ia fields.

E. Errors in the work of McLennan and Post

McLennan"? claimed to prove the conformal invari-
ance of certain sets of field equations described by Gard-
ing.'* In these papers the dotted-undotted spinor formalism
is used. The index space of a field with p undotted indices and
g dotted ones (p and ¢ are non-negative integers}, separately
symmetric in each set, carries the irreducible representation
(4p,4g) of s}(2,C) in our notation. In particular, fields ¢ corre-
sponding to the representation (1p,iq) ® (ig,4p) [With p#q]
are considered, together with first-order field equations
[McLennan’s Egs. (3.19)] which imply that the wave equa-
tion (1.1) is satisfied. According to our results above, these
equations can not be locally conformal invariant unless
pgq = 0. This contradicts a claim made by McLennan, but it
is easy to find an error in his analysis. He supposes [see his
Eq. (6.4)] that under a special conformal transformation, a
component of the field corresponding to the representation
{1p, iq) transforms in such a way that its p undotted indices
are not affected. Similarly, for a component corresponding
to (1g, 1p), the p dotted indices are not affected. But such
transformation laws are not consistent with the structure of
the Lie algebra of the conformal group, for an infinitesimal
translation does not affect spinor indices, but the commuta-
tor of our infinitesimal special conformal transformation
along one spatial axis, and an infinitesimal translation along
another, is an infinitesimal rotation about the third [cf. Eq.
{2.61)], and so affects all dotted and undotted indices. There-
fore, an infinitesimal special conformal transformation must
in general also affect all dotted and undotted indices.
McLennan’s proposed transformation law is not consistent
if p#£0.

In claiming to deduce the conformal invariance of equa-
tions satisfied by fields with p = g and zero helicity (such
fields can also be thought of as symmetric, traceless, tensor
fields ,,,. , with p indices), McLennan merely remarked
that such sets of equations *‘are equivalent to the scalar or
pseudo-scalar wave equation” (1.1), which is conformal in-
variant. In fact one can show that*’

@rvp =3,0,,0. (4.44)

where @ satisfies Eq. {1.1). However, the conformal invari-
ance of Eq. (1.1) for ¢ does not ensure the invariance of the
equations satisfied by ¢,,,., defined as in Eq. (4.44), and in
fact our results imply that these equations are not invariant.
The index-space representation of s1{2,C ) associated with
this tensor field is (1p, }p). This can be extended to a represen-
tation of % only by settingx, = Oand 4 equal to a constant,
so that the field is in particular of Type Ia. But then Theorem
4.2 shows that the wave equation is not locally invariant on
such a field, if p£0. The reason for this breakdown of con-
formal invariance in the passage from @ to @,,,..., is easily
seen—the operators d,,,d, - in Eq. (4.44) are Lorentz-covar-
iant but not conformal-covariant objects.
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More recently Post®® considered free, massless, posi-

tive-energy fields ¥'™"{x) whose index space carries an irre-
ducible representation {m,n) of sl(2,C), and which have Lo-
rentz-invariant helicity A = (m — n) [cf. Lemma 3.2]. He
claimed to prove that the equations satisfied by such fields,
including the wave equation (1.1), are conformal-invariant,
even if mn#0. This contradicts our results, and indeed, the
result given by one of us*' before Post’s work appeared. His
proof is incorrect, and depends crucially on a result attrib-
uted to Mack et al.?? [See the paragraph following Post’s Eq.
(5.11).] This result, which is in fact invalid, was not proved in
Ref. 22, though its validity was implied there. The result in
question can be described as follows.

A Hilbert space of the fields " can be defined, carry-
ing the unitary, irreducible representation of ISL (2,C) ap-
propriate to a massless “particle” with positive energy and
helicity (m — n). This representation extends to a unitary
irreducible representation of SU(2,2), with self-adjoint gen-
erators P;,K ;,D’, and M |, satisfying, on a suitable do-
main, the commutation relations (2.6). Then these operators
can be identified on the Hilbert space with the generators
(2.5) of conformal transformations for these fields, after ap-
propriate choices for «,, and 4 are made.

