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Abstract

In this thesis, we consider the localisation of the neutrino in relativistic quan-
tum mechanics. Aspects of Newton-Wigner localisation of elementary systems are
discussed, with their conclusion that localised states cannot be constructed for the
2-component neutrino being particular relevant to us. We prove that positive energy
states of the Dirac position operator X can be constructed, so that these states have
arbitrarily small variance in position. We then outline a new concept of localisation,
“asymptotic localisation”, which we feel offers a reasonable solution to the problem
of localising a 2-component neutrino.




Chapter 5

Localisation in Elementary
Systems

The notion of the position of a particle has been the subject of much discussion
through the evolution of quantum Ihechanics. In non-relativistic quantum mechan-
ics, with the advent of the Hilbert space theory, the statistical interpretation of
measurement and the discovery of Heisenberg’s uncertainty relations, position has
been given a well-defined meaning in terms of the operator x. It is well-established

that we can define generalised eigenstates of x, about the spatial coordinate a of

the form

Y(x) = vo6®(x—a), (5.1)

where 1)y is a constant. Admittedly these states are only the limits of physical

states, because they cannot be normalised and hence, are not in #, however, we

can approximate them by normalised elements of Hilbert space, whose variance in

position is arbitrarily close to zero. Moreover, we can make the region on which

these states are non-zero to be as small as we like.

As an example, consider a free particle in one dimensional-space, (z) = 0, and

define the particle’s wave function to be

where a is a positive constant. Now ¥ is a normalised element of Hilbert space,
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since

e = [ 1eEpe

-0

21
—dr =1
/_a.‘Zam ’

and the expectation value of z in this state is

(z) = /—°° z|¥(z)|*dz
_ a _Qi_dx _ a2 . aZ

o 2a da 0.

Thus ¥ forms a perfectly legitimate state vector for a free particle in one dimension,
with uniform probability density |¥(z)|* = 1/2a on [—a, a], while the probability of
the particle being found outside [—a, a] is zero. Thus we can say that the particle

is strictly localised on [—a, al.

5.1 Localisation for relativistic particles

In relativistic quantum mechanics the status of position is less clear, and a com-
pletely satisfactory means of constructing localised states for a single particle has
not yet been reached. In this thesis, we are particularly interested in the case of
the neutrino, however we shall initially discuss more generai approaches, concerning
elementary systems. Elementary systems provide an elegant Iﬁethod of describing
the states of a relativistic system, however they do not explicitly prescribe a posi-
tion operator. The only physical quantities directly described are the ten generators |
of the Poincaré group, namely the momentum-energy 4 vector, the 3 generators of
Lorentz boosts and the 3 generators of rotations. Thus the choice of position opera-
tor is far from clear. The natural option, in a coordinate representation, would be to
choose the operator x. However there are significant difficulties with this interpre-
tation. Firstly, recall that the wave equations associated with relativistic particles
admit of both positive and negative energy solutions, which split Hilbert space into
positive and negative energy subspaces. The operator x acts on the whole of Hilbert

space and typically cannot be diagonalised on the positive energy subspace alone.
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Thus generalised eigenstates of x would naturally include contributions from nega-
tive energy states. This is a troubling proposition because it suggests that a particle
initially prepared in a positive energy state can evolve into a state with negative
energy, as a result of a position measurement.

This is not the only concern with the use of x as the position operator. If
we consider the neutrino specifically, we know that the Hamiltonian is given by
H = co-p. If we wish to calculate the velocity of the particle, we must consider

the time-derivative of position, which we defined in chapter 2. Now

i

v=x = -—E[x,ca-p]
1c .
vio= ——0j [z:,p5] , sum over J

= coj, using equation (2.5).

Thus we have the velocity operator v = co. While v is Hermitian, the individual
components of this velocity operator do not commute with one another, therefore
simultaneous measurement of more than one component is not possible. Secondly,
the eigenvalues of each component v; are equal to +¢c. Now the neutrino is postulated
to travel at the speed of light, so this may seem consistent, however if we now consider
the operator v* = 3¢*I,, which commutes with all 3 components of velocity, and
would be expected to represent the square of the speed, we can see its eigenvalues are
3c?, implying the particle’s speed would exceed that of light. With such undesirable
properties, we can not consider this velocity operator to be an observable quantity.
In fact, it is also clear that %X % 0, clearly not what one would expect from a free
particle, however, once again this is an unobservable quantity.

