Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D

RSK correspondence of type D and affine crystals ¹

Jae-Hoon Kwon (joint work with II-Seung Jang)

Seoul National University

OCU, Mar 2019

¹arXiv:1810.02103

Preliminary ●0	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivati	ion			

- \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- I : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p} = \mathfrak{l} + \mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^- : the negative nilradical of \mathfrak{p} with $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{u}^-$
- $U(\mathfrak{u}^-)$ has a multiplicity-free decomposition as \mathfrak{l} -module
- The expansion into irreducible I-characters of

gives the well-known Cauchy identity and Littlewood identity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary ●0	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
Motivat	ion			

• \mathfrak{g} : a classical Lie algebra with \mathfrak{b} a Borel subalgebra

- I : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p} = \mathfrak{l} + \mathfrak{b}$: the parabolic subalgebra
- $\bullet \ \mathfrak{u}^-$: the negative nilradical of \mathfrak{p} with $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{u}^-$
- $U(\mathfrak{u}^-)$ has a multiplicity-free decomposition as l-module
- The expansion into irreducible I-characters of

$$\operatorname{ch} U(\mathfrak{u}^-) = \prod_{\alpha \in \Phi(\mathfrak{u}^-)} (1 - e^{\alpha})^{-1}$$

gives the well-known Cauchy identity and Littlewood identity

Preliminary ●0	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivati	ion			

- $\bullet \ \mathfrak{g}$: a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- I : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p} = \mathfrak{l} + \mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^- : the negative nilradical of \mathfrak{p} with $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{u}^-$
- $U(\mathfrak{u}^-)$ has a multiplicity-free decomposition as \mathfrak{l} -module
- The expansion into irreducible I-characters of

gives the well-known Cauchy identity and Littlewood identity

Preliminary ●0	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivat	tion			

- $\bullet \ \mathfrak{g}$: a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- I : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p} = \mathfrak{l} + \mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^- : the negative nilradical of \mathfrak{p} with $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{u}^-$
- $U(\mathfrak{u}^-)$ has a multiplicity-free decomposition as \mathfrak{l} -module
- The expansion into irreducible I-characters of

gives the well-known Cauchy identity and Littlewood identity

Preliminary ●○	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivat	ion			

- $\bullet \ \mathfrak{g}$: a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- I : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p} = \mathfrak{l} + \mathfrak{b}$: the parabolic subalgebra
- \mathfrak{u}^- : the negative nilradical of \mathfrak{p} with $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{u}^-$
- U(u⁻) has a multiplicity-free decomposition as ι-module
- The expansion into irreducible I-characters of

gives the well-known Cauchy identity and Littlewood identity

Preliminary ●○	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivat	ion			

- $\bullet \ \mathfrak{g}$: a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- I : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p} = \mathfrak{l} + \mathfrak{b}$: the parabolic subalgebra
- $\bullet \ \mathfrak{u}^-$: the negative nilradical of \mathfrak{p} with $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{u}^-$
- $U(\mathfrak{u}^-)$ has a multiplicity-free decomposition as l-module
- The expansion into irreducible I-characters of

gives the well-known Cauchy identity and Littlewood identity

Preliminary ●○	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivat	ion			

- $\bullet \ \mathfrak{g}$: a classical Lie algebra with \mathfrak{b} a Borel subalgebra
- I : proper maximal Levi subalgebra of (sum of) type A
- $\mathfrak{p} = \mathfrak{l} + \mathfrak{b}$: the parabolic subalgebra
- $\bullet \ \mathfrak{u}^-$: the negative nilradical of \mathfrak{p} with $\mathfrak{g}=\mathfrak{p}\oplus\mathfrak{u}^-$
- $U(\mathfrak{u}^-)$ has a multiplicity-free decomposition as \mathfrak{l} -module
- The expansion into irreducible I-characters of

$$\operatorname{ch} U(\mathfrak{u}^-) = \prod_{lpha \in \Phi(\mathfrak{u}^-)} (1 - e^{lpha})^{-1}$$

gives the well-known Cauchy identity and Littlewood identity

Preliminary 0•	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivati	on			

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

 $\mathrm{ch} U(\mathfrak{u}^{-}) = \lim_{s \to \infty} e^{-s\omega_r} \mathrm{ch} W_s^{(r)}$

where $W_s^{(r)}$ is a KR module which is "classically irreducible"

Preliminary 0•	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
Motivati	on			

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

 $\mathrm{ch} U(\mathfrak{u}^{-}) = \lim_{s \to \infty} e^{-s\omega_r} \mathrm{ch} W_s^{(r)}$

where $W_s^{(r)}$ is a KR module which is "classically irreducible"

Preliminary 0●	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
Motivati	on			

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

 $\mathrm{ch} U(\mathfrak{u}^{-}) = \lim_{s \to \infty} e^{-s\omega_r} \mathrm{ch} W_s^{(r)}$

where $W_s^{(r)}$ is a KR module which is "classically irreducible"

Preliminary ○●	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivati	on			

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

$$\operatorname{ch} U(\mathfrak{u}^{-}) = \lim_{s \to \infty} e^{-s\omega_r} \operatorname{ch} W_s^{(r)}$$

where $W_s^{(r)}$ is a KR module which is "classically irreducible"

Preliminary 0●	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Motivati	on			

- This decomposition has a rich combinatorial structure
- A bijective proof of the character identity is given by RSK correspondence and its variation
- It also has a connection with quantum affine algebra since

$$\operatorname{ch} U(\mathfrak{u}^{-}) = \lim_{s \to \infty} e^{-s\omega_r} \operatorname{ch} W_s^{(r)}$$

where $W_s^{(r)}$ is a KR module which is "classically irreducible"

Preliminary 00	PBW crystal of type A •00000000	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW ba	asis and crystal			

- $U_q(\mathfrak{g}) = \langle e_i, f_i, t_i \, | \, i \in I \,
 angle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_q^- = \langle \, f_i \, | \, i \in I \,
 angle$: the negative part of $U_q(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- w_0 : the longest element of length N in W
- $R(w_0)$: the set of reduced expression (i_1, \ldots, i_N) of w_0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary 00	PBW crystal of type <i>A</i> ●00000000	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW ba	sis and crystal			

- $U_q(\mathfrak{g}) = \langle e_i, f_i, t_i \, | \, i \in I \,
 angle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_q^- = \langle f_i \, | \, i \in I \, \rangle$: the negative part of $U_q(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- w_0 : the longest element of length N in W
- $R(w_0)$: the set of reduced expression (i_1, \ldots, i_N) of w_0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preliminary 00	PBW crystal of type A •00000000	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW b	asis and crystal			

- $U_q(\mathfrak{g}) = \langle e_i, f_i, t_i \, | \, i \in I \,
 angle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_q^- = \langle \, f_i \, | \, i \in I \,
 angle$: the negative part of $U_q(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- w_0 : the longest element of length N in W
- $R(w_0)$: the set of reduced expression (i_1, \ldots, i_N) of w_0

Preliminary 00	PBW crystal of type A •00000000	KR crystal of type A	Crystal of type D	RSK of type D
PBW b	asis and crystal			

- $U_q(\mathfrak{g}) = \langle e_i, f_i, t_i \, | \, i \in I \,
 angle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_q^- = \langle \, f_i \, | \, i \in I \,
 angle$: the negative part of $U_q(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- w_0 : the longest element of length N in W
- $R(w_0)$: the set of reduced expression (i_1, \ldots, i_N) of w_0

Preliminary 00	PBW crystal of type A •00000000	KR crystal of type A	Crystal of type D 000000000	RSK of type <i>D</i>
PBW b	asis and crystal			

- $U_q(\mathfrak{g}) = \langle e_i, f_i, t_i \, | \, i \in I \,
 angle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_q^- = \langle \, f_i \, | \, i \in I \,
 angle$: the negative part of $U_q(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- w_0 : the longest element of length N in W
- $R(w_0)$: the set of reduced expression (i_1, \ldots, i_N) of w_0

Preliminary 00	PBW crystal of type A •00000000	KR crystal of type A	Crystal of type D 000000000	RSK of type <i>D</i>
PBW b	asis and crystal			

- $U_q(\mathfrak{g}) = \langle e_i, f_i, t_i \, | \, i \in I \, \rangle$: the quantum group of \mathfrak{g} over $\mathbb{Q}(q)$
- $U_q^- = \langle \, f_i \, | \, i \in I \,
 angle$: the negative part of $U_q(\mathfrak{g})$
- W : the Weyl group of \mathfrak{g}
- w_0 : the longest element of length N in W
- $R(w_0)$: the set of reduced expression (i_1, \ldots, i_N) of w_0

Preliminary 00	PBW crystal of type A ○●○○○○○○○	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW ba	sis and crystal			

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW ba	asis and crystal			

• For
$$\mathbf{i} = (i_1, ..., i_N) \in R(w_0)$$
 and $\mathbf{c} = (c_1, ..., c_N) \in \mathbb{Z}_+^N$,

where T_i : an automorphism of $U_q(\mathfrak{g})$ $(T_i = T''_{i,1})$

•
$$B_{\mathbf{i}} = \{ \, b_{\mathbf{i}}(\mathbf{c}) \, | \, \mathbf{c} \in \mathbb{Z}_{+}^{N} \, \}$$
 : a basis of U_{q}^{-}

