RSK correspondence of type D and affine crystals ${ }^{1}$

Jae-Hoon Kwon
(joint work with II-Seung Jang)

Seoul National University
OCU, Mar 2019

Motivation

- \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- r: proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p}=\mathfrak{l}+\mathfrak{b}$: the parabolic subalgebra
- u^{-}: the negative nilradical of p with $g=p \oplus u^{-}$
- $U\left(\mathfrak{u}^{-}\right)$has a multiplicity-free decomposition as l-module
- The expansion into irreducible r-characters of

$$
\operatorname{ch} U\left(\mathfrak{u}^{-}\right)=\prod_{\alpha \in \Phi\left(u^{-}\right)}\left(1-e^{\alpha}\right)^{-1}
$$

gives the well-known Cauchy identity and Littlewood identity

Motivation

- \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- l: proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p}=\mathfrak{l}+\mathfrak{b}$: the parabolic subalgebra
- u^{-}: the negative nilradical of p with $g=p \oplus u$
- $U\left(\mathfrak{u}^{-}\right)$has a multiplicity-free decomposition as \mathfrak{l}-module
- The expansion into irreducible r-characters of

gives the well-known Cauchy identity and Littlewood identity

Motivation

- \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- l : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p}=\mathfrak{l}+\mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^{-}: the negative nilradical of \mathfrak{p} with $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{u}$
- $U\left(u^{-}\right)$has a multiplicity-free decomposition as r-module
- The expansion into irreducible \mathfrak{l}-characters of

gives the well-known Cauchy identity and Littlewood identity

Motivation

- \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- l : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p}=\mathfrak{l}+\mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^{-}: the negative nilradical of \mathfrak{p} with $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{u}$
- $U\left(\mathfrak{u}^{-}\right)$has a multiplicity-free decomposition as \mathfrak{l}-module
- The expansion into irreducible r-characters of

gives the well-known Cauchy identity and Littlewood identity

Motivation

- \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- l : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p}=\mathfrak{l}+\mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^{-}: the negative nilradical of \mathfrak{p} with $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{u}^{-}$
- $U\left(u^{-}\right)$has a multiplicity-free decomposition as l-module
- The expansion into irreducible l-characters of

gives the well-known Cauchy identity and Littlewood identity

Motivation

- \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- l : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p}=\mathfrak{l}+\mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^{-}: the negative nilradical of \mathfrak{p} with $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{u}^{-}$
- $U\left(\mathfrak{u}^{-}\right)$has a multiplicity-free decomposition as \mathfrak{l}-module
- The expansion into irreducible l-characters of

gives the well-known Cauchy identity and Littlewood identity

Motivation

- \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- l : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p}=\mathfrak{l}+\mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^{-}: the negative nilradical of \mathfrak{p} with $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{u}^{-}$
- $U\left(\mathfrak{u}^{-}\right)$has a multiplicity-free decomposition as \mathfrak{l}-module
- The expansion into irreducible l-characters of

$$
\operatorname{ch} U\left(\mathfrak{u}^{-}\right)=\prod_{\alpha \in \Phi\left(\mathfrak{u}^{-}\right)}\left(1-e^{\alpha}\right)^{-1}
$$

gives the well-known Cauchy identity and Littlewood identity

Motivation

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by

RSK correspondence and its variation

- It also has a connection with quantum affine algebra since

$$
\operatorname{ch} U\left(u^{-}\right)=\lim _{s \rightarrow \infty} e^{-s \omega_{r}} \operatorname{ch} W_{s}^{(r)}
$$

where $W_{s}^{(r)}$ is a KR module which is "classically irreducible"

- Goal : to introduce affine crystal associated to U($\left.u^{-}\right)$

Motivation

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

where $W_{s}^{(r)}$ is a KR module which is "classically irreducible"
- Goal : to introduce affine crystal associated to U($\left.u^{-}\right)$

Motivation

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

where $W_{s}^{(r)}$ is a KR module which is "classically irreducible"
- Goal : to introduce affine crystal associated to U(u^{-})

Motivation

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

$$
\operatorname{ch} U\left(\mathfrak{u}^{-}\right)=\lim _{s \rightarrow \infty} e^{-s \omega_{r}} \operatorname{ch} W_{s}^{(r)}
$$

where $W_{s}^{(r)}$ is a KR module which is "classically irreducible"

- Goal : to introduce affine crystal associated to $U\left(u^{-}\right)$

Motivation

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

$$
\operatorname{ch} U\left(\mathfrak{u}^{-}\right)=\lim _{s \rightarrow \infty} e^{-s \omega_{r}} \operatorname{ch} W_{s}^{(r)}
$$

where $W_{s}^{(r)}$ is a KR module which is "classically irreducible"

- Goal : to introduce affine crystal associated to $U\left(\mathfrak{u}^{-}\right)$

PBW basis and crystal

- $U_{q}(\mathfrak{g})=\left\langle e_{i}, f_{i}, t_{i} \mid i \in I\right\rangle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_{q}^{-}=\left\langle f_{i} \mid i \in I\right\rangle$: the negative part of $U_{q}(g)$
- W : the Weyl group of \mathfrak{g}
- W_{0} : the longest element of length N in W
- $R\left(w_{0}\right)$: the set of reduced expression $\left(i_{1}, \ldots, i_{N}\right)$ of w_{0}

PBW basis and crystal

- $U_{q}(\mathfrak{g})=\left\langle e_{i}, f_{i}, t_{i} \mid i \in I\right\rangle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_{q}^{-}=\left\langle f_{i} \mid i \in I\right\rangle$: the negative part of $U_{q}(g)$
- W : the Weyl group of \mathfrak{g}
- W_{0} : the longest element of length N in W

PBW basis and crystal

- $U_{q}(\mathfrak{g})=\left\langle e_{i}, f_{i}, t_{i} \mid i \in I\right\rangle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_{q}^{-}=\left\langle f_{i} \mid i \in I\right\rangle$: the negative part of $U_{q}(\mathfrak{g})$
- W : the Weyl group of g
- w_{0} : the longest element of length N in W

PBW basis and crystal

- $U_{q}(\mathfrak{g})=\left\langle e_{i}, f_{i}, t_{i} \mid i \in I\right\rangle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_{q}^{-}=\left\langle f_{i} \mid i \in I\right\rangle$: the negative part of $U_{q}(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- wo : the longest element of length N in W

PBW basis and crystal

- $U_{q}(\mathfrak{g})=\left\langle e_{i}, f_{i}, t_{i} \mid i \in I\right\rangle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_{q}^{-}=\left\langle f_{i} \mid i \in I\right\rangle$: the negative part of $U_{q}(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- w_{0} : the longest element of length N in W

PBW basis and crystal

- $U_{q}(\mathfrak{g})=\left\langle e_{i}, f_{i}, t_{i} \mid i \in I\right\rangle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_{q}^{-}=\left\langle f_{i} \mid i \in I\right\rangle$: the negative part of $U_{q}(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- w_{0} : the longest element of length N in W
- $R\left(w_{0}\right)$: the set of reduced expression $\left(i_{1}, \ldots, i_{N}\right)$ of w_{0}

PBW basis and crystal

- For $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in R\left(w_{0}\right)$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{N}\right) \in \mathbb{Z}_{+}^{N}$,

where T_{i} : an automorphism of $U_{q}(\mathfrak{g})\left(T_{i}=T_{i, 1}^{\prime \prime}\right)$
- $B_{i}=\left\{b_{i}(c) \mid c \in \mathbb{Z}^{N}\right\}$: a basis of U_{q}^{-}
- $L(\infty)=\bigoplus_{v \in B_{\mathrm{i}}} A_{0} v$ and $\pi: L(\infty) \rightarrow L(\infty) / q L(\infty)$
$B(\infty):=\pi\left(B_{i}\right)$: the crystal associated to U_{q}^{-}
- $\mathbf{B}_{\mathbf{i}}:=\mathbb{Z}_{+}^{N} \leftrightarrow B(\infty)$: the crystal of \mathbf{i}-Lusztig data