There is another argument, based on the indeterminacy principle, which claims
that any localisation much within the Compton wavelength of a relativistic particle
will necessarily result in pair production, rendering the one particle picture invalid.
The crux of this argument is that if the particle is localised within its Compton
wavelength, the uncertainty in energy may be greater than 2mc?, the rest energy of

a particle, anti-particle pair. However, within a relativistic one-particle theory, there
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exist positive- energy states with arbitrarily large uncertainty in energy, because the
energy is unbounded above. Thus if the uncertainty in position is small enough for
the uncertainty in energy to be greater than the rest energy of a particle, anti-particle
pair, this does not necessarily imply a breakdown of the one-particle picture.

Some theorists have claimed that the very concept of position is not meaning-
ful in a relativistic single particle theory, but this is perhaps connected with the
intractable nature of the problem of determining the position operator and its cor-
responding eigenstates, not from any underlying physical cause. Others have been
left unconvinced by these arguments and have sought to determine position opera-
tors and their eigenstates with respect to certain desirable properties of the operator
or its localised states. These approaches can be broadly grouped along certain lines

of research. The problem is essentially to find:

1. An operator q corresponding to position, and its associated eigenstates (re-

ferred to as localised states).
2. The properties of this operator and its localised states.

3. The properties of variables related to position, important examples of these

being time and velocity.

Kélnay [9] provides a good review of the methods that have been employed in the
search for a solution. Despite this interest in the position operator, there is as yet
no consensus on a solution to the problem.

Here we shall concentrate on the approach taken by Newton and Wigner [11] to
the localisation problem in their seminal paper. To quote Kélnay [9], “We regard
the classical paper by Newton and Wigner (NW) as the most fundamental one on
the localisation problem”. The N ewton-Wigner approach provides perhaps the most
well-known solution to the problem. We use the expression “solution” loosely here,
since despite the strengths of their paper, the localised states found do not satisfy
Einstein causality (Einstein causality states that there can be no propagation faster

than the speed of light) and so cannot easily be accepted in a relativistic theory.

43




5.2 Newton-Wigner Localisation

Newton and Wigner approached the problem of constructing localised states from
the perspective of symmetry transformations. For simplicity, they considered only
elementary systems, that is dynamical systems whose states form an irreducible rep-
resentation of the inhomogeneous Lorentz group. To ensure the localised states had

reasonable properties, they postulated that such states should satisfy the following:

1. The localized states form a linear space Sy (so a superposition of two localized

states is again such a state);

2. So is invariant under spatial rotations about the origin and reflections in space

and time;

3. A spatial displacement of a state in Sy makes it orthogonal to all states in So;

4. Certain mathematical smoothness conditions hold.

These postulates perhaps need some explanation as to their implications. Pos-
tulate (1) regarding the space .S, of localised states is quite dear, being a statement
of compatibility of the localised states. Newton and Wigner regarded postulate (3)
as the most important. The authors were looking for point-localised states, 1.e. the
position of the system is localised at a single spatial point, Tather than over a vol-
ume of space, thus the probability of the particle being at any other spatial point

should be zero. This can be ensured by making states localised at a orthogonal to

their translates to a distinct point b. The space S is really the limiting case of a

linear space in Hilbert space, as the generalised eigenfunctions we are dealing are
only the limits of square-integrable functions, and so do not belong to Hilbert space
themselves. A more rigorous derivation of the Newton-Wigner results is given by
Wightman [16], however apart from a firmer mathematical foundation, the approach
and criticisms remain unchanged.