• $L(\infty) = \bigoplus_{v \in B_i} A_0 v$ and $\pi : L(\infty) \to L(\infty)/qL(\infty)$

 $B(\infty):=\pi(B_{f i})$: the crystal associated to U_a^-

• $\mathbf{B_i}:=\mathbb{Z}_+^N \leftrightarrow B(\infty)$: the crystal of i-Lusztig data

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW b	asis and crystal			

• For
$$\mathbf{i} = (i_1, ..., i_N) \in R(w_0)$$
 and $\mathbf{c} = (c_1, ..., c_N) \in \mathbb{Z}_+^N$,

where T_i : an automorphism of $U_q(\mathfrak{g})$ $(T_i = T''_{i,1})$

•
$$B_{\mathbf{i}} = \set{b_{\mathbf{i}}(\mathbf{c}) | \mathbf{c} \in \mathbb{Z}_{+}^{N}}$$
 : a basis of U_{q}^{-}

• $L(\infty) = \bigoplus_{v \in B_i} A_0 v$ and $\pi : L(\infty) \to L(\infty)/qL(\infty)$

 $B(\infty):=\pi(B_{f i})$: the crystal associated to U_a^-

• $\mathbf{B_i}:=\mathbb{Z}_+^N \leftrightarrow B(\infty)$: the crystal of i-Lusztig data

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW b	asis and crystal			

• For
$$\mathbf{i} = (i_1, ..., i_N) \in R(w_0)$$
 and $\mathbf{c} = (c_1, ..., c_N) \in \mathbb{Z}_+^N$,

where T_i : an automorphism of $U_q(\mathfrak{g})$ ($T_i = T''_{i,1}$)

•
$$B_{\mathbf{i}} = \set{b_{\mathbf{i}}(\mathbf{c}) | \mathbf{c} \in \mathbb{Z}_{+}^{N}}$$
 : a basis of U_{q}^{-}

• $L(\infty) = \bigoplus_{v \in B_i} A_0 v$ and $\pi: L(\infty) \to L(\infty)/qL(\infty)$

 $B(\infty):=\pi(B_{f i})$: the crystal associated to U_a^-

• $\mathbf{B_i}:=\mathbb{Z}_+^N \leftrightarrow B(\infty)$: the crystal of i-Lusztig data

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW ba	sis and crystal			

• For
$$\mathbf{i} = (i_1, ..., i_N) \in R(w_0)$$
 and $\mathbf{c} = (c_1, ..., c_N) \in \mathbb{Z}_+^N$,

where T_i : an automorphism of $U_q(\mathfrak{g})$ $(T_i = T''_{i,1})$

•
$$B_{\mathbf{i}} = \set{b_{\mathbf{i}}(\mathbf{c}) | \mathbf{c} \in \mathbb{Z}_{+}^{N}}$$
 : a basis of U_{q}^{-}

• $L(\infty) = \bigoplus_{v \in B_i} A_0 v$ and $\pi: L(\infty) \to L(\infty)/qL(\infty)$

 $B(\infty) := \pi(B_{\mathbf{i}})$: the crystal associated to U_a^-

• $\mathbf{B_i} \coloneqq \mathbb{Z}_+^N \leftrightarrow B(\infty)$: the crystal of i-Lusztig data

Preliminary 00	PBW crystal of type A o●ooooooo	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW ba	sis and crystal			

• For
$$\mathbf{i} = (i_1, ..., i_N) \in R(w_0)$$
 and $\mathbf{c} = (c_1, ..., c_N) \in \mathbb{Z}_+^N$,

where T_i : an automorphism of $U_q(\mathfrak{g})$ $(T_i = T_{i,1}'')$

•
$$B_{\mathbf{i}} = \set{b_{\mathbf{i}}(\mathbf{c}) | \mathbf{c} \in \mathbb{Z}_{+}^{N}}$$
 : a basis of U_{q}^{-}

•
$$L(\infty) = \bigoplus_{v \in B_i} A_0 v$$
 and $\pi : L(\infty) \to L(\infty)/qL(\infty)$

 $B(\infty) := \pi(B_{\mathbf{i}})$: the crystal associated to U_{a}^{-}

• $\mathbf{B_i}:=\mathbb{Z}_+^{N}\leftrightarrow B(\infty)$: the crystal of i-Lusztig data

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
PBW ba	isis and crystal			

• Recall that for
$$\mathbf{c} = (c_1, c_2, \dots, c_N) \in \mathbf{B}_i$$
,

$$\begin{split} \widetilde{f_i}\mathbf{c} &= (c_1 + 1, c_2, \dots, c_N), \quad \text{ when } \beta_1 = \alpha_i, \\ \widetilde{f_i}^*\mathbf{c} &= (c_1, \dots, c_{N-1}, c_N + 1), \quad \text{ when } \beta_N = \alpha_i, \end{split}$$

• In general, it is not easy to describe \tilde{f}_i and \tilde{f}_i^* for any i

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
PBW ba	asis and crystal			

• Recall that for
$$\mathbf{c} = (c_1, c_2, \dots, c_N) \in \mathbf{B_i}$$
,

$$\begin{split} \widetilde{f_i}\mathbf{c} &= (c_1 + 1, c_2, \dots, c_N), \quad \text{ when } \beta_1 = \alpha_i, \\ \widetilde{f_i}^*\mathbf{c} &= (c_1, \dots, c_{N-1}, c_N + 1), \quad \text{ when } \beta_N = \alpha_i, \end{split}$$

 $\bullet\,$ In general, it is not easy to describe $\widetilde{f_i}$ and $\widetilde{f_i^*}$ for any i

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
PBW ba	asis and crystal			

• Recall that for
$$\mathbf{c} = (c_1, c_2, \dots, c_N) \in \mathbf{B_i}$$
,

$$\begin{split} \widetilde{f}_i \mathbf{c} &= (c_1 + 1, c_2, \dots, c_N), \quad \text{ when } \beta_1 = \alpha_i, \\ \widetilde{f}_i^* \mathbf{c} &= (c_1, \dots, c_{N-1}, c_N + 1), \quad \text{ when } \beta_N = \alpha_i, \end{split}$$

• In general, it is not easy to describe $\tilde{f_i}$ and $\tilde{f_i^*}$ for any i

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
PBW c	rystal of type A			

• Φ^+ : the positive roots of \mathfrak{g}

 Φ_J^+ : the positive roots of \mathfrak{l} , $\Phi^+(J) = \Phi^+ \setminus \Phi_J^+$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cr	rystal of type A			

• Φ^+ : the positive roots of \mathfrak{g}

 Φ_J^+ : the positive roots of \mathfrak{l} , $\Phi^+(J) = \Phi^+ \setminus \Phi_J^+$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cr	ystal of type A			

• Φ^+ : the positive roots of \mathfrak{g}

 Φ_{I}^{+} : the positive roots of \mathfrak{l} , $\Phi^{+}(J) = \Phi^{+} \setminus \Phi_{I}^{+}$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cr	rystal of type A			

• Φ^+ : the positive roots of \mathfrak{g} Φ^+_J : the positive roots of \mathfrak{l} , $\Phi^+(J) = \Phi^+ \setminus \Phi^+_J$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW c	rvstal of type A			

• Choose $\mathbf{i} \in R(w_0)$ such that \mathbf{i} is adapted to the quiver Ω

• The convex order on Φ^+ corresponding to i is given by

$$\beta_1 \prec \cdots \prec \beta_M \prec \beta_{M+1} \prec \cdots \prec \beta_N,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\beta_1, \ldots, \beta_M \in \Phi^+(J)$ and $\beta_{M+1}, \ldots, \beta_N \in \Phi^+_J$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW c	rystal of type A			

• Choose $\mathbf{i} \in R(w_0)$ such that \mathbf{i} is adapted to the quiver Ω

• The convex order on Φ^+ corresponding to i is given by

 $\beta_1 \prec \cdots \prec \beta_M \prec \beta_{M+1} \prec \cdots \prec \beta_N,$

where $\beta_1, \ldots, \beta_M \in \Phi^+(J)$ and $\beta_{M+1}, \ldots, \beta_N \in \Phi^+_J$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW c	rystal of type A			

• Choose $\mathbf{i} \in R(w_0)$ such that \mathbf{i} is adapted to the quiver Ω

• The convex order on Φ^+ corresponding to i is given by

$$\beta_1 \prec \cdots \prec \beta_M \prec \beta_{M+1} \prec \cdots \prec \beta_N$$

where $\beta_1, \ldots, \beta_M \in \Phi^+(J)$ and $\beta_{M+1}, \ldots, \beta_N \in \Phi^+_J$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW c	rystal of type A			

• For example, when $\boldsymbol{\Omega}$ is

the AR quiver of Ω is

where *ij* denotes the positive root $\epsilon_i - \epsilon_i$ for i < j

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D 00000000	RSK of type <i>D</i> 000000000000
PBW ci	rystal of type A			