PBW basis and crystal

- For $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in R\left(w_{0}\right)$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{N}\right) \in \mathbb{Z}_{+}^{N}$,

$$
b_{\mathbf{i}}(\mathbf{c})=f_{i_{1}}^{\left(c_{1}\right)} T_{i_{1}}\left(f_{i_{2}}^{\left(c_{2}\right)}\right) \cdots T_{i_{1}} T_{i_{2}} \cdots T_{i_{N-1}}\left(f_{i_{N}}^{\left(c_{N}\right)}\right) \in U_{q}^{-}
$$

where T_{i} : an automorphism of $U_{q}(\mathfrak{g})\left(T_{i}=T_{i, 1}^{\prime \prime}\right)$

$B(\infty):=\pi\left(B_{\mathrm{i}}\right):$ the crystal associated to U_{q}^{-}

PBW basis and crystal

- For $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in R\left(w_{0}\right)$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{N}\right) \in \mathbb{Z}_{+}^{N}$,

$$
b_{\mathbf{i}}(\mathbf{c})=f_{i_{1}}^{\left(c_{1}\right)} T_{i_{1}}\left(f_{i_{2}}^{\left(c_{2}\right)}\right) \cdots T_{i_{1}} T_{i_{2}} \cdots T_{i_{N-1}}\left(f_{i_{N}}^{\left(c_{N}\right)}\right) \in U_{q}^{-}
$$

where T_{i} : an automorphism of $U_{q}(\mathfrak{g})\left(T_{i}=T_{i, 1}^{\prime \prime}\right)$

- $B_{\mathbf{i}}=\left\{b_{\mathbf{i}}(\mathbf{c}) \mid \mathbf{c} \in \mathbb{Z}_{+}^{N}\right\}:$ a basis of U_{q}^{-}
$B(\infty):=\pi\left(B_{\mathrm{i}}\right)$: the crystal associated to U_{q}^{-}
- $\mathrm{B}_{\mathrm{i}}:=\mathbb{Z}^{N} \leftrightarrow B^{\prime}(\infty)$: the crystal of i -Lusztig data

PBW basis and crystal

- For $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in R\left(w_{0}\right)$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{N}\right) \in \mathbb{Z}_{+}^{N}$,

$$
b_{\mathbf{i}}(\mathbf{c})=f_{i_{1}}^{\left(c_{1}\right)} T_{i_{1}}\left(f_{i_{2}}^{\left(c_{2}\right)}\right) \cdots T_{i_{1}} T_{i_{2}} \cdots T_{i_{N-1}}\left(f_{i_{N}}^{\left(c_{N}\right)}\right) \in U_{q}^{-}
$$

where T_{i} : an automorphism of $U_{q}(\mathfrak{g})\left(T_{i}=T_{i, 1}^{\prime \prime}\right)$

- $B_{\mathbf{i}}=\left\{b_{\mathbf{i}}(\mathbf{c}) \mid \mathbf{c} \in \mathbb{Z}_{+}^{N}\right\}:$ a basis of U_{q}^{-}
- $L(\infty)=\bigoplus_{v \in B_{\mathrm{i}}} A_{0} v$ and $\pi: L(\infty) \rightarrow L(\infty) / q L(\infty)$
$B(\infty):=\pi\left(B_{\mathrm{i}}\right)$: the crystal associated to U_{q}^{-}
- $\mathbf{B}_{\mathbf{i}}:=\mathbb{Z}_{+}^{N} \leftrightarrow B(\infty)$: the crystal of \mathbf{i}-Lusztig data

PBW basis and crystal

- For $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in R\left(w_{0}\right)$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{N}\right) \in \mathbb{Z}_{+}^{N}$,

$$
b_{\mathbf{i}}(\mathbf{c})=f_{i_{1}}^{\left(c_{1}\right)} T_{i_{1}}\left(f_{i_{2}}^{\left(c_{2}\right)}\right) \cdots T_{i_{1}} T_{i_{2}} \cdots T_{i_{N-1}}\left(f_{i_{N}}^{\left(c_{N}\right)}\right) \in U_{q}^{-}
$$

where T_{i} : an automorphism of $U_{q}(\mathfrak{g})\left(T_{i}=T_{i, 1}^{\prime \prime}\right)$

- $B_{\mathbf{i}}=\left\{b_{\mathbf{i}}(\mathbf{c}) \mid \mathbf{c} \in \mathbb{Z}_{+}^{N}\right\}:$ a basis of U_{q}^{-}
- $L(\infty)=\bigoplus_{v \in B_{\mathrm{i}}} A_{0} v$ and $\pi: L(\infty) \rightarrow L(\infty) / q L(\infty)$
$B(\infty):=\pi\left(B_{\mathbf{i}}\right)$: the crystal associated to U_{q}^{-}

PBW basis and crystal

- For $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in R\left(w_{0}\right)$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{N}\right) \in \mathbb{Z}_{+}^{N}$,

$$
b_{\mathbf{i}}(\mathbf{c})=f_{i_{1}}^{\left(c_{1}\right)} T_{i_{1}}\left(f_{i_{2}}^{\left(c_{2}\right)}\right) \cdots T_{i_{1}} T_{i_{2}} \cdots T_{i_{N-1}}\left(f_{i_{N}}^{\left(c_{N}\right)}\right) \in U_{q}^{-}
$$

where T_{i} : an automorphism of $U_{q}(\mathfrak{g})\left(T_{i}=T_{i, 1}^{\prime \prime}\right)$

- $B_{\mathbf{i}}=\left\{b_{\mathbf{i}}(\mathbf{c}) \mid \mathbf{c} \in \mathbb{Z}_{+}^{N}\right\}$: a basis of U_{q}^{-}
- $L(\infty)=\bigoplus_{v \in B_{\mathrm{i}}} A_{0} v$ and $\pi: L(\infty) \rightarrow L(\infty) / q L(\infty)$
$B(\infty):=\pi\left(B_{\mathbf{i}}\right)$: the crystal associated to U_{q}^{-}
- $\mathbf{B}_{\mathbf{i}}:=\mathbb{Z}_{+}^{N} \leftrightarrow B(\infty)$: the crystal of \mathbf{i}-Lusztig data

PBW basis and crystal

- Recall that for $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in \mathbf{B}_{\mathbf{i}}$,

$$
\begin{array}{ll}
\tilde{f}_{i} \mathrm{c}=\left(c_{1}+1, c_{2}, \ldots, c_{N}\right), & \text { when } \beta_{1}=\alpha_{i} \\
\tilde{f}_{i}^{*} \mathrm{c}=\left(c_{1}, \ldots, c_{N-1}, c_{N}+1\right), & \text { when } \beta_{N}=\alpha_{i},
\end{array}
$$

- In general, it is not easy to describe \widetilde{f}_{i} and \widetilde{f}_{i}^{*} for any i

PBW basis and crystal

- Recall that for $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in \mathbf{B}_{\mathbf{i}}$,

$$
\begin{aligned}
\widetilde{f}_{i} \mathbf{c} & =\left(c_{1}+1, c_{2}, \ldots, c_{N}\right), & & \text { when } \beta_{1}=\alpha_{i} \\
\widetilde{f}_{i}^{*} \mathbf{c} & =\left(c_{1}, \ldots, c_{N-1}, c_{N}+1\right), & & \text { when } \beta_{N}=\alpha_{i}
\end{aligned}
$$

PBW basis and crystal

- Recall that for $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in \mathbf{B}_{\mathbf{i}}$,

$$
\begin{aligned}
\widetilde{f}_{i} \mathbf{c} & =\left(c_{1}+1, c_{2}, \ldots, c_{N}\right), & & \text { when } \beta_{1}=\alpha_{i} \\
\widetilde{f}_{i}^{*} \mathbf{c} & =\left(c_{1}, \ldots, c_{N-1}, c_{N}+1\right), & & \text { when } \beta_{N}=\alpha_{i}
\end{aligned}
$$

- In general, it is not easy to describe \widetilde{f}_{i} and \widetilde{f}_{i}^{*} for any i