Mack and Todorov showed that this is so if mn = 0O, but
they did not consider directly the cases with mn #0. Instead
they quoted a result of Weinberg,** who showed that if a free,
massless positive-energy field y corresponds to an irreduci-
ble index space representation (m,n) of sl(2,C) with
m — n = A, and has Lorentz-invariant helicity A, then y is a
linear combination of the rth partial derivatives with respect
to the variables x*, of a field £ which also has invariant heli-
city A. If 150, then £ corresponds to an index-space repre-
sentation (4,0}, and r = 2n. If 1 <0, then £ corresponds to
(0, — A), and r = 2m. On this basis, Mack and Todorov con-
cluded that they could restrict their attention to the cases
with mn = 0, in order to prove the desired result for the
operators P;,K ;,D’, and M, . However, as remarked in
the Introduction, and as implied by Theorem 4.2, the result
in question is not valid if mn 0. In fact one finds that the
operators K ; in these cases, unlike the K; of Egs. (2.5), are
nonlocal. The reason for this breakdown of conformal in-
variance, in the context of Weinberg’s result, is again that the
operator d,, relating massless fields with mn = 0 to ones with
mn#0 [cf. Eq. (4.44)] is not conformal covariant. Essentially
the same misunderstanding of this point led McLennan into
error, as noted above.

F. Other related works

Several authors***** have considered the conditions
to be satisfied if classical field equations derivable from an
action principle are to be conformal invariant. However,
they have not been concerned with the specific situation
where the wave equation (1.1) is required to be one of the
field equations obtained. The conditions obtained are ac-
cordingly much less specific than ours. (In another sense,
they are more specific, since it is not clear which of the sets of
field equations we have described are derivable from an ac-
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tion principle.) Furthermore, these works have concentrated
on fields of Type Ia.

The conformal invariance (in a weaker sense) of wave
equations for massive particles has been considered by other
authors, 12544 Because the taking of the zero mass limit
is a nontrivial matter, particularly in the context of confor-
mal invariance,® it is not clear how the results obtained in
these works relate to ours.

The conditions under which Lorentz-invariant equa-
tions of the form (1.2) are also conformal invariant have been
analyzed by Kotecky et a/.>® But again, because they did not
specifically require that Eq. (1.1) should follow from Eq.
(1.2), their results are not easily related to ours. They did
relate their results to some extent with those of McLennan,
but did not detect any errors in that work. Only fields of
Type la appear in the results of Kotecky er al. One reason for
this is easily seen. If fields of Type Ib are involved, then one
has a four-vector operator «,, acting on the index space, and
having scale dimension { + 1). Then as well as equations of
the forms (1.2), field equations of the form

L,y =Ay (4.45)

must also be considered, where A4 is a dimensionless matrix.
Equation (3.54) provides an example. Massless wave equa-
tions of the general form (4.45) have appeared in a more
general context in the work of Wightman.®® Let us remark
also that for field equations of the form (1.2), (4.45) where L,
is rectangular, an important and nontrivial constraint [cf.
Theorem 3.4], not considered by Kotecky et al., is that the
equation should admit plane wave solutions.

Fields of Type Ib have received comparatively little at-
tention in the literature. Ciccariello and Sartori®? (see also
Ferrara et al.,>® and Lopuszanski and Oziewicz*®) consid-
ered fields of Type Ib and associated conformal-invariant
wave equations, but once again, their aims were different
from ours, and their results and ours are not easily related.
Lopuszanski et al. did note the appearance of conformal-
invariant equations of the form (4.40) for fields of Type Ia, as
one of us had done earlier.*' (See also Seetharaman.*®)

Since the Lie algebra % is a subalgebra of su(2,2), any
finite-dimensional representation of the latter defines a re-
presentation of the former. Mack et al.** have considered
fields of Type Ib generated in this way. But it must be empha-
sized that only a limited class of representations of %", and
consequently, only a limited class of field types, can be ob-
tained in this way. There is a countable number of inequiva-
lent, finite-dimensional representations for su(2,2), but an
uncountable number for %" and representations of %" in
which 4 is not diagonalizable [cf. Egs. (2.17)] are not con-
tained in representations of su(2,2).%’

Dirac® and Hepner®' {see also Mack ez al.** and Bu-
dini*®) have considered the particular case of Dirac spinors
#(x) and the associated four-dimensional representations of
su(2,2) with [cf. Egs. (2.5) and (2.6)]