Newton and Wigner then looked for localised states which satisfied these con-

ditions, from which they could determine the form of the position operator. They
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considered separately the case of non-zero and zero spin particles, with finite rest
mass, the former requiring a more sophisticated mathematical approach. They con-
cluded that localised states could be found for these systems and they corresponded
to a position operator q, which leaves invariant the positive energy subspace of
Hilbert space. For the massive Dirac particle, the position operator is identical to
that found earlier by Pryce [[13]], and also Foldy and Wouthuysen [[5]]:

2 : 3

- h|c. c c .
q= X+ 5 [Ezﬁa + mp X% — mzﬁ(a : P)P} ) (5.2)

== (7 2)

Newton and Wigner also concluded that for particles with zero rest mass, lo-
calised states were possible for spin 0 and spin % particles, however, such states did
not exist for higher spin particles. These conclusions were quite a step forward at
the time, since the localised states satisfy quite general conditions and the associated
position operator acts only on positive energy states

While localised states of a the Newton-Wigner operator can be found for a spin
% Dirac particle with zero rest mass, this does not apply to the two-component
neutrino. The 2-component neutrino has a definite helicity, and this property causes

the neutrino to violate the condition of invariance under spatial reflections.

5.3 Difficulties with N ewton-Wigner localisation

Unfortunately, the Newton-Wigner localised states are not well-behaved under the
action of the inhomogeneous Lorentz group, because problems arise with time evo-
lution. If we consider a particle localised at a point x; in 3-space at time ¢, then at
a time t+ T, special relativity imposes the condition that the particle should remain
localised within a sphere of tadius R = cT, centred at xo. However, the Newton-
Wigner states delocalise instantaneously and as a consequence, fail to satisfy this

condition. After this was discovered, it was hoped that by weakening postulate (3)
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to orthogonality outside some small volume V', Einstein causality could be satisfied.
Physically, this interpretation appears reasonable, as it is likely that particles are
not point-like but in fact take up a small volume of space.

It has been shown [6], however, that even with this condition, the localised states
will violate Einstein causality at some future time. Hegerfeldt [7], has extended this
result by showing that even if the localised states have tails which decay exponen-
tially outside of some region R, Einstein causality will still be violated at later times.
However, implicit in Hegerfeldt’s work is the assumption that the position operator

acts to leave invariant the positive energy part of Hilbert space.

5.4 Localisation for the neutrino

If we now turn our attention to the neutrino, we know that the position operator
x acts on the whole of Hilbert space. This property makes the operator unappeal-
ing, because its action leaves neither the positive nor the negative energy subspace
invariant. Nevertheless, there is some justification for regarding x to be the correct
position operator. As we noted before, the 2-component neutrino can be described
by Dirac’s equation (with some constraints imposed). If we consider a charged Dirac
particle, such as an electron, moving in an external eleca:tro-magnetic field, then we
minimally couple the field to the Dirac operator X, not the N ewton—Wigﬁer operator
g. Additionally, experimental observations have not revealed any extended charge
structure to the electron, which is something of a paradox if we cannot, in theory,
localise the charge.

If we assume that the position operator for the neutrino is the Dirac position x,
then it is still possible to construct 2-spinor states 1 that have contributions only
from the positive energy subspace. The mean and variance of X, In these states are
well-defined, so we considered it might be advantageous to to find the greatest lower
bound on the variance in position, which we will denote Ay. A similar investigation
[10] has been performed on the Dirac particle, with the surprising result that the

greatest lower bound on A, is in fact 0. This allows one to find positive energy
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states of the Dirac particle, whose variance is arbitrarily near to 0. We shall refer to
these states as "asymptotically localised”, since in terms of Ay, the position is, in an
intuitive sense, asymptotically close to the mean value. We would like to extend this
result to the neutrino, firstly because its mathematical description is very similar to
the Dirac particle, and secondly because Newton-Wigner localisation is impossible
for the 2-component neutrino. From this perspective, it seems worthwhile to try

to find an alternative form of localisation which is acceptable for the 2-component

neutrino.
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Chapter 6

Arbitrarily Precise Localisation

In this chapter, we derive the result that the lower bound on the variance Ay i1s 0. It
suits our purposes to work in the momentum representation: recall from Chapter 2

that a 2-spinor wave function (x) is related to the momentum representation wo(p)

by the Fourier transform:

._.___1_ x e—ix~p/5 337
o) = | peein o, (6.1

We seek states 1(x) of minimum variance, sub ject to the positive energy condi-

tion,

HY = +E(p), (6.2)

where H = co-p, and E(p) = ¢|p|. These states must also satisfy the normalisation

condition

(b, ¥) = 1. | (6.3

Since the variance is dependent on the mean, we need to define the particle’s mean

position. For simplicity, we shall say that the particle has its mean at the origin.