PBW crystal of type A

$$
\begin{aligned}
& \mathfrak{g}=A_{n-1} \text { with } I=\{1, \ldots, n-1\} \\
& \mathfrak{l}=A_{r-1} \times A_{n-r-1} \text { with } J=I \backslash\{r\}(r \in I) \\
& \Phi^{+}: \text {the positive roots of } \mathfrak{g} \\
& \Phi_{J}^{+}: \text {the positive roots of } \mathfrak{l}, \quad \Phi^{+}(J)=\Phi^{+} \backslash \Phi_{J}^{+}
\end{aligned}
$$

PBW crystal of type A

- $\mathfrak{g}=A_{n-1}$ with $I=\{1, \ldots, n-1\}$

$$
\begin{aligned}
& \mathfrak{l}=A_{r-1} \times A_{n-r-1} \text { with } J=I \backslash\{r\} \quad(r \in I)
\end{aligned}
$$

PBW crystal of type A

- $\mathfrak{g}=A_{n-1}$ with $I=\{1, \ldots, n-1\}$

$$
\begin{aligned}
& \mathfrak{l}=A_{r-1} \times A_{n-r-1} \text { with } J=I \backslash\{r\} \quad(r \in I)
\end{aligned}
$$

- Φ^{+}: the positive roots of \mathfrak{g}
the positive roots of r,

PBW crystal of type A

- $\mathfrak{g}=A_{n-1}$ with $I=\{1, \ldots, n-1\}$

$$
\begin{aligned}
& \mathfrak{l}=A_{r-1} \times A_{n-r-1} \text { with } J=I \backslash\{r\} \quad(r \in I) \\
& \begin{array}{r}
\bullet-\cdots-1
\end{array}{ }^{\bullet} \\
& r+1 \\
& n-1
\end{aligned}
$$

- Φ^{+}: the positive roots of \mathfrak{g}
Φ_{J}^{+}: the positive roots of $\mathfrak{l}, \quad \Phi^{+}(J)=\Phi^{+} \backslash \Phi_{J}^{+}$

PBW crystal of type A

- Choose $\mathbf{i} \in R\left(w_{0}\right)$ such that \mathbf{i} is adapted to the quiver Ω

- The convex order on Φ^{+}corresponding to i is given by

where $\beta_{1}, \ldots, \beta_{M} \in \Phi^{+}(J)$ and $\beta_{M+1}, \ldots, \beta_{N} \in \Phi_{J}^{+}$

PBW crystal of type A

- Choose $\mathbf{i} \in R\left(w_{0}\right)$ such that \mathbf{i} is adapted to the quiver Ω

$$
1 \quad r-1 \quad r \quad r+1 \quad n-1
$$

- The convex order on Φ^{+}corresponding to \mathbf{i} is given by

where $\beta_{1}, \ldots, \beta_{M} \in \Phi^{+}(J)$ and $\beta_{M+1}, \ldots, \beta_{N} \in \Phi_{J}^{+}$

PBW crystal of type A

- Choose $\mathbf{i} \in R\left(w_{0}\right)$ such that \mathbf{i} is adapted to the quiver Ω

- The convex order on Φ^{+}corresponding to \mathbf{i} is given by

$$
\beta_{1} \prec \cdots \prec \beta_{M} \prec \beta_{M+1} \prec \cdots \prec \beta_{N},
$$

where $\beta_{1}, \ldots, \beta_{M} \in \Phi^{+}(J)$ and $\beta_{M+1}, \ldots, \beta_{N} \in \Phi_{J}^{+}$

PBW crystal of type A

- For example, when Ω is
the $A R$ quiver of Ω is

PBW crystal of type A

- For example, when Ω is

the $A R$ quiver of Ω is

where $i j$ denotes the positive root $\epsilon_{i}-\epsilon_{j}$ for $i<j$

PBW crystal of type A

- Let $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and write $\mathbf{c}=\left(c_{i j}\right)_{1 \leq i<j \leq n} \in \mathbf{B}$
where $c_{i j}$: the multiplicity of the root vector for $\epsilon_{i}-\epsilon_{j}$
- The crystal structure of \mathbf{B} can be described explicitly
(due to Reineke 97, Salisbury-Schultze-Tingley 18)

PBW crystal of type A

- Let $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and write $\mathbf{c}=\left(c_{i j}\right)_{1 \leq i<j \leq n} \in \mathbf{B}$
where $c_{i j}$: the multiplicity of the root vector for $\epsilon_{i}-\epsilon_{j}$
- The crystal structure of B can be described explicitly
(due to Reineke 97, Salishury-Schultze-Tingley 18)

PBW crystal of type A

- Let $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and write $\mathbf{c}=\left(c_{i j}\right)_{1 \leq i<j \leq n} \in \mathbf{B}$
where $c_{i j}$: the multiplicity of the root vector for $\epsilon_{i}-\epsilon_{j}$
- The crystal structure of \mathbf{B} can be described explicitly
(due to Reineke 97, Salisbury-Schultze-Tingley 18)

PBW crystal of type A

- If $i=r$, then \tilde{f}_{r} is to increase $c_{r r+1}$ by 1

PBW crystal of type A

- If $i=r$, then \tilde{f}_{r} is to increase $c_{r r+1}$ by 1

PBW crystal of type A

When $i=4$, apply signature rule to the sequence below

PBW crystal of type A

- For $i \neq r, \tilde{f}_{i}$ can be described in terms of "signature rule"

When $i=4$, apply signature rule to the sequence below
\qquad

PBW crystal of type A

- For $i \neq r, \tilde{f}_{i}$ can be described in terms of "signature rule"

When $i=4$, apply signature rule to the sequence below

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Consider subscrystals of \mathbf{B};

$$
\begin{aligned}
& \mathbb{B}^{\prime}:=\left\{\mathrm{c}=\left(c_{i j}\right) \in \mathbb{B}^{\mid} \mid c_{i j}=0 \text { for } \epsilon_{i}-\epsilon_{j} \in \Phi_{j}^{+}\right\}, \\
& \mathbb{B}_{j}:=\left\{\mathrm{c}=\left(c_{i j}\right) \in \mathbb{B} \mid c_{i j}=0 \text { for } \epsilon_{i}-\epsilon_{j} \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and \mathbf{B}_{J} can be described by the same rule and

$$
B \cong B^{J} \otimes B J
$$

- Note that \mathbf{B}^{J} can be viewed as a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$associated to \mathfrak{u}^{-}

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Consider subscrystals of \mathbf{B};

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{i j}\right) \in \mathbf{B} \mid c_{i j}=0 \text { for } \epsilon_{i}-\epsilon_{j} \in \Phi_{J}^{+}\right\} \\
& \mathbf{B}_{J}:=\left\{\mathbf{c}=\left(c_{i j}\right) \in \mathbf{B} \mid c_{i j}=0 \text { for } \epsilon_{i}-\epsilon_{j} \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and \mathbf{B}_{J} can be described by the same rule and

- Note that \mathbf{B}^{J} can be viewed as a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$associated to \mathfrak{u}^{-}

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Consider subscrystals of \mathbf{B};

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{i j}\right) \in \mathbf{B} \mid c_{i j}=0 \text { for } \epsilon_{i}-\epsilon_{j} \in \Phi_{J}^{+}\right\} \\
& \mathbf{B}_{J}:=\left\{\mathbf{c}=\left(c_{i j}\right) \in \mathbf{B} \mid c_{i j}=0 \text { for } \epsilon_{i}-\epsilon_{j} \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and \mathbf{B}_{J} can be described by the same rule and

$$
\mathbf{B} \cong \mathbf{B}^{J} \otimes \mathbf{B}_{J}
$$

- Note that \mathbf{B}^{J} can be viewed as a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$associated to \mathfrak{u}^{-}

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Consider subscrystals of B;