P,; :%K_l(l in)y;u m#v =‘lti[7;u7/v]’

d= Fiiys, k, =l TFVsl¥y- (4.46)
Here the Dirac matrices are as in Sec. 4.2, and « is a nonzero

constant with dimensions of length. (Representations with

A. J. Bracken and B. Jessup 1944

Downloaded 16 May 2007 to 130.102.128.60. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



different values of x are equivalent, so this value has no phys-
ical significance.) Then one may take for the generators of
conformal transformations of ¥{x)
P, =id, +p.,, M, =x,P, —x, P, +m,,
D=x"P, +in+d, K,6 =2x,(x"P, + in)
—x"x, P, +k,, (447)

where n is a constant. These operators satisfy the relations
(2.6), but are not of the form (2.5). However, by a similarity
transformation®?

Plx)—exp( — ix’p, )Yi(x),

P, —exp( —ix'p,)-P, -explix’p, ), (4.48)
etc., one can bring them to the form (2.5), with

Ky =Wl Fys), A=inFliys

2z, =4iv.r]. (4.49)

These operators (4.49) span a representation, D, say, of
#", which is not a [A, + ;0,u] representation for any A, u.
However, the representation D, , for example, is indecom-
posable but not irreducible, and contains the representation
[4, + ;0,0] as an invariant subrepresentation, associated with
the subspace of spinors on which s = + 1. Accordingly,
the equation (1.1) is then locally conformal invariant pro-
vided Egs. (3.32) hold, and here they reduce to

(v.P*)¥ =0, (4.50a)

s =1 (4.50b)
This is an example of the type of behavior whose possibility
was indicated in Comment 1, following Theorem 3.3. In the
present example, so long as we are concerned only with free
massless fields, there is no real loss of generality if we restrict
our attention to spinors for which Eq. (4.50b) is satisfied
identically—i.e., essentially two-component spinors corre-
sponding to the representation [{, + ;0,0] of #”[cf. Sec. 4.2].

On the other hand, the equations

PPY=0 (4.51a)

and

ys=—9¢ (4.51b)

are not conformal invariant if we adopt the representation
D, , for iy, since they are not consistent with Eqs. (3.32). [The
roles of the equations (4.50b) and (4.51b) are interchanged if
we consider instead the representation D, _ for #.] The situa-
tion here is to be contrasted with that in Sec. 4.2, where the
representation [}, +;0,0] ® [ — §, + ;0,0] of #” was adopted
for ¢, and both sets of equations, (4.50) and (4.51) are confor-
mal invariant. When we vary the relevant representation of
#" on Dirac spinors, we are really changing the field type,
and when we talk about conformal invariance or noninvar-
iance of equations like (4.50) of (4.51) we must be clear as to
what type of fields we are considering. Failure to do so seems
to have led to some confusion in the literature.®®® In par-
ticular, we should not confuse the results described here for
spinors corresponding to the representations D, ,, D, _, or
(3, +;0,0) @ [ — 1, +;0,0}) of # with the result implied by
Dirac’ {see also Budini*® and Castell®) that the equation

(1 tyshPyp=0 (4.52)
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is conformal invariant if ¢ corresponds to the representation
D, , of #".Eq.(4.52)does not imply Eq. (1.1), so#(x)isnota
massless field according to our definition, and our general
results are not directly relevant to this case.

5. CONCLUDING REMARKS

We have derived the conditions under which the wave
equation (1.1) is locally conformal invariant, and have seen
as a result that although some well-known sets of massless
wave equations for fields of Type Ia are invariant, many oth-
ers are not. Indeed, it is fair to say that most massless wave
equations for fields of this type are not conformal invariant.
In particular,*' Eq. (1.1) is not invariant if the index space of
1 carries an irreducible representation (m,n) of sl{2,C) with
mn##0.

Most generally, we have shown that only [4, + ;0,u]
fields are of direct interest in the discussion of locally-invar-
iant wave equations, and that these always carry Lorentz-
invariant helicity 4 (for positive-energy plane waves). For
u > 0, these fields are of Type Ib. In subsequent papers, we
shall describe the representations [A, + ;0,u4] of %" com-
pletely, and also examine in detail the consequences of Egs.
(3.32) for such fields, thus completing our analysis.
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