Thus Ay = (1, x%%) and we have the extra condition

(¥,x) = 0, (6.4)

to satisfy. As we wish to work in momentum space, we need to transform our re-

spective conditions aswell. We note that in momentum space, the position operator
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x — 1AV. The momentum space form of the variance is then

o) = —# [ oe)'Vo(p) 5. (6.5)
We can integrate () by parts, so that it takes the form:

dpt By
x3) = B[ . ZE By, 6.6

We now introduce the notation d¢ /api = ;, using the summation convention

on repeated indices. We wish to minimize

I= / s dp, | (6.7)
subject to
/(,_a*ga,jd?’p =0, 7=1,2,3, (6.8)
/sa*w dp = 1, (6.9)
and the positive—energy.condition
Hp = +E(p)p (6.10)

We now define energy basis 2-spinors u,(p),a = 1,2 satisfying

Hui(p) = +E(p)ui(p), (6.11)
Huy(p) = —E(p)ua(p), (6.12)
ul(P)us(p) = bap. (6.13)

The construction of such 2-spinors is well-known [14]. we can satisfy (6.11-6.13)

by setting
1
Ug = g(lpifz + Aos)e,q (6.14)
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where

M
Il

Vipl(Ip| + ps),

(1) = ()

A general 2-spinor momentum-space state p(p) can now be expanded as

e(p) = falP)ua(p), (6.15)

where f,,a = 1,2, are complex-valued, square-integrable, scalar functions, and we
also use the summation convention over a-values.

From (6.15) we have

Qi = faitia + falla;, (6.16)
and we can write
Ui = Qiu§ub - (6.17)
for suitable coefficients Q;q(p), as determined in Appendix A, so that
i = [Fasibab + FaQiablip - (6.18)

With the help of (6.13) the integrands of (6.7, 6.8, 6.9) then reduce to

(Pfiﬁa,i = f:,ifa,i + faQiabfl:i + f:Q:abfb,i + faQiacQ?bcf: > (6'19)
‘10}1’90,1' = f:fa,j + faQ.’iabfl;k ) (620)
oo = fifa, (6.21)

respectively, where the summation convention applies to all repeated indices. The
constraint (6:10) now reduces to the condition
f2=0, (6.22)

so that the sums over a and b (but not ¢) in (6.19 - 6.21) are now restricted to the

value 1. Noting from equation (7.9) that Q:;(p) is an odd-function of p we see
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that a sufficient condition to satisfy (6.8) is to make (6.20) an odd-function of p by

choosing f to be a real-valued, even-function of p!, p? and p®. Then (6.9) reduces

to

/ff dp=1, (6.23)
and (6.7) to
I= [ [FERat FTQiE + FIQIF 4 FQuQIF] #5, (629

where F' = (f1,0)T and Q; is the 2 X 2 matrix whose ab-th element is Q;qp. From

from the appendix, we have that the elements Qi3 satisfy the relation

an = —Wi-
Hence, we have
4 - 0 0
FTQ,F;+ FTQ:F = fiQin—ﬁ + —fl-anfl (6.25)
6}7’ apz
5 .
= %fi(@iu“@iu) = 0. (6.26)

Thus these terms make no contribution to the integral (6.24).

Substituting from equation (7.10) in the fourth term, we then get

I= / {<6g;f)>2+f1(P)2R(pj} &p, (6.27)

where

R(p) — (3|Pl +p?g‘fipl +p3) . (6.28)

We are now in a position to show that 0 is the greatest lower bound on I in (6.27),
subject to (6.23), where f; is a Teal-valued, even-function of p*, p* and p3. Since
Ax > 0, it will then follow that 0 is the greatest lower bound on Ay with (x) = 0.
To show this, suppose that a real f1(p) has been chosen, even in p!, p* and p?,
satisfying (6.23), and leading to some value I on substitution in (6.27). For the

purposes of the proof, we shall suppose further that fi is continuously differentiable
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on all of momentum-space, and is sufficiently well-behaved at p = 0 and at infinity

to guarantee the convergence of all integrals involved. Then let

q=p8p, 0<f<1 (6.29)

and set

h(p) = VBi(Bp) = VB fi(a) . (6.30)
It then follows that

9 - \/E%% - 135%

op Og¢? dp* 0q' (6:31)