 $\bullet\,$ For example, when Ω is

the AR quiver of $\boldsymbol{\Omega}$ is

where *ij* denotes the positive root $\epsilon_i - \epsilon_j$ for i < j

・ロト・西ト・西ト・日・ 日・ シック

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cry	stal of type A			

- Let B = B_i and write c = (c_{ij})_{1≤i<j≤n} ∈ B where c_{ij} : the multiplicity of the root vector for ε_i − ε_j
- The crystal structure of **B** can be described explicitly (due to Reineke 97, Salisbury-Schultze-Tingley 18)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary 00	PBW crystal of type A 000000●00	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW c	rvstal of type A			

- Let B = B_i and write c = (c_{ij})_{1≤i<j≤n} ∈ B
 where c_{ij} : the multiplicity of the root vector for ε_i − ε_i
- The crystal structure of **B** can be described explicitly (due to Reineke 97, Salisbury-Schultze-Tingley 18)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D 00000000	RSK of type D
PBW c	rystal of type A			

• Let $\mathbf{B} = \mathbf{B_i}$ and write $\mathbf{c} = (c_{ij})_{1 \leq i < j \leq n} \in \mathbf{B}$

where c_{ij} : the multiplicity of the root vector for $\epsilon_i - \epsilon_j$

• The crystal structure of **B** can be described explicitly (due to Reineke 97, Salisbury-Schultze-Tingley 18)

Preliminary 00	PBW crystal of type A 0000000●0	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW c	rystal of type A			

• If i = r, then \tilde{f}_r is to increase $c_{r r+1}$ by 1

Preliminary 00	PBW crystal of type A 0000000€0	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW c	rystal of type A			

• If i = r, then \tilde{f}_r is to increase $c_{r r+1}$ by 1

・ロト ・聞ト ・ヨト ・ヨト

æ

Preliminary 00	PBW crystal of type A 00000000●	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cry	ystal of type A			

• For $i \neq r$, \tilde{f}_i can be described in terms of "signature rule"

When i = 4, apply signature rule to the sequence below

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cr	ystal of type A			

• For $i \neq r$, \tilde{f}_i can be described in terms of "signature rule"

When i = 4, apply signature rule to the sequence below

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cr	ystal of type A			

• For $i \neq r$, \tilde{f}_i can be described in terms of "signature rule"

When i = 4, apply signature rule to the sequence below

Preliminary 00	PBW crystal of type A	KR crystal of type <i>A</i> ●0000	Crystal of type D	RSK of type <i>D</i>
Crystal f	for $U_q(\mathfrak{u}^-)$			

$$\mathbf{B}^{J} := \left\{ \mathbf{c} = (c_{ij}) \in \mathbf{B} \mid c_{ij} = 0 \text{ for } \epsilon_{i} - \epsilon_{j} \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} := \left\{ \mathbf{c} = (c_{ij}) \in \mathbf{B} \mid c_{ij} = 0 \text{ for } \epsilon_{i} - \epsilon_{j} \in \Phi^{+}(J) \right\}$$

• The crystal structure on **B**^{*J*} and **B**_{*J*} can be described by the same rule and

$$\mathbf{B} \cong \mathbf{B}^J \otimes \mathbf{B}_J$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Note that B^J can be viewed as a crystal of the quantum nilpotent subalgebra U_q(u⁻) associated to u⁻

Preliminary 00	PBW crystal of type A	KR crystal of type A ●0000	Crystal of type D	RSK of type D
Crystal	for $U_q(\mathfrak{u}^-)$			

$$\begin{split} \mathbf{B}^{J} &:= \left\{ \left. \mathbf{c} = (c_{ij}) \in \mathbf{B} \right| c_{ij} = 0 \text{ for } \varepsilon_{i} - \varepsilon_{j} \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} &:= \left\{ \left. \mathbf{c} = (c_{ij}) \in \mathbf{B} \right| c_{ij} = 0 \text{ for } \varepsilon_{i} - \varepsilon_{j} \in \Phi^{+}(J) \right\} \end{split}$$

• The crystal structure on **B**^J and **B**_J can be described by the same rule and

$$\mathbf{B} \cong \mathbf{B}^J \otimes \mathbf{B}_J$$

 Note that B^J can be viewed as a crystal of the quantum nilpotent subalgebra U_q(u⁻) associated to u⁻

Preliminary 00	PBW crystal of type A	KR crystal of type A ●0000	Crystal of type D	RSK of type D
Crystal	for $U_q(\mathfrak{u}^-)$			

$$\begin{split} \mathbf{B}^{J} &:= \big\{ \, \mathbf{c} = (c_{ij}) \in \mathbf{B} \, \big| \, c_{ij} = 0 \, \, \text{for} \, \, \varepsilon_i - \varepsilon_j \in \Phi_J^+ \, \big\} \,, \\ \mathbf{B}_{J} &:= \big\{ \, \mathbf{c} = (c_{ij}) \in \mathbf{B} \, \big| \, c_{ij} = 0 \, \, \text{for} \, \, \varepsilon_i - \varepsilon_j \in \Phi^+(J) \, \big\} \end{split}$$

• The crystal structure on **B**^J and **B**_J can be described by the same rule and

$$\mathbf{B} \cong \mathbf{B}^J \otimes \mathbf{B}_J$$

(日) (日) (日) (日) (日) (日) (日) (日)

Note that B^J can be viewed as a crystal of the quantum nilpotent subalgebra U_q(u⁻) associated to u⁻

Preliminary 00	PBW crystal of type A	KR crystal of type A ●0000	Crystal of type D	RSK of type D
Crystal	for $U_q(\mathfrak{u}^-)$			

$$\mathbf{B}^{J} := \left\{ \mathbf{c} = (c_{ij}) \in \mathbf{B} \mid c_{ij} = 0 \text{ for } \epsilon_{i} - \epsilon_{j} \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} := \left\{ \mathbf{c} = (c_{ij}) \in \mathbf{B} \mid c_{ij} = 0 \text{ for } \epsilon_{i} - \epsilon_{j} \in \Phi^{+}(J) \right\}$$

• The crystal structure on \mathbf{B}^J and \mathbf{B}_J can be described by the same rule and

$$\mathbf{B} \cong \mathbf{B}^J \otimes \mathbf{B}_J$$

Note that B^J can be viewed as a crystal of the quantum nilpotent subalgebra U_q(u⁻) associated to u⁻

Preliminary 00	PBW crystal of type A	KR crystal of type <i>A</i> ⊙●○○○	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

- ω_r : the *r*-th fundamental weight
- For $s \ge 1$, $B(s\omega_r) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_r^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^{J} is a (direct) limit of the crystal $B(s\omega_{r})$
- For $\mathbf{c} = (c_{ij}) \in \mathbf{B}^J$, we have a combinatorial formula

$$\varepsilon_r^*(\mathbf{c}) = \max_{\mathbf{p}} \left\{ \sum_{ij \in \mathbf{p}} c_{ij} \right\}$$

where **p** is a lattice path on $\Phi^+(J)$ from *r n* to 1r + 1 (K 13)

Preliminary 00	PBW crystal of type A	KR crystal of type <i>A</i> ⊙●○○○	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

• ω_r : the *r*-th fundamental weight

- For $s \ge 1$, $B(s\omega_r) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_r^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^{J} is a (direct) limit of the crystal $B(s\omega_{r})$
- For $\mathbf{c} = (c_{ij}) \in \mathbf{B}^J$, we have a combinatorial formula

$$\varepsilon_r^*(\mathbf{c}) = \max_{\mathbf{p}} \left\{ \sum_{ij \in \mathbf{p}} c_{ij} \right\}$$

where **p** is a lattice path on $\Phi^+(J)$ from *r n* to 1r + 1 (K 13)

Preliminary 00	PBW crystal of type A	KR crystal of type <i>A</i> ⊙●○○○	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

- ω_r : the *r*-th fundamental weight
- For $s \geq 1$, $B(s\omega_r) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_r^*(\mathbf{c}) \leq s \} \subset \mathbf{B}^J$

• \mathbf{B}^J is a (direct) limit of the crystal $B(s\omega_r)$

• For $\mathbf{c} = (c_{ij}) \in \mathbf{B}^J$, we have a combinatorial formula

$$\varepsilon_r^*(\mathbf{c}) = \max_{\mathbf{p}} \left\{ \sum_{ij \in \mathbf{p}} c_{ij} \right\}$$

where **p** is a lattice path on $\Phi^+(J)$ from *r n* to 1r + 1 (K 13)

Preliminary 00	PBW crystal of type A	KR crystal of type A ⊙●○○○	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

- ω_r : the *r*-th fundamental weight
- For $s \ge 1$, $B(s\omega_r) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_r^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^{J} is a (direct) limit of the crystal $B(s\omega_{r})$

• For $\mathbf{c} = (c_{ij}) \in \mathbf{B}^J$, we have a combinatorial formula

$$\varepsilon_r^*(\mathbf{c}) = \max_{\mathbf{p}} \left\{ \sum_{ij \in \mathbf{p}} c_{ij} \right\}$$

where **p** is a lattice path on $\Phi^+(J)$ from *r n* to 1r + 1 (K 13)