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{i j}\right) \in \mathbf{B} \mid c_{i j}=0 \text { for } \epsilon_{i}-\epsilon_{j} \in \Phi_{J}^{+}\right\} \\
& \mathbf{B}_{J}:=\left\{\mathbf{c}=\left(c_{i j}\right) \in \mathbf{B} \mid c_{i j}=0 \text { for } \epsilon_{i}-\epsilon_{j} \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and \mathbf{B}_{J} can be described by the same rule and

$$
\mathbf{B} \cong \mathbf{B}^{J} \otimes \mathbf{B}_{J}
$$

- Note that \mathbf{B}^{J} can be viewed as a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$associated to \mathfrak{u}^{-}

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- ω_{r} : the r-th fundamental weight
- For $s \geq 1, B\left(s \omega_{r}\right)=\left\{c \in B^{\prime} \mid \varepsilon_{r}^{\prime}(c) \leq s\right\} \subset B^{J}$
- \mathbf{B}^{J} is a (direct) limit of the crystal $B\left(s \omega_{r}\right)$
- For $\mathrm{c}=\left(c_{i j}\right) \in \mathbf{B}^{\prime}$, we have a combinatorial formula

where \mathbf{p} is a lattice path on $\Phi^{+}(J)$ from $r n$ to $1 r+1(K 13)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- ω_{r} : the r-th fundamental weight
- For $s \geq 1, B\left(s \omega_{r}\right)=\left\{c \in B^{J} \mid \varepsilon_{r}^{*}(c) \leq s\right\} \subset B^{J}$
- \mathbf{B}^{J} is a (direct) limit of the crystal $B\left(s \omega_{r}\right)$
- For $c=\left(c_{i j}\right) \in \mathbf{B}^{J}$, we have a combinatorial formula

where p is a lattice path on $\Phi^{+}(J)$ from $r n$ to $1 r+1(\mathrm{~K} 13)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- ω_{r} : the r-th fundamental weight
- For $s \geq 1, B\left(s \omega_{r}\right)=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{r}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}$
- B^{J} is a (direct) limit of the crystal $B\left(s \omega_{r}\right)$
- For $\mathbf{c}=\left(c_{i j}\right) \in \mathbf{B}^{J}$, we have a combinatorial formula

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- ω_{r} : the r-th fundamental weight
- For $s \geq 1, B\left(s \omega_{r}\right)=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{r}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}$
- \mathbf{B}^{J} is a (direct) limit of the crystal $B\left(s \omega_{r}\right)$
- For $\mathrm{c}=\left(c_{i j}\right) \in \mathrm{B}^{J}$, we have a combinatorial formula

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- ω_{r} : the r-th fundamental weight
- For $s \geq 1, B\left(s \omega_{r}\right)=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{r}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}$
- \mathbf{B}^{J} is a (direct) limit of the crystal $B\left(s \omega_{r}\right)$
- For $\mathbf{c}=\left(c_{i j}\right) \in \mathbf{B}^{J}$, we have a combinatorial formula

$$
\varepsilon_{r}^{*}(\mathbf{c})=\max _{\mathbf{p}}\left\{\sum_{i j \in \mathbf{p}} c_{i j}\right\}
$$

where \mathbf{p} is a lattice path on $\Phi^{+}(J)$ from $r n$ to $1 r+1(\mathrm{~K} 13)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- A lattice path pon $\Phi^{+}(J)$;

and so on

- This gives a polytope realization of $B\left(s \omega_{r}\right)$
- The formula for $\varepsilon_{r}^{*}(\mathrm{c})$ corresponds to Green's formula via RSK

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- A lattice path \mathbf{p} on $\Phi^{+}(J)$;

and so on
- This gives a polytope realization of $B\left(s \omega_{r}\right)$
- The formula for $\varepsilon_{r}^{*}(\mathbf{c})$ corresponds to Green's formula via RSK

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- A lattice path \mathbf{p} on $\Phi^{+}(J)$;

and so on
- This gives a polytope realization of $B\left(s \omega_{r}\right)$
- The formula for $\varepsilon_{r}^{*}(\mathbf{c})$ corresponds to Green's formula via RSK

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- A lattice path \mathbf{p} on $\Phi^{+}(J)$;

and so on
- This gives a polytope realization of $B\left(s \omega_{r}\right)$
- The formula for $\varepsilon_{r}^{*}(\mathbf{c})$ corresponds to Green's formula via RSK

Affine crystal structure and KR crystals

- Define $\tilde{e}_{0}, \tilde{f}_{0}: \mathbf{B}^{J} \longrightarrow \mathbf{B}^{J} \cup\{\mathbf{0}\}$ by

($\mathbf{1}_{\theta}$ corresponds to the longest root vector of A_{n-1})
Theorem (K13)
(a) \mathbf{B}^{J} becomes a $U_{q}^{\prime}\left(A_{n-1}^{(1)}\right)$-crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$
(h) For $s \geq 1$ the affine subcrystal

is isomorphic to the KR crystal $B^{r, s}$

Affine crystal structure and KR crystals

- Define $\tilde{e}_{0}, \tilde{f}_{0}: \mathbf{B}^{J} \longrightarrow \mathbf{B}^{J} \cup\{\mathbf{0}\}$ by

$$
\tilde{e}_{0} \mathbf{c}=\mathbf{c}+\mathbf{1}_{\theta}, \quad \tilde{f}_{0} \mathbf{c}= \begin{cases}\mathbf{c}-\mathbf{1}_{\theta} & \text { if } c_{\theta}=c_{1 n}>0 \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

($\mathbf{1}_{\theta}$ corresponds to the longest root vector of A_{n-1})
Theorem (K13)
(a) \mathbf{B}^{J} becomes a $U_{q}^{\prime}\left(A_{n-1}^{(1)}\right)$-crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$
(b) For $s \geq 1$, the affine subcrystal
is isomorphic to the $K R$ crystal $B^{r, s}$

Affine crystal structure and $K R$ crystals

- Define $\tilde{e}_{0}, \tilde{f}_{0}: \mathbf{B}^{J} \longrightarrow \mathbf{B}^{J} \cup\{\mathbf{0}\}$ by

$$
\tilde{e}_{0} \mathbf{c}=\mathbf{c}+\mathbf{1}_{\theta}, \quad \tilde{f}_{0} \mathbf{c}= \begin{cases}\mathbf{c}-\mathbf{1}_{\theta} & \text { if } c_{\theta}=c_{1 n}>0, \\ 0 & \text { otherwise }\end{cases}
$$

($\mathbf{1}_{\theta}$ corresponds to the longest root vector of A_{n-1})

Theorem (K13)

(a) \mathbf{B}^{J} becomes a $U_{q}^{\prime}\left(A_{n-1}^{(1)}\right)$-crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$
(b) For $s \geq 1$, the affine subcrystal

$$
\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{r}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}
$$

is isomorphic to the KR crystal $B^{r, s}$

Remark

(1) We have a polytope realization of $B^{r, s}$
(2) The PSK map

is an isomorphism of affine crystals of type $A_{n-1}^{(1)}$, where \widetilde{e}_{0} and \widetilde{f}_{0} are defined on RHS in a natural way
(3) For $\mathfrak{g}=B_{n}, C_{n}$, we have analogous results for the crystal of $U_{q}\left(\mathfrak{u}^{-}\right)$which is a limit of "classically irreducible" KR crystals (by using similarity of crystals)

Remark

(1) We have a polytope realization of $B^{r, s}$
(2) The RSK map

is an isomorphism of affine crystals of type $A_{n-1}^{(1)}$, where \widetilde{e}_{0} and \widetilde{f}_{0} are defined on RHS in a natural way
(3) For $\mathfrak{g}=B_{n}, C_{n}$, we have analogous results for the crystal of $U_{q}\left(\mathfrak{u}^{-}\right)$which is a limit of "classically irreducible" KR crystals (by using similarity of crystals)

Remark

(1) We have a polytope realization of $B^{r, s}$
(2) The RSK map

$$
\mathbf{B}^{J} \longrightarrow \bigsqcup_{\lambda} S S T_{r}(\lambda) \times S S T_{n-r}(\lambda)
$$

is an isomorphism of affine crystals of type $A_{n-1}^{(1)}$, where \widetilde{e}_{0} and \widetilde{f}_{0} are defined on RHS in a natural way