From (6.30) we have
7/ \2 73 3 2d39
[ iwres = 5 [ f R=1, (6.32)

so that _fl satisfies all the conditions imposed on f; and fo. We can substitute f; in

place of f1 in (6.27), which leads with the help of (6.30) and (6.31) to a new value

. /Kafap))': Ay SRl (Bl 20|

Op; ok
- 5 ZECIAN 2 Blal+ gs)(lal + ps) | d°¢
- 5 | {( ) 4 gyt |

Thus,

M~

e [ eR@)? 2 (Blal +gs)(lal +ps3) | 5
= p /{(T%> + fi(q)*) 1 ]dQ- (6.33)

Clearly as 8 — 07 this integral goes to zero. Hence, the greatest lower bound on

the variance of position is zero.

6.1 Asymptotically localising sequences

As a result of this, at any point a, we can construct a sequence {¥,}%2,; of posi-
tive energy states, each with expectation value of x equal to a, whose corresponding
sequence of variances Ay converges to 0. Moreover, the associated sequence of densi-

bies pn(x) = 9n(%)"n(x) approaches §®(x—a). We could consider such a sequence
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to be arise as a result of a series of measurements of position, each measurement hav-
ing greater precision. We shall refer to these sequences as “asymptotically localising
sequences”. We add that the states which comprise these sequences, have “tails”
extending to infinity (much like the tails of 2 Gaussian distribution). Thus the neu-
trinos they describe have position which cannot be completely localised within any
region of space.

The formulation of the the above proof suggests a method of constructing an
asymptotically localising sequence (ALS) at 0. We choose f; to be a real-valued,

even function of p;,p; and ps, and form the sequence {ea(p)}2,, with

on(®) = =51 (2) wi(p),

where 1/n assumes the role of § in the above proof. Hence, the associated sequence

of variances {A,} is monotonic decreasing, and bounded below by 0. We can obtain

an ALS at a general point a, from the translation

©n(P) — € *P o (D), Pa(x) = Yu(x—a).

As an example of an ALS at 0 , we can choose a real, even, square-integrable

function
S
f(p) =. (2,”.@)3/2 i /2 )
so that
1 —p2/2Qﬁ2
¢n(p) = Grantyiia® u(p).

As a point of comparison with the Newton-Wigner localised states, it is inter-
esting to examine the properties of ALS’s with respect to the Newton-Wigner pos-

tulates. Summarising the results of Bracken and Melloy [[10]], we find that ALS’s

behave as follows:

* The effect of a rotation, or a time reversal operation, applied to an ALS at 0 is

to produce another such ALS. However, since neutrino states are not invariant

under spatial reflections, we cannot satisfy all the conditions of postulate (2).
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o A spatial translation of an ALS at a will produce another ALS at the appro-

priately translated point b.

e In general, the elements of an ALS will not be orthogonal to their translates in
space, however the scalar product of successive elements of an ALS at a with

successive elements of an ALS at a distinct point b will converge to zero.

¢ The superposition of two ALS’s at-a will not in general produce another ALS

at a.

It is not surprising that asymptotically localised fail to satisfy these last two
properties. As a result of their infinite tails such states cannot be strictly localised
within any region, and are thus unlikely to be orthogonal. Secondly, two ALS’s
localised about a point a will typically have their peaks about slightly different
points, hence the difference of two such states may be zero near a and have peaks
at some distance form a.

Thus, in the light that they form approximate, rather than point-, localised states

we may conclude that ALS’s behave reasonably with respect to the Newton-Wigner

postulates,
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Chapter 7

Conclusions

We feel that asymptotic localisation provides a reasonable definition of localised
states and should be adopted as the concept of localisation for the 2-component
neutrino. As we have emphasised, Newton-Wigner localisation cannot be applied to
the 2-component neutrino, and we believe that asymptotic localisation adequately
fills this void.

