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In this talk, we will place our focus on discussing the symmetric group Sn. The intent
is to offer a basic introduction to the topic through this discussion of cycle structure
(cycle notation and cycle types), partitions and conjugacy classes. A geometric analogue
of the symmetric group will also be given through the consideration of reflection groups.

Further, we also relate symmetric groups to the idea of reflections groups. A key
result in this section will be the fact that symmetric groups in fact arise from a Weyl
group of type A.

Further, we will also discuss the relation of the symmetric group Sn to the braid group
Bn; in particular their structural similarities will be the topic of our discussion.

Preliminaries

Definition 0.1. Let G be a group and S a non-empty subset of G. A word formed from
S is either the identity element, or the finite product

n∏
i=1

sni
i , si ∈ S, ni ∈ Z, m ≥ 0,

where si are referred to as letters.

s

Definition 0.2. A transposition is an exchange of two elements of an ordered list
with all others staying the same. That is, it is the permutation of two elements. It is
often denoted (i, j), which means that i and j are swapped. Given a sequence of letters
1, · · · i, · · · , j, · · · , n applying the

As an example, swapping 1 and 2 in 123 gives 213, and is a transposition. More
generally, given a sequence of letters 1, · · · i, · · · , j, · · · , n applying the transposition (i, j)
swaps the positions of i and j to give 1, · · · , j, · · · , i, · · · , n.

Definition 0.3. An adjacent transposition is a transposition of the form (i, i+ 1).

As an example, of this say, we have a sequence of numbers 1,2,3,4,5. Then,

(12), (23), (34), (45)

are its adjacent transpositions.
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An Introduction to the Symmetric Group

The symmetric group Sn is the group consisting of all bijections from the set of letters
{1, · · · , n} to itself with identity 1. The elements π ∈ Sn are known as permutations, and
the identity element 1 ∈ Sn is the identity permutation.

In this case, the operation that the group defines is ◦, denoting composition. So for
two permutations π and σ, we write

π ◦ σ
to denote the composition of the permutations. However, it is typical to employ short-
hand notation by erasing the ◦ symbol and simply writing πσ - which gives us a word.
By convention, we ”multiply” the permutations from right to left. That is, if we have a
permutation πσ, we will apply σ first, and follow that with π.

We may verify that Sn is indeed a group since it is clear that π ◦σ ∈ Sn, as the result
that we get from applying two permutations is still a permutation. Further, it is clear
that there exists an inverse element π−1 for every permutation π. In fact, as we will soon
see, every element is its own involution.

Definition 0.4. The symmetric group is the group generated by transpositions given
by

Sn := 〈s1, · · · , sn−1 : sisi+1si = si+1sisi+1, sisj = sjsi for |i− j| > 1 ,and s2
i = 1〉

where the conditions listed on the right-hand side of the colon are referred to as relations,
and si represents adjacent transpositions.

We will see how this work in later examples, after we go through the notations that
we use to represent permutations.

Remark. The first two relations in the symmetric group are known as the braid group
relations. This will be important later when we discuss morphisms between the braid group
and symmetric group.

By the above definition, we note that very element of the symmetric group si is its own
involution (by the third relation). As such, there is no need to worry about inverses like
with other groups. Combinatorially, it is quite easy to understand property (iii), since if
a permutation is applied on a set of letters, followed by applying the same permutation
once more, we attain the same word from before the permutation.

Cycle Structure

Cycle Notation

Another way through which we can represent a permutation is through the use of cycle
notation. Given a letter i ∈ {1, · · · , n}, it’s quite clear that the letters i,Π(i),Π2(i), · · ·
cannot all be distinct. As such, we take the first power p such that Πp(i) = i, which gives
us the following cycle.

(iΠ(i)Π2(i)Π3(i) · · ·Πp−1)
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In this notation, we have i going to Π(i), Π(i) goes to Π2(i), and so on until we have
Πp−1(i) going to Π(i)p, which equals i, thus starting the entire cycle again. In general,
any element Π ∈ Sn can be written in terms of disjoint cycles. That is,

(i1, · · · , il) · · · (im+1, · · · , in)

Using our example from before, we may write the permutation in cycle notation as

Π = (1, 3)(2),

since 1 goes to 3, which then goes back to 1. 2 simply goes to itself, and is thus represented
as a separate cycle. Note that (1, 3) and (2) are disjoint cycles, and their product defines
Π. Note that permuting the letters within a cycle does not change the permutation. That
is,

(1, 3)(2) = (3, 1)(2) = (2)(3, 1) = (2)(1, 3)

In this case, the cycle (2) is called a fixed point, since it simply maps to itself. In general,
any 1-cycle is called a fixed point.