Preliminary 00	PBW crystal of type A	KR crystal of type <i>A</i> ⊙●○○○	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

- ω_r : the *r*-th fundamental weight
- For $s \ge 1$, $B(s\omega_r) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_r^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^{J} is a (direct) limit of the crystal $B(s\omega_{r})$
- For $\mathbf{c} = (c_{ij}) \in \mathbf{B}^J$, we have a combinatorial formula

$$\varepsilon_r^*(\mathbf{c}) = \max_{\mathbf{p}} \left\{ \sum_{ij \in \mathbf{p}} c_{ij} \right\}$$

where \mathbf{p} is a lattice path on $\Phi^+(J)$ from r n to 1 r + 1 (K 13)

Preliminary 00	PBW crystal of type A	KR crystal of type A 00●00	Crystal of type D	RSK of type D
Crystal f	for $U_q(\mathfrak{u}^-)$			

• A lattice path ${\bf p}$ on $\Phi^+(J)$;

and so on

- This gives a polytope realization of $B(s\omega_r)$
- The formula for $\varepsilon_r^*(\mathbf{c})$ corresponds to Green's formula via RSK

・ロト ・聞ト ・ヨト ・ヨト

æ

Preliminary 00	PBW crystal of type A	KR crystal of type A 00●00	Crystal of type D	RSK of type D
Crystal f	or $U_q(\mathfrak{u}^-)$			

• A lattice path ${\bf p}$ on $\Phi^+(J)$;

and so on

- This gives a polytope realization of $B(s\omega_r)$
- The formula for $\varepsilon_r^*(\mathbf{c})$ corresponds to Green's formula via RSK

(日)、(四)、(E)、(E)、(E)

Preliminary 00	PBW crystal of type A	KR crystal of type A 00●00	Crystal of type D	RSK of type D
Crystal f	for $U_q(\mathfrak{u}^-)$			

• A lattice path ${f p}$ on $\Phi^+(J)$;

and so on

• This gives a polytope realization of $B(s\omega_r)$

• The formula for $\varepsilon_r^*(\mathbf{c})$ corresponds to Green's formula via RSK

Preliminary 00	PBW crystal of type A	KR crystal of type A 00●00	Crystal of type D	RSK of type D
Crystal f	for $U_q(\mathfrak{u}^-)$			

• A lattice path ${\bf p}$ on $\Phi^+(J)$;

and so on

- This gives a polytope realization of $B(s\omega_r)$
- The formula for $\varepsilon_r^*(\mathbf{c})$ corresponds to Green's formula via RSK

(日)、

э

Preliminary	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
00	00000000	00000	00000000	0000000000

Affine crystal structure and KR crystals

Define
$$\tilde{e}_0, \tilde{f}_0: \mathbf{B}^J \longrightarrow \mathbf{B}^J \cup \{\mathbf{0}\}$$
 by

 $(\mathbf{1}_{ heta}$ corresponds to the longest root vector of $A_{n-1})$

Theorem (K13)

(a) \mathbf{B}^{J} becomes a $U'_{q}(A^{(1)}_{n-1})$ -crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$ (b) For $s \geq 1$, the affine subcrystal

 $\{\mathbf{c}\in\mathbf{B}^{J}\,|\,\varepsilon_{r}^{*}(\mathbf{c})\leq s\}\subset\mathbf{B}^{J}$

is isomorphic to the KR crystal $B^{r,s}$

 Preliminary
 PBW crystal of type A
 KR crystal of type A
 Crystal of type D
 RSK of type D

 00
 00000000
 00000000
 000000000
 000000000

Affine crystal structure and KR crystals

• Define
$$\tilde{e}_0, \, \tilde{f}_0: \mathbf{B}^J \longrightarrow \mathbf{B}^J \cup \{\mathbf{0}\}$$
 by

$$\tilde{e}_0 \mathbf{c} = \mathbf{c} + \mathbf{1}_{\theta}, \quad \tilde{f}_0 \mathbf{c} = \begin{cases} \mathbf{c} - \mathbf{1}_{\theta} & \text{if } c_{\theta} = c_{1n} > 0, \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

 $(\mathbf{1}_{\theta} \text{ corresponds to the longest root vector of } A_{n-1})$

Theorem (K13)

(a) B^J becomes a U'_q(A⁽¹⁾_{n-1})-crystal with respect to ẽ₀, f̃₀
 (b) For s ≥ 1, the affine subcrystal

 $\{\mathbf{c}\in\mathbf{B}^{J}\,|\,arepsilon_{r}^{*}(\mathbf{c})\leq s\}\subset\mathbf{B}^{J}$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

is isomorphic to the KR crystal $B^{r,s}$

 Preliminary
 PBW crystal of type A
 KR crystal of type A
 Crystal of type D
 RSK of type D

 00
 00000000
 00000000
 00000000
 00000000
 00000000

Affine crystal structure and KR crystals

• Define
$$\tilde{e}_0, \tilde{f}_0: \mathbf{B}^J \longrightarrow \mathbf{B}^J \cup \{\mathbf{0}\}$$
 by

$$\tilde{e}_0 \mathbf{c} = \mathbf{c} + \mathbf{1}_{\theta}, \quad \tilde{f}_0 \mathbf{c} = \begin{cases} \mathbf{c} - \mathbf{1}_{\theta} & \text{if } c_{\theta} = c_{1n} > 0, \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

 $(\mathbf{1}_{\theta} \text{ corresponds to the longest root vector of } A_{n-1})$

Theorem (K13)

(a) **B**^{*J*} becomes a $U'_q(A^{(1)}_{n-1})$ -crystal with respect to \tilde{e}_0, \tilde{f}_0

(b) For $s \ge 1$, the affine subcrystal

$$\{\mathbf{c}\in\mathbf{B}^{J}\,|\,\varepsilon_{r}^{*}(\mathbf{c})\leq s\}\subset\mathbf{B}^{J}$$

イロト 不得 トイヨト イヨト

э.

is isomorphic to the KR crystal $B^{r,s}$

Preliminary 00	PBW crystal of type A	KR crystal of type <i>A</i> 0000●	Crystal of type D	RSK of type D
Remark				

(2) The RSK map

$$\mathbf{B}^{J} \longrightarrow \bigsqcup_{\lambda} SST_{r}(\lambda) \times SST_{n-r}(\lambda)$$

is an isomorphism of affine crystals of type $A_{n-1}^{(1)}$, where \tilde{e}_0 and \tilde{f}_0 are defined on RHS in a natural way

(3) For g = B_n, C_n, we have analogous results for the crystal of U_q(u⁻) which is a limit of "classically irreducible" KR crystals (by using similarity of crystals)

Preliminary 00	PBW crystal of type A	KR crystal of type A 0000●	Crystal of type D	RSK of type <i>D</i>
Remark				

(2) The RSK map

$$\mathbf{B}^{J} \longrightarrow \bigsqcup_{\lambda} SST_{r}(\lambda) \times SST_{n-r}(\lambda)$$

is an isomorphism of affine crystals of type $A_{n-1}^{(1)}$, where \tilde{e}_0 and \tilde{f}_0 are defined on RHS in a natural way

(3) For g = B_n, C_n, we have analogous results for the crystal of U_q(u⁻) which is a limit of "classically irreducible" KR crystals (by using similarity of crystals)

Preliminary 00	PBW crystal of type A	KR crystal of type <i>A</i> 0000●	Crystal of type D	RSK of type <i>D</i>
Remark				

(2) The RSK map

$$\mathbf{B}^{J} \longrightarrow \bigsqcup_{\lambda} SST_{r}(\lambda) \times SST_{n-r}(\lambda)$$

is an isomorphism of affine crystals of type $A_{n-1}^{(1)}$, where \tilde{e}_0 and \tilde{f}_0 are defined on RHS in a natural way

(3) For g = B_n, C_n, we have analogous results for the crystal of U_q(u⁻) which is a limit of "classically irreducible" KR crystals (by using similarity of crystals)

Preliminary 00	PBW crystal of type A	KR crystal of type <i>A</i> 0000●	Crystal of type D	RSK of type <i>D</i>
Remark				

(2) The RSK map

$$\mathbf{B}^{J} \longrightarrow \bigsqcup_{\lambda} SST_{r}(\lambda) \times SST_{n-r}(\lambda)$$

is an isomorphism of affine crystals of type $A_{n-1}^{(1)}$, where \tilde{e}_0 and \tilde{f}_0 are defined on RHS in a natural way

(3) For g = B_n, C_n, we have analogous results for the crystal of U_q(u⁻) which is a limit of "classically irreducible" KR crystals (by using similarity of crystals)

• $\Phi^+ = \Phi^+(J) \cup \Phi_J^+$ = { $\epsilon_i + \epsilon_j \mid 1 \le i < j \le n$ } \cup { $\epsilon_i - \epsilon_j \mid 1 \le i < j \le n$ }

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D •00000000	RSK of type <i>D</i> 0000000000000
PBW cry	stals of type <i>D</i>)		