To further emphasise the suitability of asymptotic localisation to the neutrino,
note that we can define a current density j(x,t) associated with the probability
density p(x,t) such that the two satisfy a conservation equation. The conservation

equation for the Dirac current density (for the 2-component neutrino) is given by
j,'(X,t) = CTIbT(X, i)gi@b(xaf) . (7‘1)

The conservation equation is important in itself, however, more significant to our
concept of localisation is the observation that, at each point in space and time, these

quantities satisfy the inequality

i(x,t) - m| < ep(x,t), - (7.2)

for every constant unit vector n, because no eigenvalue od o -1 can be greater
than 1 in magnitude. This inequality then provides the necessary and sufficient
condition for the density p to spread at speeds no greater than the speed of light.
This is a crucial result, for it implies that the states which form an ALS, will not
violate Einstein causality. Along with this, we have that the Dirac position operator

demonstrates reasonable properties under Lorentz boosts.
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We still have the apparent difficulty that each component of the velocity vector
has eigenvalues of +c, and that it is not a multiple of the momentum of the neutrino.
However, we cannot diagonalise the components of velocity in positive energy states,
hence these eigenvalues are not observable. This should not be surprising, since
the Dirac position operator is not diagonalisable on positive energy states either.
Consider, however, that the expectation value of x is the same as that of c?H~!p,
which is the value that classical considerations lead us to expect. We add, however,

that we cannot make the uncertainty in velocity arbitrarily small because

2
v’ = lojo; = 321,

and thus

(0, x%0) = 3c%(p, ) = 3%,

if  is a normalised element of Hilbert space.

With the adoption of asymptotic lécalisation, the diiﬁculties associated with the
Dirac position operator dissipate for the most part, and provided we are willing to
accept approximate localisation, we believe that this provides a reasonable concept
of localisation of the neutrino. We reiterate that the elements of an ALS have tails
that extend to infinity, so that the probability of the particle being at any spatial
point is non-zero. The behaviour of these tails needs some further investigation, so
we can determine what sort of functions comprise an ALS. Finally, it is evidently
of interest to see if asymptotic localiéation can in be applied in some form to the

photon, which also lacks Newton-Wigner localised states.
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Appendix

Consider the operator A = o - p. We now define 2-spinors u,, a =1, 2 as follows:

1
Ug = E(Ipifz—}-Aaa)ea = Ue,, (7.3)

whexe € = VIPIIRI 23], o= () ), ea= (7):

These u, are normalized vectors since they satisfy the relations ul uy = 6. We need

to find the partial derivatives of u, with respect to the components of momentum.

Let us define

Oug oUu

o - o Qiabup, (7.4)

where the summation convention is employed on the bs. We need +to find the form

of the Q;a, so if we now multlply on the left by u}, we have

Z gU = Qiab uiub
= Q iac
This implies that
Qiac = 8—U' €a. (75)
31’;

So we can let Q; be the 2 x 2 matrix with Qiec being the element in the a-th row
and c-th column, and according to equation (7.4) we have QT = Ut g—g. To find
the form of Q, we need to evaluate Ut2Y J' Notmg that

= 0'2' 5

Op:

57




‘We have

ouU 0 [1

z - a—m[gupmﬂmﬂ
1 pip3 1/ p

= == |2p + =— i A i03) | -
£ [ S~y *‘P'“] v e<|pﬁ””3)>
1 1 D:
Then QF = — [zpi+%§f+lp;5i3} I

. y2
+ o2 (Ip|Zz + Acs) (El-fz + o‘i03)> .

The form of the Q-matrices is then,

. 2 .
: Py D1D2
QT:———pa + =0y — —/—=0 —_p03~p<7]: 7.6)
1 e | Iplo, P] p) ol 1 2 307 (
L. r 2
G P2 P1D2
QTz—pU—-—a —]——a—l—pa—l—po], 7.7)
? r103,291 D3p2
Qf = — 0y — =01 + P10y — poo (7.8)
3 .‘52 i ip| | |p| 1 ijv2 201
In particular, we need the elements @11, which are
p
Qi1 = —1pz, Qo1 = i1, Qa1 = 0. (7-9)

Clearly, these elements are odd functions of p. Also note that QF; = —Qu.
‘We shall also require Q¥ = (@), Since equations (7.6 - 7.8) have a factor of 1
in all terms, Qf = —Q7. We can now calculate the product QrQ7 = —(Q7)?. After

some rather tedious algebra, we arrive at the simple relation

with summation over 4 implied.
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