(3) \square

Remark

(1) We have a polytope realization of $B^{r, s}$
(2) The RSK map

$$
\mathbf{B}^{J} \longrightarrow \bigsqcup_{\lambda} S S T_{r}(\lambda) \times S S T_{n-r}(\lambda)
$$

is an isomorphism of affine crystals of type $A_{n-1}^{(1)}$, where \widetilde{e}_{0} and \widetilde{f}_{0} are defined on RHS in a natural way
(3) For $\mathfrak{g}=B_{n}, C_{n}$, we have analogous results for the crystal of $U_{q}\left(\mathfrak{u}^{-}\right)$which is a limit of "classically irreducible" KR crystals (by using similarity of crystals)

PBW crystals of type D

$$
\mathfrak{g}=D_{n} \text { with } I=\{1, \ldots, n\}
$$

$$
\mathfrak{l}=A_{n-1} \text { with } J=I \backslash\{n\}
$$

$$
=\left\{\epsilon_{i}+\epsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{\epsilon_{i}-\epsilon_{j} \mid 1 \leq i<j \leq n\right\}
$$

PBW crystals of type D

- $\mathfrak{g}=D_{n}$ with $I=\{1, \ldots, n\}$

PBW crystals of type D

- $\mathfrak{g}=D_{n}$ with $I=\{1, \ldots, n\}$

$\mathfrak{l}=A_{n-1}$ with $J=I \backslash\{n\}$
$1 \quad n-2 \quad n-1$

PBW crystals of type D

- $\mathfrak{g}=D_{n}$ with $I=\{1, \ldots, n\}$

$\mathfrak{l}=A_{n-1}$ with $J=I \backslash\{n\}$

1

- $\Phi^{+}=\Phi^{+}(J) \cup \Phi_{J}^{+}$

$$
=\left\{\epsilon_{i}+\epsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{\epsilon_{i}-\epsilon_{j} \mid 1 \leq i<j \leq n\right\}
$$

PBW crystals of type D

Lemma (Jang-K 18)
The crystal structure of B can be described explicitly
Proof) Use the notion of simply braided and its property by Salisbury-Schultze-Tingley

PBW crystals of type D

- Consider $\mathbf{i} \in R\left(w_{0}\right)$ associated to a convex order on Φ^{+}

$$
\begin{aligned}
& \epsilon_{i}+\epsilon_{j} \prec \epsilon_{k}-\epsilon_{I} \\
& \epsilon_{i}+\epsilon_{j} \prec \epsilon_{k}+\epsilon_{I} \Longleftrightarrow(j>I) \text { or }(j=I, i>k) \\
& \epsilon_{i}-\epsilon_{j} \prec \epsilon_{k}-\epsilon_{I} \Longleftrightarrow(i<k) \text { or }(i=k, j<I)
\end{aligned}
$$

for $1 \leq i<j \leq n$ and $1 \leq k<I \leq n$.

Lemma (Jang-K 18)

The crystal structure of B can be described explicitly
Proof) Use the notion of simply braided and its property by Salisbury-Schultze-Tingley

PBW crystals of type D

- Consider $\mathbf{i} \in R\left(w_{0}\right)$ associated to a convex order on Φ^{+}

$$
\begin{aligned}
& \epsilon_{i}+\epsilon_{j} \prec \epsilon_{k}-\epsilon_{l} \\
& \epsilon_{i}+\epsilon_{j} \prec \epsilon_{k}+\epsilon_{I} \Longleftrightarrow(j>I) \text { or }(j=I, i>k) \\
& \epsilon_{i}-\epsilon_{j} \prec \epsilon_{k}-\epsilon_{I} \Longleftrightarrow(i<k) \text { or }(i=k, j<I)
\end{aligned}
$$

for $1 \leq i<j \leq n$ and $1 \leq k<I \leq n$.

Lemma (Jang-K 18)

The crystal structure of \mathbf{B} can be described explicitly
Proof) Use the notion of simply braided and its property by Salisbury-Schultze-Tingley

PBW crystals of type D

For example, when $n=5$

PBW crystals of type D

For example, when $n=5$

PBW crystals of type D

For example, when $n=5$

PBW crystal of type D

- If $i=n$, then \tilde{f}_{n} is to increase $c_{\epsilon_{n-1}+\epsilon_{n}}$ by 1

PBW crystal of type D

- If $i=n$, then \tilde{f}_{n} is to increase $c_{\varepsilon_{n-1}+\epsilon_{n}}$ by 1

PBW crystal of type D

- For $i \neq r, \tilde{f}_{i}$ can be described in terms of "signature rule"

When $i=2$, apply signature rule to the sequence below

PBW crystal of type D

- For $i \neq r, \tilde{f}_{i}$ can be described in terms of "signature rule"

When $i=2$, apply signature rule to the sequence below

PBW crystal of type D

- For $i \neq r, \tilde{f}_{i}$ can be described in terms of "signature rule"

When $i=2$, apply signature rule to the sequence below

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Set $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathrm{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi_{j}\right\}, \\
& B_{J}:=\left\{\mathrm{c}=\left(c_{\beta}\right) \in \mathbb{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and $\mathbf{B} J$ is induced from \mathbf{B} and

$$
B \simeq B^{J} \otimes B J
$$

- B^{J} : a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$
- For $s>1, B\left(s \omega_{n}\right)=\left\{\mathbf{c} \in B^{J} \mid \varepsilon_{n}^{*}(\mathbf{c}) \leq s\right\} \subset B^{J}$
- B^{J} is a direct limit of the crystal $B\left(s \omega_{r}\right)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Set $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi_{J}^{+}\right\} \\
& \mathbf{B}_{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and $\mathbf{B} J$ is induced from \mathbf{B} and

$$
\mathrm{B} \cong \mathrm{~B}^{J} \otimes \mathrm{~B}_{J}
$$

- \mathbf{B}^{J} : a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$
- For $s \geq 1, B\left(s \omega_{n}\right)=\left\{c \in \mathbf{D}^{J} \mid \varepsilon_{n}^{*}(c) \leq s\right\} \subset \mathbf{B}^{J}$
- B^{J} is a direct limit of the crystal $B\left(s \omega_{r}\right)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Set $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi_{J}^{+}\right\} \\
& \mathbf{B}_{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and \mathbf{B}_{J} is induced from \mathbf{B} and

$$
\mathbf{B} \cong \mathbf{B}^{J} \otimes \mathbf{B}_{J}
$$

- B^{J} : a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$
- For $s \geq 1, B\left(s \omega_{n}\right)=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{n}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}$
- B^{J} is a direct limit of the erystal $B\left(s \omega_{p}\right)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Set $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi_{J}^{+}\right\} \\
& \mathbf{B}_{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and \mathbf{B}_{J} is induced from \mathbf{B} and

$$
\mathbf{B} \cong \mathbf{B}^{J} \otimes \mathbf{B}_{J}
$$

- \mathbf{B}^{J} : a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$
- For $s \geq 1, B\left(s \omega_{n}\right)=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{n}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}$
- \mathbf{B}^{J} is a direct limit of the crystal $B\left(s \omega_{r}\right)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Set $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi_{J}^{+}\right\} \\
& \mathbf{B}_{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and \mathbf{B}_{J} is induced from \mathbf{B} and

$$
\mathbf{B} \cong \mathbf{B}^{J} \otimes \mathbf{B}_{J}
$$

- \mathbf{B}^{J} : a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$
- For $s \geq 1, B\left(s \omega_{n}\right)=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{n}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}$
- B^{J} is a direct limit of the crystal $B\left(s \omega_{r}\right)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- Set $\mathbf{B}=\mathbf{B}_{\mathbf{i}}$ and

$$
\begin{aligned}
& \mathbf{B}^{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi_{J}^{+}\right\} \\
& \mathbf{B}_{J}:=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { for } \beta \in \Phi^{+}(J)\right\}
\end{aligned}
$$