• $\Phi^+ = \Phi^+(J) \cup \Phi_J^+$ = { $\epsilon_i + \epsilon_j \mid 1 \le i < j \le n$ } \cup { $\epsilon_i - \epsilon_j \mid 1 \le i < j \le n$ }

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> ●00000000	RSK of type <i>D</i> 0000000000000
PBW cry	stals of type <i>L</i>)		

• $\Phi^+ = \Phi^+(J) \cup \Phi_J^+$ = { $\epsilon_i + \epsilon_j \mid 1 \le i < j \le n$ } \cup { $\epsilon_i - \epsilon_j \mid 1 \le i < j \le r$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D •00000000	RSK of type <i>D</i> 0000000000000
PBW cry	stals of type <i>D</i>)		

• $\Phi^+ = \Phi^+(J) \cup \Phi_J^+$ = { $\epsilon_i + \epsilon_j \mid 1 \le i < j \le n$ } \cup { $\epsilon_i - \epsilon_j \mid 1 \le i < j \le n$ }

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> ○●○○○○○○○	RSK of type <i>D</i>
PBW cry	vstals of type <i>l</i>	2		

• Consider $\mathbf{i} \in R(w_0)$ associated to a convex order on Φ^+

 $\begin{aligned} & \epsilon_i + \epsilon_j \prec \epsilon_k - \epsilon_l \\ & \epsilon_i + \epsilon_j \prec \epsilon_k + \epsilon_l \iff (j > l) \text{ or } (j = l, i > k) \\ & \epsilon_i - \epsilon_j \prec \epsilon_k - \epsilon_l \iff (i < k) \text{ or } (i = k, j < l) \end{aligned}$

for $1 \le i < j \le n$ and $1 \le k < l \le n$.

Lemma (Jang-K 18)

The crystal structure of ${f B}$ can be described explicitly

Proof) Use the notion of **simply braided** and its property by Salisbury-Schultze-Tingley

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> o●ooooooo	RSK of type <i>D</i> 0000000000000
PBW cry	stals of type <i>D</i>)		

• Consider $\mathbf{i} \in R(w_0)$ associated to a convex order on Φ^+

 $\begin{aligned} & \epsilon_i + \epsilon_j \prec \epsilon_k - \epsilon_1 \\ & \epsilon_i + \epsilon_j \prec \epsilon_k + \epsilon_1 \iff (j > l) \text{ or } (j = l, i > k) \\ & \epsilon_i - \epsilon_j \prec \epsilon_k - \epsilon_1 \iff (i < k) \text{ or } (i = k, j < l) \end{aligned}$

for $1 \le i < j \le n$ and $1 \le k < l \le n$.

Lemma (Jang-K 18)

The crystal structure of ${f B}$ can be described explicitly

Proof) Use the notion of **simply braided** and its property by Salisbury-Schultze-Tingley

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> o●ooooooo	RSK of type <i>D</i> 000000000000
PBW cry	stals of type <i>D</i>)		

• Consider $\mathbf{i} \in R(w_0)$ associated to a convex order on Φ^+

 $\begin{aligned} & \epsilon_i + \epsilon_j \prec \epsilon_k - \epsilon_1 \\ & \epsilon_i + \epsilon_j \prec \epsilon_k + \epsilon_1 \iff (j > l) \text{ or } (j = l, i > k) \\ & \epsilon_i - \epsilon_j \prec \epsilon_k - \epsilon_1 \iff (i < k) \text{ or } (i = k, j < l) \end{aligned}$

for $1 \le i < j \le n$ and $1 \le k < l \le n$.

Lemma (Jang-K 18)

The crystal structure of ${f B}$ can be described explicitly

Proof) Use the notion of **simply braided** and its property by Salisbury-Schultze-Tingley

For example, when n = 5

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 差|||のQ@

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cr	ystals of type I	D		

For example, when n = 5

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
PBW cry	ystals of type <i>l</i>	2		

For example, when n = 5

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i>	RSK of type D 00000000000
PBW cry	stal of type <i>D</i>			

• If i = n, then \tilde{f}_n is to increase $c_{\epsilon_{n-1}+\epsilon_n}$ by 1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
PBW cr	ystal of type <i>L</i>)		

• If i = n, then \tilde{f}_n is to increase $c_{\epsilon_{n-1}+\epsilon_n}$ by 1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> 000000000	RSK of type D
PBW cry	stal of type D			

• For $i \neq r$, \tilde{f}_i can be described in terms of "signature rule"

When i = 2, apply signature rule to the sequence below

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
PBW cry	stal of type D			

• For $i \neq r$, \tilde{f}_i can be described in terms of "signature rule"

When i = 2, apply signature rule to the sequence below

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> 0000€0000	RSK of type <i>D</i>
PBW cry	stal of type D			

• For $i \neq r$, \tilde{f}_i can be described in terms of "signature rule"

When i = 2, apply signature rule to the sequence below

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

• Set $\mathbf{B} = \mathbf{B}_i$ and

$$\begin{split} \mathbf{B}^{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi^{+}(J) \right\} \end{split}$$

• The crystal structure on ${f B}^J$ and ${f B}_J$ is induced from ${f B}$ and ${f B}\cong {f B}^J\otimes {f B}_J$

• \mathbf{B}^J : a crystal of the quantum nilpotent subalgebra $U_q(\mathfrak{u}^-)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- For $s \ge 1$, $B(s\omega_n) = \{ \mathbf{c} \in \mathbf{B}^J | \varepsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^{J} is a direct limit of the crystal $B(s\omega_{r})$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Crystal f	for $U_q(\mathfrak{u}^-)$			

 $\bullet \mbox{ Set } \mathbf{B} = \mathbf{B_i}$ and

$$\begin{split} \mathbf{B}^{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi^{+}(J) \right\} \end{split}$$

• The crystal structure on ${f B}^J$ and ${f B}_J$ is induced from ${f B}$ and ${f B}\cong {f B}^J\otimes {f B}_J$

• \mathbf{B}^J : a crystal of the quantum nilpotent subalgebra $U_q(\mathfrak{u}^-)$

- For $s \ge 1$, $B(s\omega_n) = \{ \mathbf{c} \in \mathbf{B}^J | \varepsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^J is a direct limit of the crystal $B(s\omega_r)$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D 00000€000	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

 $\bullet \mbox{ Set } B = B_i \mbox{ and }$

$$\begin{split} \mathbf{B}^{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi^{+}(J) \right\} \end{split}$$

• The crystal structure on ${\bf B}^J$ and ${\bf B}_J$ is induced from ${\bf B}$ and ${\bf B}\cong {\bf B}^J\otimes {\bf B}_J$

 $\bullet~{\mathbf B}^J$: a crystal of the quantum nilpotent subalgebra $U_q(\mathfrak{u}^-)$

- For $s \ge 1$, $B(s\omega_n) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^J is a direct limit of the crystal $B(s\omega_r)$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

 $\bullet \mbox{ Set } \mathbf{B} = \mathbf{B_i} \mbox{ and }$

$$\begin{split} \mathbf{B}^{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi^{+}(J) \right\} \end{split}$$

• The crystal structure on ${\bf B}^J$ and ${\bf B}_J$ is induced from ${\bf B}$ and ${\bf B}\cong {\bf B}^J\otimes {\bf B}_J$

• \mathbf{B}^J : a crystal of the quantum nilpotent subalgebra $U_q(\mathfrak{u}^-)$

- For $s \ge 1$, $B(s\omega_n) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^{J} is a direct limit of the crystal $B(s\omega_{r})$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

 $\bullet \mbox{ Set } \mathbf{B} = \mathbf{B_i} \mbox{ and }$

$$\begin{split} \mathbf{B}^{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi^{+}(J) \right\} \end{split}$$

• The crystal structure on ${\bf B}^J$ and ${\bf B}_J$ is induced from ${\bf B}$ and ${\bf B}\cong {\bf B}^J\otimes {\bf B}_J$

• \mathbf{B}^J : a crystal of the quantum nilpotent subalgebra $U_{m{q}}(\mathfrak{u}^-)$

• For $s \ge 1$, $B(s\omega_n) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$

• \mathbf{B}^J is a direct limit of the crystal $B(s\omega_r)$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

 $\bullet \mbox{ Set } \mathbf{B} = \mathbf{B_i} \mbox{ and }$

$$\begin{split} \mathbf{B}^{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi_{J}^{+} \right\}, \\ \mathbf{B}_{J} &:= \left\{ \left. \mathbf{c} = (c_{\beta}) \in \mathbf{B} \right| c_{\beta} = 0 \text{ for } \beta \in \Phi^{+}(J) \right\} \end{split}$$

• The crystal structure on ${f B}^J$ and ${f B}_J$ is induced from ${f B}$ and ${f B}\cong {f B}^J\otimes {f B}_J$

• \mathbf{B}^J : a crystal of the quantum nilpotent subalgebra $U_{m{q}}(\mathfrak{u}^-)$

- For $s \ge 1$, $B(s\omega_n) = \{ \mathbf{c} \in \mathbf{B}^J | \epsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$
- \mathbf{B}^J is a direct limit of the crystal $B(s\omega_r)$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i>	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