An algorithmic approach to determing a cycle for a permutation is to pick a single
element in the cycle containing i and interating this process until all members {1, · · · , n}.
A k-cycle, or cycle of length k is a cycle of k elements. For instance, our above example
contains a 2-cycle and a 1-cycle.

Cycle Type

Now, the cycle type, or simply the type is an expression of the form

(1m1 , 2m2 , · · · , nmn)

where mk is the number of cycles of length k in Π. Our above permutation thus has cycle
type

(11, 21, 30)

Another way of representing the cycle type is through a partition, which is a sequence

λ = (λ1, · · · , λ`)

where λi are a weakly decreasing sequence; that is,

λ1 ≤ λ2 ≤ · · · ≤ λ`

and ∑̀
i=1

λi = n

As such, k would be repeated mk times in the partition of the cycle type of Π. Using our
above example, the partition would then be

(2, 1)
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Example: S2

The case of S2 is a bit of a boring example, since it is simply given by

S2 = 〈s1〉

and the only elements of the group are {ε, s1}. The only possible cycle is the 2-cycle

Π = (1, 2)

which gives us the cycle type
(10, 21)

and the partition
(2)

Example: S5

Consider π ∈ S5 defined by

π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 4, π(5) = 5

In cycle notation, we have
(1, 2, 3)(4)(5)

We note that there is one 3-cycle, and two fixed points. As such, our cycle type is

(12, 20, 31, 40, 50)

In our partition, 1 will be repeated 2 times, corresponding to the two fixed points in our
cycle, and 3 will be repeated once, corresponding to the one 3-cycle. We order this in the
form of a weakly decreasing sequence, as required, giving us

(3, 1, 1)

Conjugates and Conjugacy Classes

In any group G, elements g and h are conjugates if

g = khk−1

for some k ∈ G. In fact, we may define an equivalence relation ∼ on G by g ∼ h if g and
h are conjugate in G.

Proposition 1. Let G be a group, and define the relation ∼ on G by g ∼ h if g and h
are conjugate in G. Then, ∼ is an equivalence relation on G.

Proof. We need to check that ∼ satisfies the properties of an equivalence relation. It is
clear that g ∼ g since ege−1 = g For h, g ∈ G such that xgx−1 = h, we may re-arrange
this to immediately obtain, g = x−1hx. Then, we let y = x−1 and so g = yhy−1, and we
have h ∼ g. Now, let g ∼ h and h ∼ k for g, h, k ∈ G and y, z ∈ G such that ygy−1 = h
and zhz−1 = k. Then, zygy−1z−1 = (zy)g(zy)−1 = k. And since zy ∈ G by the closure
of G, we have that g ∼ k. Thus, ∼ is an equivalence relation.
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As such, we may define an equivalence class on g, known as the conjugacy class of g.
We denote this by Kg, and write

Kg = {kgk−1 : k ∈ G}

We note that the distinct conjugacy classes partitionG. Note especially that this partition
is a set partition, as opposed to integer partitions described before. That is to say, the
conjugacy class Kg is characterised by the cycle type, and the cycle types are parametrised
by set partitions of size n.

Conjugacy Classes of Symmetric Groups

Let us now determine the conjugacy class of the symmetric group Sn.

Lemma 1. Let α, τ ∈ Sn, where α is the k-cycle (a1, a2, · · · , ak). Then,

τατ−1 = (τ(a1), · · · , τ(ak))

Proof. Consider τ(ai) such that 1 ≤ i ≤ k. Then we have that τ−1τ(ai) = ai and
α(ai) = ai+1 mod k. We have now that (τατ−1)(τ(ai) = τ(ai+1 mod k). Now, consider any
j ∈ {1, · · · , n}, but such that j 6= ai for any i. Then, α(j) = j since j is not in the
k-cycle defining α. So, τατ−1(τ(j)) = τ(j). So, what we see here is that τατ−1 fixes any
number that is not of the form τ(ai), which gives us

τατ−1 = (τ(a1), · · · , τ(ak))

Theorem 0.1. The conjugacy classes of any Sn are determined by cycle type. That is, if
σ has a cycle type (1m1 , · · · , nmn), then any conjugate of σ has cycle type (1m1 , · · · , nmn).
And, if ρ is any other element of Sn with the same cycle type, then σ is conjugate to ρ :.