- The crystal structure on \mathbf{B}^{J} and \mathbf{B}_{J} is induced from \mathbf{B} and

$$
\mathbf{B} \cong \mathbf{B}^{J} \otimes \mathbf{B}_{J}
$$

- \mathbf{B}^{J} : a crystal of the quantum nilpotent subalgebra $U_{q}\left(\mathfrak{u}^{-}\right)$
- For $s \geq 1, B\left(s \omega_{n}\right)=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{n}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}$
- \mathbf{B}^{J} is a direct limit of the crystal $B\left(s \omega_{r}\right)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- We want to give a combinatorial description of $\varepsilon_{n}^{*}(\mathbf{c})$
- For this, we introduce a double path on $\omega^{+}(J)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- We want to give a combinatorial description of $\varepsilon_{n}^{*}(\mathbf{c})$
- For this, we introduce a double path on $\Phi^{+}(\mathrm{J})$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- We want to give a combinatorial description of $\varepsilon_{n}^{*}(\mathbf{c})$
- For this, we introduce a double path on $\Phi^{+}(J)$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- For $\mathbf{c} \in \mathbf{B}^{J}$ and a double path \mathbf{p}, let

$$
\|\mathbf{c}\|_{\mathbf{p}}=\sum_{\beta \text { lying on } \mathbf{p}} c_{\beta} .
$$

Theorem (Jang-K 18)

$$
\varepsilon_{n}^{*}(\mathrm{c})=\max \left\{\|\mathrm{c}\|_{\mathrm{p}} \mid \mathrm{p} \text { is a double path in } \Phi^{+}(J)\right\}
$$

Proof) We use the transition map from Lusztig data to
Kashiwara string parametrization due to Berenstein-Zelevinsky
(01) to get the formula for ε_{n}^{*}

- We have a polytope realization of $B\left(s \omega_{n}\right)$ for $s \geq 1$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- For $\mathbf{c} \in \mathbf{B}^{J}$ and a double path \mathbf{p}, let

$$
\|\mathbf{c}\|_{\mathbf{p}}=\sum_{\beta \text { lying on } \mathbf{p}} c_{\beta} .
$$

Theorem (Jang-K 18)

Proof) We use the transition map from Lusztig data to
Kashiwara string parametrization due to Berenstein-Zelevinsky
(01) to get the formula for ε_{n}^{*}

- We have a polytope realization of $B\left(s \omega_{n}\right)$ for $s \geq 1$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- For $\mathbf{c} \in \mathbf{B}^{J}$ and a double path \mathbf{p}, let

$$
\|\mathbf{c}\|_{\mathbf{p}}=\sum_{\beta \text { lying on } \mathbf{p}} c_{\beta} .
$$

Theorem (Jang-K 18)

$$
\varepsilon_{n}^{*}(\mathbf{c})=\max \left\{\|\mathbf{c}\|_{\mathbf{p}} \mid \mathbf{p} \text { is a double path in } \Phi^{+}(J)\right\}
$$

Proof) We use the transition map from Lusztig data to
Kashiwara string parametrization due to Berenstein-Zelevinsky (01) to get the formula for ε_{n}^{*}

- We have a polytope realization of $B\left(s \omega_{n}\right)$ for $s \geq 1$

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- For $\mathbf{c} \in \mathbf{B}^{J}$ and a double path \mathbf{p}, let

$$
\|\mathbf{c}\|_{\mathbf{p}}=\sum_{\beta \text { lying on } \mathbf{p}} c_{\beta} .
$$

Theorem (Jang-K 18)

$$
\varepsilon_{n}^{*}(\mathbf{c})=\max \left\{\|\mathbf{c}\|_{\mathbf{p}} \mid \mathbf{p} \text { is a double path in } \Phi^{+}(J)\right\}
$$

Proof) We use the transition map from Lusztig data to
Kashiwara string parametrization due to Berenstein-Zelevinsky (01) to get the formula for ε_{n}^{*}

Crystal for $U_{q}\left(\mathfrak{u}^{-}\right)$

- For $\mathbf{c} \in \mathbf{B}^{J}$ and a double path \mathbf{p}, let

$$
\|\mathbf{c}\|_{\mathbf{p}}=\sum_{\beta \text { lying on } \mathbf{p}} c_{\beta} .
$$

Theorem (Jang-K 18)

$$
\varepsilon_{n}^{*}(\mathbf{c})=\max \left\{\|\mathbf{c}\|_{\mathbf{p}} \mid \mathbf{p} \text { is a double path in } \Phi^{+}(J)\right\}
$$

Proof) We use the transition map from Lusztig data to Kashiwara string parametrization due to Berenstein-Zelevinsky (01) to get the formula for ε_{n}^{*}

- We have a polytope realization of $B\left(s \omega_{n}\right)$ for $s \geq 1$

Affine crystal structure and KR crystals

- Define $\tilde{e}_{0}, \tilde{f}_{0}: \mathbf{B}^{J} \longrightarrow \mathbf{B}^{J} \cup\{\mathbf{0}\}$ by

(1_{θ} corresponds to the root vector of $\theta=\epsilon_{1}+\epsilon_{2}$)
Theorem (Jang K 10)
(a) B^{J} becomes a $U_{q}^{\prime}\left(D_{n}^{(1)}\right)$-crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$
(b) For $s>1$, the affine subcrystal

$$
\mathbf{B}^{J, s}:=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{n}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}
$$

is isomorphic to the $K R$ crystal $B^{n, s}$

Affine crystal structure and $K R$ crystals

- Define $\tilde{e}_{0}, \tilde{f}_{0}: \mathbf{B}^{J} \longrightarrow \mathbf{B}^{J} \cup\{\mathbf{0}\}$ by

$$
\tilde{e}_{0} \mathbf{c}=\mathbf{c}+\mathbf{1}_{\theta}, \quad \tilde{f}_{0} \mathbf{c}= \begin{cases}\mathbf{c}-\mathbf{1}_{\theta} & \text { if } c_{\theta}>0 \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

($\mathbf{1}_{\theta}$ corresponds to the root vector of $\theta=\epsilon_{1}+\epsilon_{2}$)
Theorem (Jang-K 18)
(a) \mathbf{B}^{J} becomes a $U_{q}^{\prime}\left(D_{n}^{(1)}\right)$-crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$
(b) For $s>1$, the affine subcrystal
is isomorphic to the $K R$ crystal $B^{n, s}$

Affine crystal structure and KR crystals

- Define $\tilde{e}_{0}, \tilde{f}_{0}: \mathbf{B}^{J} \longrightarrow \mathbf{B}^{J} \cup\{\mathbf{0}\}$ by

$$
\tilde{e}_{0} \mathbf{c}=\mathbf{c}+\mathbf{1}_{\theta}, \quad \tilde{f}_{0} \mathbf{c}= \begin{cases}\mathbf{c}-\mathbf{1}_{\theta} & \text { if } c_{\theta}>0 \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

(1_{θ} corresponds to the root vector of $\theta=\epsilon_{1}+\epsilon_{2}$)

Theorem (Jang-K 18)

(a) \mathbf{B}^{J} becomes a $U_{q}^{\prime}\left(D_{n}^{(1)}\right)$-crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$
(b) For $s \geq 1$, the affine subcrystal

$$
\mathbf{B}^{J, s}:=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{n}^{*}(\mathbf{c}) \leq s\right\} \subset \mathbf{B}^{J}
$$

is isomorphic to the KR crystal $B^{n, s}$

Burge correspondence

- $[\bar{n}]:=\{\bar{n}<\cdots<\overline{1}\}$
- $S S T_{\bar{n}}(\lambda / u)$: the set of SST of shape λ / μ with letters in [n]
- Put

($\lambda^{\pi}: 180^{\circ}$-rotation of λ)
- Note that T and T are A_{n-1}-crystals

Burge correspondence

- $[\bar{n}]:=\{\bar{n}<\cdots<\overline{1}\}$
- $\operatorname{SS}_{\bar{n}}(\lambda / \mu)$: the set of SST of shape λ / μ with letters in $[\bar{n}]$

($\lambda^{\pi}: 180^{\circ}$-rotation of λ)
- Note that T and T are A_{n-1}-crystals