- We want to give a combinatorial description of $\varepsilon_n^*(\mathbf{c})$
- For this, we introduce a **double path** on $\Phi^+(J)$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

- We want to give a combinatorial description of $\varepsilon_n^*(\mathbf{c})$
- For this, we introduce a **double path** on $\Phi^+(J)$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

- We want to give a combinatorial description of $\varepsilon_n^*(\mathbf{c})$
- For this, we introduce a **double path** on $\Phi^+(J)$

(日) (同) (日) (日)

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> 0000000●0	RSK of type <i>D</i>
Crystal	for $U_q(\mathfrak{u}^-)$			

• For $\mathbf{c} \in \mathbf{B}^J$ and a double path \mathbf{p} , let

$$\|\mathbf{c}\|_{\mathbf{p}} = \sum_{\beta \text{ lying on } \mathbf{p}} c_{\beta}.$$

Theorem (Jang-K 18)

 $\varepsilon_n^*(\mathbf{c}) = \max\left\{ \|\mathbf{c}\|_{\mathbf{p}} \,|\, \mathbf{p} \text{ is a double path in } \Phi^+(J) \right\}$

Proof) We use the transition map from Lusztig data to Kashiwara string parametrization due to Berenstein-Zelevinsky (01) to get the formula for ε_n^*

・ロト ・四ト ・ヨト ・ヨ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> 0000000€0	RSK of type <i>D</i>
Crystal f	for $U_q(\mathfrak{u}^-)$			

$$\|\mathbf{c}\|_{\mathbf{p}} = \sum_{\beta \text{ lying on } \mathbf{p}} c_{\beta}.$$

Theorem (Jang-K 18)

 $\varepsilon_n^*(\mathbf{c}) = \max\left\{ \|\mathbf{c}\|_{\mathbf{p}} \,|\, \mathbf{p} \text{ is a double path in } \Phi^+(J)
ight\}$

Proof) We use the transition map from Lusztig data to Kashiwara string parametrization due to Berenstein-Zelevinsky (01) to get the formula for ε_n^*

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> 0000000●0	RSK of type <i>D</i>
Crystal f	for $U_q(\mathfrak{u}^-)$			

$$\|\mathbf{c}\|_{\mathbf{p}} = \sum_{\beta \text{ lying on } \mathbf{p}} c_{\beta}.$$

Theorem (Jang-K 18)

 $\varepsilon_n^*(\mathbf{c}) = \max\left\{ \|\mathbf{c}\|_{\mathbf{p}} \,|\, \mathbf{p} \text{ is a double path in } \Phi^+(J)
ight\}$

Proof) We use the transition map from Lusztig data to Kashiwara string parametrization due to Berenstein-Zelevinsky (01) to get the formula for ε_n^*

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> 0000000●0	RSK of type <i>D</i>
Crystal f	for $U_q(\mathfrak{u}^-)$			

$$\|\mathbf{c}\|_{\mathbf{p}} = \sum_{\beta \text{ lying on } \mathbf{p}} c_{\beta}.$$

Theorem (Jang-K 18)

 $\varepsilon^*_n(\mathbf{c}) = \max\left\{ \, \|\mathbf{c}\|_{\mathbf{p}} \, | \, \mathbf{p} \text{ is a double path in } \Phi^+(J) \,
ight\}$

Proof) We use the transition map from Lusztig data to Kashiwara string parametrization due to Berenstein-Zelevinsky (01) to get the formula for ε_n^*

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type <i>D</i> 0000000●0	RSK of type <i>D</i>
Crystal f	for $U_q(\mathfrak{u}^-)$			

$$\|\mathbf{c}\|_{\mathbf{p}} = \sum_{\beta \text{ lying on } \mathbf{p}} c_{\beta}.$$

Theorem (Jang-K 18)

 $\varepsilon^*_n(\mathbf{c}) = \max\left\{ \, \|\mathbf{c}\|_{\mathbf{p}} \, | \, \mathbf{p} \text{ is a double path in } \Phi^+(J) \,
ight\}$

Proof) We use the transition map from Lusztig data to Kashiwara string parametrization due to Berenstein-Zelevinsky (01) to get the formula for ε_n^*

 Preliminary
 PBW crystal of type A
 KR crystal of type A
 Crystal of type D
 RSK of type D

 00
 00000000
 0000
 00000000
 00000000
 00000000

Affine crystal structure and KR crystals

• Define
$$\tilde{e}_0, \tilde{f}_0: \mathbf{B}^J \longrightarrow \mathbf{B}^J \cup \{\mathbf{0}\}$$
 by

$$ilde{e}_0 \mathbf{c} = \mathbf{c} + \mathbf{1}_{ heta}, \ \ ilde{f}_0 \mathbf{c} = egin{cases} \mathbf{c} - \mathbf{1}_{ heta} & ext{if } c_{ heta} > 0, \ \mathbf{0} & ext{otherwise.} \end{cases}$$

 $(\mathbf{1}_{ heta} \text{ corresponds to the root vector of } heta = arepsilon_1 + arepsilon_2)$

Theorem (Jang-K 18)

(a) \mathbf{B}^{J} becomes a $U'_{q}(D_{n}^{(1)})$ -crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$ (b) For $s \geq 1$, the affine subcrystal

$$\mathbf{B}^{J,s} := \{ \mathbf{c} \in \mathbf{B}^J \, | \, \varepsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$$

is isomorphic to the KR crystal $B^{n,s}$

 Preliminary
 PBW crystal of type A
 KR crystal of type A
 Crystal of type D

 00
 00000000
 00000
 00000000
 00000000

Affine crystal structure and KR crystals

• Define
$$\tilde{e}_0, \, \tilde{f}_0: \mathbf{B}^J \longrightarrow \mathbf{B}^J \cup \{\mathbf{0}\}$$
 by

$$ilde{e}_0 \mathbf{c} = \mathbf{c} + \mathbf{1}_{ heta}, \ \ ilde{f}_0 \mathbf{c} = egin{cases} \mathbf{c} - \mathbf{1}_{ heta} & ext{if } c_{ heta} > 0, \ \mathbf{0} & ext{otherwise.} \end{cases}$$

 $(\mathbf{1}_{\theta} \text{ corresponds to the root vector of } \theta = \varepsilon_1 + \varepsilon_2)$

Theorem (Jang-K 18)

(a) B^J becomes a U'_q(D⁽¹⁾_n)-crystal with respect to ẽ₀, f̃₀
 (b) For s ≥ 1, the affine subcrystal

$$\mathbf{B}^{J,s} := \{ \mathbf{c} \in \mathbf{B}^J | \varepsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

is isomorphic to the KR crystal $B^{n,s}$

 Preliminary
 PBW crystal of type A
 KR crystal of type A
 Crystal of type D

 00
 00000000
 00000
 0000000
 00000000

RSK of type D

Affine crystal structure and KR crystals

• Define
$$\tilde{e}_0, \, \tilde{f}_0: \mathbf{B}^J \longrightarrow \mathbf{B}^J \cup \{\mathbf{0}\}$$
 by

$$ilde{e}_0 \mathbf{c} = \mathbf{c} + \mathbf{1}_{ heta}, \ \ ilde{f}_0 \mathbf{c} = egin{cases} \mathbf{c} - \mathbf{1}_{ heta} & ext{if } c_{ heta} > 0, \ \mathbf{0} & ext{otherwise.} \end{cases}$$

 $(\mathbf{1}_{\theta} \text{ corresponds to the root vector of } \theta = \varepsilon_1 + \varepsilon_2)$

Theorem (Jang-K 18)

(a) \mathbf{B}^{J} becomes a $U'_{q}(D_{n}^{(1)})$ -crystal with respect to $\tilde{e}_{0}, \tilde{f}_{0}$

(b) For $s \ge 1$, the affine subcrystal

$$\mathbf{B}^{J,s} := \{ \mathbf{c} \in \mathbf{B}^J | \varepsilon_n^*(\mathbf{c}) \le s \} \subset \mathbf{B}^J$$

イロト 不得 トイヨト イヨト

э.

is isomorphic to the KR crystal $B^{n,s}$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D •00000000000
Burge co	orrespondence			

- $[\overline{n}] := \{\overline{n} < \cdots < \overline{1}\}$
- $SST_{\overline{n}}(\lambda/\mu)$: the set of SST of shape λ/μ with letters in $[\overline{n}]$
- Put

$$\mathbf{T}^{\searrow} := \bigsqcup_{\substack{\ell(\lambda) \le n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda^{\pi}), \qquad \mathbf{T}^{\diagdown} := \bigsqcup_{\substack{\ell(\lambda) \le n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $(\lambda^{\pi} : 180^{\circ}$ -rotation of $\lambda)$
- Note that \mathbf{T}^{\searrow} and \mathbf{T}^{\searrow} are A_{n-1} -crystals

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ●00000000000
Burge co	orrespondence			

• $[\overline{n}] := \{\overline{n} < \cdots < \overline{1}\}$

• $SST_{\overline{n}}(\lambda/\mu)$: the set of SST of shape λ/μ with letters in $[\overline{n}]$