Burge correspondence

- $[\bar{n}]:=\{\bar{n}<\cdots<\overline{1}\}$
- $\operatorname{SS} T_{\bar{n}}(\lambda / \mu)$: the set of SST of shape λ / μ with letters in $[\bar{n}]$

$\left(\lambda^{\pi}: 180^{\circ}\right.$-rotation of $\left.\lambda\right)$
- Note that T and T are $A_{n-1 \text {-crystals }}$

Burge correspondence

- $[\bar{n}]:=\{\bar{n}<\cdots<\overline{1}\}$
- $S S T_{\bar{n}}(\lambda / \mu)$: the set of SST of shape λ / μ with letters in $[\bar{n}]$
- Put

$$
\mathbf{T}^{\gg}:=\bigsqcup_{\substack{\ell(\lambda) \leq n \\ \lambda^{\prime}: \text { even }}} S S T_{\bar{n}}\left(\lambda^{\pi}\right), \quad \mathbf{T}^{<}:=\bigsqcup_{\substack{\ell(\lambda) \leq n \\ \lambda^{\prime}: \text { even }}} S S T_{\bar{n}}(\lambda)
$$

($\lambda^{\pi}: 180^{\circ}$-rotation of λ)

- Note that T and T are A_{n-1}-crystals

Burge correspondence

- $[\bar{n}]:=\{\bar{n}<\cdots<\overline{1}\}$
- $\operatorname{SS} T_{\bar{n}}(\lambda / \mu)$: the set of SST of shape λ / μ with letters in $[\bar{n}]$
- Put

$$
\mathbf{T}^{\gg}:=\bigsqcup_{\substack{\ell(\lambda) \leq n \\ \lambda^{\prime}: \text { even }}} S S T_{\bar{n}}\left(\lambda^{\pi}\right), \quad \mathbf{T}^{<}:=\bigsqcup_{\substack{\ell(\lambda) \leq n \\ \lambda^{\prime}: \text { even }}} S S T_{\bar{n}}(\lambda)
$$

($\lambda^{\pi}: 180^{\circ}$-rotation of λ)

- Note that \mathbf{T}^{\searrow} and \mathbf{T}^{\curlywedge} are A_{n-1}-crystals

Burge correspondence

- We identify $\mathbf{c} \in \mathbf{B}^{J}$ as a biword with letters in $[\bar{n}]$ where

and the reading order is given by

Burge correspondence

- We identify $\mathbf{c} \in \mathbf{B}^{J}$ as a biword with letters in $[\bar{n}]$ where

and the reading order is given by

Burge correspondence

- We identify $\mathbf{c} \in \mathbf{B}^{J}$ as a biword with letters in $[\bar{n}]$ where

$$
c_{\epsilon_{i}+\epsilon_{j}}=\underbrace{\begin{array}{llll}
\bar{j} & \ldots & \bar{j} \\
\bar{i} & \ldots & \bar{i}
\end{array}}_{c_{\varepsilon_{i}+\varepsilon_{j}}} \quad(i<j)
$$

and the reading order is given by

Burge correspondence

- (Burge 74) There exist bijections

Burge correspondence

- (Burge 74) There exist bijections

$$
\begin{aligned}
\kappa^{\searrow}: \mathbf{B}^{J} & \longrightarrow \mathbf{T}^{\searrow} \\
\mathbf{c} \longmapsto & \longrightarrow P^{\searrow}(\mathbf{c})
\end{aligned}
$$

and

$$
\begin{aligned}
\kappa^{\nwarrow}: \mathbf{B}^{J} \longrightarrow \mathbf{T}^{\nwarrow} \\
\mathbf{c} \longmapsto P^{\nwarrow}(\mathbf{c})
\end{aligned}
$$

which can be viewed as an analogue of RSK for type D

Burge correspondence

$$
\text { For example, } n=4
$$

Burge correspondence

For example, $n=4$

$$
\mathbf{c}==\left(\begin{array}{lllll}
\overline{4} & \overline{4} & \overline{4} & \overline{3} & \overline{2} \\
\overline{2} & \overline{2} & \overline{3} & \overline{1} & \overline{1}
\end{array}\right)
$$

Burge correspondence

For example, $n=4$

$$
\begin{aligned}
& \mathbf{c}==\left(\begin{array}{lllll}
\overline{4} & \overline{4} & \overline{4} & \overline{3} & \overline{2} \\
\overline{2} & \overline{2} & \overline{3} & \overline{1} & \overline{1}
\end{array}\right)
\end{aligned}
$$

Burge correspondence

For example, $n=4$

$$
\begin{aligned}
& \mathbf{c}==\left(\begin{array}{lllll}
\overline{4} & \overline{4} & \overline{4} & \overline{3} & \overline{2} \\
\overline{2} & \overline{2} & \overline{3} & \overline{1} & \overline{1}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P^{\searrow}(\mathbf{c})=
\end{aligned}
$$

Burge correspondence

- One can define a D_{n}-crystal structure on $\mathbf{T}^{»}$ where $\tilde{f}_{n}=$ adding a domino $\sqrt{\pi}$ on the top of a column with respect to signature rule
- One can also define a D_{n}-crystal structure on T where

Burge correspondence

- One can define a D_{n}-crystal structure on \mathbf{T}^{\searrow} where $\widetilde{f}_{n}=$ adding a domino | \bar{n} |
| :---: |
| $\overline{n-1}$ | on the top of a column with respect to signature rule
- One can also define a D_{n}-crystal structure on T where

Burge correspondence

- One can define a D_{n}-crystal structure on \mathbf{T}^{\Downarrow} where $\widetilde{f}_{n}=$ adding a domino $\sqrt{\bar{n}}$ 五-1 on the top of a column with respect to signature rule
- One can also define a D_{n}-crystal structure on \mathbf{T}^{\curlywedge} where $\widetilde{e}_{0}=$ adding a domino | $\overline{2}$ |
| :--- |
| $\overline{1}$ | on the bottom of a column with respect to signature rule

Burge correspondence

- Let

$$
\mathbf{T}:=\left\{[T] \mid T \in \mathbf{T}^{\star}\right\}
$$

where [T] denotes the Knuth equivalence class of T.

- T is a $D_{n}^{(1)}$-crystal where

$$
\widetilde{x}_{i}[T]= \begin{cases}{\left[\widetilde{x}_{0} T^{\searrow}\right]} & \text { if } i=0 \\ {\left[\widetilde{x}_{n} T^{\searrow}\right]} & \text { if } i=n \\ {\left[\widetilde{x}_{i} T\right]} & \text { otherwise }\end{cases}
$$

where $[T]=\left[T^{\wedge}\right]=\left[T^{\star}\right]$, for $i \in \hat{I}=I \cup\{0\}$ and $x=e, f$
(we assume that $[0]=0$),

Burge correspondence

- Let

$$
\mathbf{T}:=\left\{[T] \mid T \in \mathbf{T}^{\searrow}\right\}
$$

where [T] denotes the Knuth equivalence class of T.
T is a $D_{n}^{(1)}$-crystal where

where $[T]=\left[T^{\wedge}\right]=\left[T^{\star}\right]$, for $i \in \hat{I}=I \cup\{0\}$ and $x=e, f$
(we assume that $[0]=0$),

Burge correspondence

- Let

$$
\mathbf{T}:=\left\{[T] \mid T \in \mathbf{T}^{\searrow}\right\}
$$

where $[T]$ denotes the Knuth equivalence class of T.

- \mathbf{T} is a $D_{n}^{(1)}$-crystal where

$$
\widetilde{x}_{i}[T]= \begin{cases}{\left[\widetilde{x}_{0} T^{\diamond}\right]} & \text { if } i=0 \\ {\left[\widetilde{x}_{n} T^{\searrow}\right]} & \text { if } i=n \\ {\left[\widetilde{x}_{i} T\right]} & \text { otherwise }\end{cases}
$$

where $[T]=\left[T^{\nwarrow}\right]=\left[T^{\searrow}\right]$, for $i \in \hat{I}=I \cup\{0\}$ and $x=e, f$ (we assume that $[\mathbf{0}]=\mathbf{0}$),

Burge correspondence

Theorem (Jang-K 18)

$$
\begin{aligned}
& (\mathrm{a}) k^{8} \text { and } k \text { are isomorphisms of } D_{n} \text {-crystals } \\
& \text { (b) The map } \left.\mathrm{K}: \mathrm{B}^{J} \xrightarrow{\mathrm{C}} \xrightarrow{(\mathrm{l})} \mathrm{T}(\mathrm{c})\right]=\left[P^{\prime}(\mathrm{c})\right] \\
& \text { is an isomorphism of } D_{n}^{(1)} \text {-crystals. }
\end{aligned}
$$

- This gives an affine crystal theroetic interpretation of k

Burge correspondence

Theorem (Jang-K 18)

(a) κ^{λ} and κ^{\wedge} are isomorphisms of D_{n}-crystals
(b) The map

$$
\begin{aligned}
\kappa: \mathbf{B}^{J} \longrightarrow \mathbf{T} \\
\mathbf{c} \longmapsto\left[P^{\star}(\mathbf{c})\right]=\left[P^{\searrow}(\mathbf{c})\right]
\end{aligned}
$$

is an isomorphism of $D_{n}^{(1)}$-crystals.

- This gives an affine crystal theroetic interpretation of k

Burge correspondence

Theorem (Jang-K 18)

(a) κ^{λ} and κ^{\wedge} are isomorphisms of D_{n}-crystals
(b) The map

$$
\begin{aligned}
& \mathrm{K}: \mathbf{B}^{J} \longrightarrow \mathbf{T} \\
& \mathbf{c} \longmapsto\left[P^{\curlywedge}(\mathbf{c})\right]=\left[P^{\searrow}(\mathbf{c})\right]
\end{aligned}
$$

is an isomorphism of $D_{n}^{(1)}$-crystals.

- This gives an affine crystal theroetic interpretation of k

Burge correspondence

- We have an analogue of Green's formula

Coroltary

(a) For $s \geq 1$, we have an isomorphism of $D_{n}^{(1)}$-crystals

where $\mathbf{T}^{s}:=\left\{[T] \mid T \in \mathbf{T}^{\star}, \sharp\right.$ of columns in $\left.T \leq s\right\}$
(b) T^{s} is isomorphic to $B^{n, s}$

Burge correspondence

- We have an analogue of Green's formula

Corollary

(a) For $s \geq 1$, we have an isomorphism of $D_{n}^{(1)}$-crystals

$$
\kappa: \mathbf{B}^{J, s} \longrightarrow \mathbf{T}^{s}
$$

where $\mathbf{T}^{s}:=\left\{[T] \mid T \in \mathbf{T}^{〉}, \sharp\right.$ of columns in $\left.T \leq s\right\}$
(b) \mathbf{T}^{s} is isomorphic to $B^{n, s}$

Shape formula

$$
\begin{aligned}
& \text { For } \mathbf{c} \in \mathbf{B}^{J} \text {, let } \\
& \qquad \lambda(\mathbf{c}):=\operatorname{sh}\left(\kappa^{\wedge}(\mathbf{c})\right)=\left(\lambda_{1}(\mathbf{c}) \geq \ldots \geq \lambda_{\ell}(\mathbf{c})\right) \\
& \text { Theorem }(J \text { ang-K 18) } \\
& \text { For } \mathbf{c} \in \mathbf{B}^{J} \text { and } 1 \leq I \leq\left[\frac{n}{2}\right] \text {, we have } \\
& \lambda_{1}(\mathbf{c})+\lambda_{3}(\mathbf{c})+\cdots+\lambda_{2 /-1}(\mathbf{c})=\max _{\mathbf{p}_{1}, \ldots, \mathbf{p}_{l}}\left\{\|\mathbf{c}\|_{\mathbf{p}_{1}}+\cdots+\|\mathbf{c}\|_{\mathbf{p}_{l}}\right\} \text {, } \\
& \text { where } \mathbf{p}_{1}, \ldots, \mathbf{p}_{/} \text {are mutually non-intersecting double paths in } \\
& \Phi^{+}(J) \text { and each } \mathbf{p}_{i} \text { starts at the }(2 i-1) \text {-th row of } \Phi^{+}(J) \text { for } \\
& 1 \leq i \leq l .
\end{aligned}
$$

Shape formula

- For $\mathbf{c} \in \mathbf{B}^{J}$, let

$$
\lambda(\mathbf{c}):=\operatorname{sh}\left(\kappa^{\kappa}(\mathbf{c})\right)=\left(\lambda_{1}(\mathbf{c}) \geq \ldots \geq \lambda_{\ell}(\mathbf{c})\right)
$$

Theorem (Jang-K 18)

For $\mathbf{c} \in \mathbf{B}^{J}$ and $1<1<\left[\frac{n}{2}\right]$, we have
where $\mathbf{p}_{1}, \ldots, \mathbf{p}_{/}$are mutually non-intersecting double paths in $\Phi^{+}(J)$ and each \mathbf{p}_{i} starts at the $(2 i-1)$-th row of $\Phi^{+}(J)$ for $1 \leq i \leq l$.

Shape formula

- For $\mathbf{c} \in \mathbf{B}^{J}$, let

$$
\lambda(\mathbf{c}):=\operatorname{sh}\left(\kappa^{\kappa}(\mathbf{c})\right)=\left(\lambda_{1}(\mathbf{c}) \geq \ldots \geq \lambda_{\ell}(\mathbf{c})\right)
$$

Theorem (Jang-K 18)

For $\mathbf{c} \in \mathbf{B}^{J}$ and $1 \leq I \leq\left[\frac{n}{2}\right]$, we have

$$
\lambda_{1}(\mathbf{c})+\lambda_{3}(\mathbf{c})+\cdots+\lambda_{2 l-1}(\mathbf{c})=\max _{\mathbf{p}_{1}, \ldots, \mathbf{p}_{l}}\left\{\|\mathbf{c}\|_{\mathbf{p}_{1}}+\cdots+\|\mathbf{c}\|_{\mathbf{p}_{l}}\right\}
$$

where $\mathbf{p}_{1}, \ldots, \mathbf{p}_{/}$are mutually non-intersecting double paths in $\Phi^{+}(J)$ and each \mathbf{p}_{i} starts at the $(2 i-1)$-th row of $\Phi^{+}(J)$ for $1 \leq i \leq l$.

Shape formula

For example, let $n=6$ and let $\mathbf{c} \in \mathbf{B}^{J}$ be given by

where

$$
\lambda(\mathbf{c})=(19,19,6,6,2,2) .
$$

Shape formula

For example, let $n=6$ and let $\mathbf{c} \in \mathbf{B}^{J}$ be given by

where

$$
\lambda(\mathbf{c})=(19,19,6,6,2,2)
$$

Shape formula

$$
\lambda(\mathbf{c})_{1}=19 \text { with maximal value }\|\mathbf{c}\|_{\mathbf{p}}=19
$$

$$
\lambda(\mathbf{c})_{1}+\lambda(\mathbf{c})_{3}=25 \text { with maximal value }\|\mathbf{c}\|_{\mathbf{p}_{1}}+\|\mathbf{c}\|_{\mathbf{p}_{2}}=25
$$

Shape formula

$$
\lambda(\mathbf{c})_{1}=19 \text { with maximal value }\|\mathbf{c}\|_{\mathbf{p}}=19
$$

$\lambda(\mathbf{c})_{1}+\lambda(\mathbf{c})_{3}=25$ with maximal value $\|\mathbf{c}\|_{\mathbf{p}_{1}}+\|\mathbf{c}\|_{\mathbf{p}_{2}}=25$

Shape formula

$\lambda(\mathbf{c})_{1}=19$ with maximal value $\|\mathbf{c}\|_{\mathbf{p}}=19$

$\lambda(\mathbf{c})_{1}+\lambda(\mathbf{c})_{3}=25$ with maximal value $\|\mathbf{c}\|_{\mathbf{p}_{1}}+\|\mathbf{c}\|_{\mathbf{p}_{2}}=25$

THANK YOU

ありがとうございます。