• Put

$$\mathbf{T}^{\searrow} := \bigsqcup_{\substack{\ell(\lambda) \le n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda^{\pi}), \qquad \mathbf{T}^{\nwarrow} := \bigsqcup_{\substack{\ell(\lambda) \le n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $(\lambda^{\pi}: 180^{\circ}\text{-rotation of }\lambda)$

• Note that \mathbf{T}^{\searrow} and \mathbf{T}^{\diagdown} are A_{n-1} -crystals

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D •00000000000
Burge co	orrespondence			

• $[\overline{n}] := \{\overline{n} < \cdots < \overline{1}\}$

• $SST_{\overline{n}}(\lambda/\mu)$: the set of SST of shape λ/μ with letters in $[\overline{n}]$

• Put

$$\mathbf{T}^{\searrow} := \bigsqcup_{\substack{\ell(\lambda) \le n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda^{\pi}), \qquad \mathbf{T}^{\nwarrow} := \bigsqcup_{\substack{\ell(\lambda) \le n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $(\lambda^{\pi}: 180^{\circ}\text{-rotation of }\lambda)$

• Note that \mathbf{T}^{\searrow} and \mathbf{T}^{\searrow} are A_{n-1} -crystals

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D •00000000000
Burge co	orrespondence			

• $[\overline{n}] := \{\overline{n} < \cdots < \overline{1}\}$

• $SST_{\overline{n}}(\lambda/\mu)$: the set of SST of shape λ/μ with letters in $[\overline{n}]$

• Put

$$\mathbf{T}^{\searrow} := \bigsqcup_{\substack{\ell(\lambda) \leq n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda^{\pi}), \qquad \mathbf{T}^{\nwarrow} := \bigsqcup_{\substack{\ell(\lambda) \leq n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $(\lambda^{\pi}: 180^{\circ}\text{-rotation of }\lambda)$

• Note that \mathbf{T}^{\searrow} and \mathbf{T}^{\searrow} are A_{n-1} -crystals

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D •00000000000
Burge co	orrespondence			

•
$$[\overline{n}] := \{\overline{n} < \cdots < \overline{1}\}$$

• $SST_{\overline{n}}(\lambda/\mu)$: the set of SST of shape λ/μ with letters in $[\overline{n}]$

• Put

$$\mathbf{T}^{\searrow} := \bigsqcup_{\substack{\ell(\lambda) \le n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda^{\pi}), \qquad \mathbf{T}^{\nwarrow} := \bigsqcup_{\substack{\ell(\lambda) \le n \\ \lambda': \text{even}}} SST_{\overline{n}}(\lambda),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $(\lambda^{\pi}: 180^{\circ}\text{-rotation of }\lambda)$

• Note that \mathbf{T}^{\searrow} and \mathbf{T}^{\diagdown} are A_{n-1} -crystals

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○●○○○○○○○○○○
Burge c	orrespondence			

• We identify $\mathbf{c} \in \mathbf{B}^J$ as a biword with letters in $[\overline{n}]$ where

$$c_{\epsilon_i + \epsilon_j} = \underbrace{\overline{j} \cdots \overline{j}}_{\substack{i \cdots i \\ c_{\epsilon_i + \epsilon_j}}} \quad (i < j)$$

and the reading order is given by

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○●○○○○○○○○○○
Burge co	prrespondence			

• We identify $\mathbf{c} \in \mathbf{B}^J$ as a biword with letters in $[\overline{n}]$ where

$$c_{\epsilon_i + \epsilon_j} = \underbrace{\overline{j} \cdots \overline{j}}_{\substack{i \\ c_{\epsilon_i + \epsilon_j}}} \quad (i < j)$$

and the reading order is given by

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○●○○○○○○○○○○
Burge co	prrespondence			

• We identify $\mathbf{c} \in \mathbf{B}^J$ as a biword with letters in $[\overline{n}]$ where

$$c_{\epsilon_i + \epsilon_j} = \underbrace{\frac{\overline{j} \cdots \overline{j}}{\overline{i} \cdots \overline{i}}}_{c_{\epsilon_i + \epsilon_j}} \quad (i < j)$$

and the reading order is given by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○●○○○○○○○○○
Burge co	prrespondence			

• (Burge 74) There exist bijections

and

which can be viewed as an analogue of RSK for type D

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○●○○○○○○○○
Burge co	orrespondence			

• (Burge 74) There exist bijections

and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which can be viewed as an analogue of RSK for type D

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 000●00000000
Burge co	orrespondence			

For example, n = 4

$$\mathbf{c} = \begin{array}{c} 0 \\ 2 \\ 1 \\ 0 \\ 1 \end{array} = \left(\begin{array}{c} \overline{4} \\ \overline{2} \\ \overline{2} \\ \overline{2} \\ \overline{3} \\ \overline{3} \\ \overline{1} \\ \overline{1} \end{array} \right)$$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
Burge c	orrespondence			

For example, n = 4 $\mathbf{c} = \begin{array}{c} 0\\ 2 \\ 1 \\ 0 \\ 1 \end{array} = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 000€00000000
Burge co	orrespondence			

For example, n = 4

$$\mathbf{c} = \begin{array}{ccc} 0 \\ 2 \\ 1 \\ 0 \\ 1 \end{array} = \begin{array}{cccc} \left(\begin{array}{cccc} \overline{4} & \overline{4} & \overline{4} & \overline{3} & \overline{2} \\ \overline{2} & \overline{2} & \overline{3} & \overline{1} & \overline{1} \end{array} \right)$$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
Burge c	orrespondence			

For example, n = 4

$$\mathbf{c} = \begin{array}{ccc} 0 \\ 2 \\ 1 \\ 0 \\ 1 \end{array} = \begin{array}{cccc} \left(\begin{array}{cccc} \overline{4} & \overline{4} & \overline{4} & \overline{3} & \overline{2} \\ \overline{2} & \overline{2} & \overline{3} & \overline{1} & \overline{1} \end{array} \right)$$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 0000€0000000
Burge co	prrespondence			

- One can define a D_n -crystal structure on \mathbf{T}^{\searrow} where
 - $\widetilde{f}_n = \operatorname{adding} \operatorname{a} \operatorname{domino} \boxed{\overline{\overline{n}}}_{\overline{n-1}}$ on the top of a column with respect to signature rule
- One can also define a D_n -crystal structure on \mathbf{T}^{\searrow} where

 \widetilde{e}_0 = adding a domino $\frac{\overline{2}}{\overline{1}}$ on the bottom of a column with respect to signature rule

- 日本 - 1 日本 - 日本 - 日本

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 0000●0000000
Burge co	orrespondence			

- One can define a D_n -crystal structure on \mathbf{T}^{\searrow} where
 - $\widetilde{f_n} = \operatorname{adding} \operatorname{a} \operatorname{domino} \boxed{\overline{\overline{n}}}_{\overline{n-1}}$ on the top of a column with respect to signature rule
- ullet One can also define a D_n -crystal structure on $\mathbf{T}^{\smallsetminus}$ where

 $\widetilde{e}_0 = \operatorname{adding} \operatorname{a} \operatorname{domino} \frac{\overline{2}}{\overline{1}}$ on the bottom of a column with respect to signature rule

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
Burge co	orrespondence			

• One can define a D_n -crystal structure on \mathbf{T}^{\searrow} where

 $\widetilde{f_n} = \operatorname{adding} \operatorname{a} \operatorname{domino} \boxed{\overline{\overline{n}}}_{\overline{\overline{n-1}}}$ on the top of a column with respect to signature rule

• One can also define a D_n -crystal structure on $\mathbf{T}^{\smallsetminus}$ where

 \widetilde{e}_0 = adding a domino $\boxed{\frac{\overline{2}}{\overline{1}}}$ on the bottom of a column with respect to signature rule

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○●○○○○○○
Burge co	orrespondence			

• Let

$$\mathbf{T} := \{ [T] \mid T \in \mathbf{T}^{\mathcal{Y}} \}$$

where [T] denotes the Knuth equivalence class of T.

• **T** is a $D_n^{(1)}$ -crystal where

$$\widetilde{x}_{i}[T] = \begin{cases} [\widetilde{x}_{0} T^{\diagdown}] & \text{if } i = 0\\ [\widetilde{x}_{n} T^{\diagdown}] & \text{if } i = n\\ [\widetilde{x}_{i} T] & \text{otherwise} \end{cases}$$

where $[T] = [T^{\searrow}] = [T^{\searrow}]$, for $i \in \hat{I} = I \cup \{0\}$ and x = e, f (we assume that [0] = 0),

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 00000€000000
Burge co	orrespondence			

Let

$$\mathbf{T} := \{ [T] \mid T \in \mathbf{T}^{\searrow} \}$$

where [T] denotes the Knuth equivalence class of T.

• **T** is a $D_n^{(1)}$ -crystal where

$$\widetilde{x}_{i}[T] = \begin{cases} [\widetilde{x}_{0} T^{\searrow}] & \text{if } i = 0\\ [\widetilde{x}_{n} T^{\searrow}] & \text{if } i = n\\ [\widetilde{x}_{i} T] & \text{otherwise} \end{cases}$$

where $[T] = [T^{\searrow}] = [T^{\searrow}]$, for $i \in \hat{I} = I \cup \{0\}$ and x = e, f (we assume that [0] = 0),

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 00000€000000
Burge co	orrespondence			

Let

$$\mathbf{T} := \{ [T] \mid T \in \mathbf{T}^{\searrow} \}$$

where [T] denotes the Knuth equivalence class of T.

• **T** is a $D_n^{(1)}$ -crystal where

$$\widetilde{x}_{i}[T] = \begin{cases} [\widetilde{x}_{0}T^{\nwarrow}] & \text{if } i = 0\\ [\widetilde{x}_{n}T^{\searrow}] & \text{if } i = n\\ [\widetilde{x}_{i}T] & \text{otherwise} \end{cases}$$

where $[T] = [T^{\searrow}] = [T^{\searrow}]$, for $i \in \hat{I} = I \cup \{0\}$ and x = e, f (we assume that [0] = 0),

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○○●○○○○○
D	1			

Burge correspondence

Theorem (Jang-K 18)

(a) κ^{\sigma} and κ^{\sigma} are isomorphisms of D_n-crystals
(b) The map

κ: B^J → T
c → [P^{\sigma}(c)] = [P^{\sigma}(c)]

is an isomorphism of D_n⁽¹⁾-crystals.

 \bullet This gives an affine crystal theroetic interpretation of κ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○○●○○○○○
Burge co	prrespondence			

Theorem (Jang-K 18)

(a) κ^{\searrow} and κ^{\searrow} are isomorphisms of D_n -crystals (b) The map $\kappa : \mathbf{B}^J \longrightarrow \mathbf{T}$ $\mathbf{c} \longmapsto [P^{\searrow}(\mathbf{c})] = [P^{\searrow}(\mathbf{c})]$ is an isomorphism of $D_n^{(1)}$ -crystals.

 \bullet This gives an affine crystal theroetic interpretation of κ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○○●○○○○○
Burge co	prrespondence			

Theorem (Jang-K 18)

(a) κ^{\searrow} and κ^{\curvearrowleft} are isomorphisms of D_n -crystals (b) The map $\kappa : \mathbf{B}^J \longrightarrow \mathbf{T}$ $\mathbf{c} \longmapsto [P^{\searrow}(\mathbf{c})] = [P^{\searrow}(\mathbf{c})]$ is an isomorphism of $D_n^{(1)}$ -crystals.

 $\bullet\,$ This gives an affine crystal theroetic interpretation of $\kappa\,$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○○○●○○○○
Burge co	orrespondence			

• We have an analogue of Green's formula

Corollary

(a) For $s \ge 1$, we have an isomorphism of $D_n^{(1)}$ -crystals

$$\kappa: \mathbf{B}^{J,s} \longrightarrow \mathbf{T}^{s}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\mathbf{T}^{s} := \{ [T] \mid T \in \mathbf{T}^{\vee}, \ \sharp \text{ of columns in } T \leq s \}$

(b) \mathbf{T}^{s} is isomorphic to $B^{n,s}$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○○○●○○○○
Burge co	orrespondence			

• We have an analogue of Green's formula

Corollary

(a) For $s \ge 1$, we have an isomorphism of $D_n^{(1)}$ -crystals

$$\kappa: \mathbf{B}^{J,s} \longrightarrow \mathbf{T}^{s}$$

where $\mathbf{T}^{s} := \{ [T] \mid T \in \mathbf{T}^{\vee}, \ \sharp \text{ of columns in } T \leq s \}$

(b) \mathbf{T}^{s} is isomorphic to $B^{n,s}$

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D 00000000000000
Shape fo	ormula			

• For $\mathbf{c} \in \mathbf{B}^J$, let

$$\lambda(\mathbf{c}) := \mathrm{sh}(\kappa^{\nwarrow}(\mathbf{c})) = (\lambda_1(\mathbf{c}) \geq \ldots \geq \lambda_\ell(\mathbf{c}))$$

Theorem (Jang-K 18)

For $\mathbf{c} \in \mathbf{B}^J$ and $1 \leq l \leq [\frac{n}{2}]$, we have

$$\lambda_1(\mathbf{c}) + \lambda_3(\mathbf{c}) + \dots + \lambda_{2l-1}(\mathbf{c}) = \max_{\mathbf{p}_1,\dots,\mathbf{p}_l} \{ \|\mathbf{c}\|_{\mathbf{p}_1} + \dots + \|\mathbf{c}\|_{\mathbf{p}_l} \},\$$

where $\mathbf{p}_1, \ldots, \mathbf{p}_l$ are mutually non-intersecting double paths in $\Phi^+(J)$ and each \mathbf{p}_i starts at the (2i - 1)-th row of $\Phi^+(J)$ for $1 \le i \le l$.

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D
Shape fo	ormula			

• For $\mathbf{c} \in \mathbf{B}^J$, let

$$\lambda(\mathbf{c}) := \operatorname{sh}(\kappa^{\nwarrow}(\mathbf{c})) = (\lambda_1(\mathbf{c}) \ge \ldots \ge \lambda_{\ell}(\mathbf{c}))$$

Theorem (Jang-K 18)

For $\mathbf{c} \in \mathbf{B}^J$ and $1 \leq l \leq [\frac{n}{2}]$, we have

$$\lambda_1(\mathbf{c}) + \lambda_3(\mathbf{c}) + \dots + \lambda_{2l-1}(\mathbf{c}) = \max_{\mathbf{p}_1,\dots,\mathbf{p}_l} \{ \|\mathbf{c}\|_{\mathbf{p}_1} + \dots + \|\mathbf{c}\|_{\mathbf{p}_l} \},\$$

where $\mathbf{p}_1, \ldots, \mathbf{p}_i$ are mutually non-intersecting double paths in $\Phi^+(J)$ and each \mathbf{p}_i starts at the (2i - 1)-th row of $\Phi^+(J)$ for $1 \le i \le l$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○○○○●○○○
Shape f	ormula			

• For $\mathbf{c} \in \mathbf{B}^J$, let

$$\lambda(\mathbf{c}) := \operatorname{sh}(\kappa^{\nwarrow}(\mathbf{c})) = (\lambda_1(\mathbf{c}) \ge \ldots \ge \lambda_{\ell}(\mathbf{c}))$$

Theorem (Jang-K 18)

For $\mathbf{c} \in \mathbf{B}^J$ and $1 \leq l \leq [\frac{n}{2}]$, we have

$$\lambda_1(\mathbf{c}) + \lambda_3(\mathbf{c}) + \cdots + \lambda_{2l-1}(\mathbf{c}) = \max_{\mathbf{p}_1, \dots, \mathbf{p}_l} \{ \|\mathbf{c}\|_{\mathbf{p}_1} + \cdots + \|\mathbf{c}\|_{\mathbf{p}_l} \},\$$

where $\mathbf{p}_1, \ldots, \mathbf{p}_l$ are mutually non-intersecting double paths in $\Phi^+(J)$ and each \mathbf{p}_i starts at the (2i - 1)-th row of $\Phi^+(J)$ for $1 \le i \le l$.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○○○○○●○○
Shape f	ormula			

For example, let n = 6 and let $\mathbf{c} \in \mathbf{B}^J$ be given by

where

 $\lambda(\mathbf{c}) = (19, 19, 6, 6, 2, 2).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 000000000●00
Shape f	ormula			

For example, let n = 6 and let $c \in \mathbf{B}^J$ be given by

where

 $\lambda(\mathbf{c}) = (19, 19, 6, 6, 2, 2).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 0000000000●0
Shape f	ormula			

 $\lambda(\mathbf{c})_1 = 19$ with maximal value $\|\mathbf{c}\|_{\mathbf{p}} = 19$

 $\lambda(c)_1+\lambda(c)_3=25$ with maximal value $\|c\|_{\mathbf{p}_1}+\|c\|_{\mathbf{p}_2}=25$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> 0000000000●0
Shape f	formula			

 $\lambda(\mathbf{c})_1 = 19$ with maximal value $\|\mathbf{c}\|_{\mathbf{p}} = 19$

 $\lambda(\mathbf{c})_1 + \lambda(\mathbf{c})_3 = 25$ with maximal value $\|\mathbf{c}\|_{\mathbf{p}_1} + \|\mathbf{c}\|_{\mathbf{p}_2} = 25$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type <i>D</i> ○○○○○○○○○○
Shape f	formula			

 $\lambda(\mathbf{c})_1 = 19$ with maximal value $\|\mathbf{c}\|_{\mathbf{p}} = 19$

 $\lambda(\mathbf{c})_1+\lambda(\mathbf{c})_3=25$ with maximal value $\|\mathbf{c}\|_{\mathbf{p}_1}+\|\mathbf{c}\|_{\mathbf{p}_2}=25$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preliminary 00	PBW crystal of type A	KR crystal of type A	Crystal of type D	RSK of type D ○○○○○○○○○○●

THANK YOU

ありがとうございます。

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?