Proof. Suppose that σ has cycle type (λ1 · · ·λ`), so that σ can be written as a product
of disjoint cycles σ = α1, · · · , α`

, where αi denotes a λi-cycle. Now, let τ ∈ Sn; then, we
have

τστ−1 = τα1 · · ·α`τ−1 = (τα1τ
−1)(τ(α2τ

−1) · · · (τα`τ−1)

Then, for each 1 ≤ i ≤ n, we have from Lemma 1 that ταiτ
−1 is also a λi-cycle. As

such, for any i, j ∈ {1, 2, · · · , `} such that i 6= j, we have that αi and αj are disjoint, and
so ταiτ

−1 and ταjτ
−1 must also be disjoint since τ is an bijective function. As such, the

above product given by τστ−1 is written as a product of disjoint cycles. As such, any
conjugate of σ has cycle type (λ1 · · ·λ`).

Now, let σ, ρ ∈ Sn both be of cycle type (λ1 · · ·λ`). We will show that σ and ρ are
conjugate. Let σ and τ be written as disjoint cycles as

σ = α1 · · ·α` and ρ = β1 · · · β`

where αi and βi are λi-cycles. For each i, let us write

αi = (aiλ1 · · · aiλ`) and βi = (bi1 · · · binmn )
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Now define τ by τ(aij) = bij where 1 ≤ i ≤ n and λ1 ≤ j ≤ λ`. From Lemma 1, we
then have that

ταiτ
−1 = βi

, and thus
τστ−1 = (τα1τ

−1) · · · (τα`τ−1) = β1 · · · β` = ρ

Root Systems

We work over an Euclidean space E; that is, a finite dimensional vector space over R
endowed with a positive definite symmetric bilinear form (α, β).

Geometrically, a reflection in the space E sends any vector α orthogonal to a hyper-
plane to its negative. To each vector α is associated a reflecting hyperplane Pα := {β ∈
E : (β, α) = 0} From this, we may write down an explicit equation for the reflection:

σα(β) = β − 2(β, α)

(α, α)
α

Definition 0.5. A subset Φ of the Euclidean space E is called a root system if the
following axioms are satisfies:

(R1) Φ is finite, spans E and does not contain 0

(R2) If α ∈ Φ, the only multiples of α in Φ are ±α.

(R3) If α ∈ Φ , the reflection σα leaves Φ invariant.

(R4) If α, β ∈ Φ, then

σα(β) = β − 2(β, α)

(α, α)
α ∈ Z

Simple Roots

Definition 0.6. A subset ∆ of Φ is called a base if

(B1) ∆ is a basis of E.

(B2) Each root β can be written as

β =
∑
α∈∆

kαα

with integral coefficients kα all nonnegative or all nonpositive.

And the elements of ∆ are known as the simple roots.
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Weyl Group

Now, let Φ be a root system in E. Then, we denote by W the subgroup of GLn(E)
generated by the reflections σα with α ∈ Φ. Then, by (R3), W permutes the set Φ,
which by (R1) is finite and spans E. This allows us to identify W as the subgroup of the
symmetric group on Φ. W is called the Weyl group of Φ.

We may represent these root systems pictorially. For our purposes today, we will only
consider root systems of type A. Let ` := dimE denote the rank of the root system Φ.
When ` ≤ 2, we can describe Φ by simply drawing a picture. By (R2), there is only one
possibility for the case where ` = 1, which we call A1:

And indeed, this is a root system with Weyl group of order 2.

In the case of rank 2, there are much more opportunities. As aforementioned, we’re
most interested in considering Weyl groups of type A, because that’s what is going to
connect us to the symmetric group. As an example, consider the root systems A1 × A1

and A2.

Sn and the Braid Group Bn

Definition 0.7. The Artin Braid Group on n letters, Bn, is a finitely-generated group
with generators b1, · · · , bn−1 with

Bn := 〈b1, · · · , bn−1 : relations〉

satisfying the following relations:

bibj = bjbi for |i− j| > 2, i, j ∈ {1, · · · , n− 1}

bibi+1bi = bi+1bibi+1 for i ∈ {1, · · · , n− 2},

called the braid relations.

We define the braid group to be a group with the identity ε. As such, we have
by definition that B1 = {ε} is a trivial group. The group B2 is generated by a single
generator b1 and an empty set of relations.
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Definition 0.8. A group is called a free group if no relation exists between its group
generators other than the relationship between an element and its inverse.

As an example, the additive group of integers (Z,+) is free with generator 1 and its
inverse, −1.

A simple non-abelian example of a free group would be the Galois field GF (2) with
the generating set S = {a, b}.

Lemma 2. If s1, · · · , sn−1 be elements of some group G satisfying the braid relations.
Then, there is a unique group homomorphism f : Bn → G such that si = f(bi) for all
i = 1, 2, · · · , n− 1.

Proof. Let Fn be the free group generated by the set {b1, · · · , bn−1}. There is a unique
group homomorphism f̄ : F̄n → such that f̄(σi) = si for all i = 1, 2, · · · , n − 1. This
homomorphism induces a group homomorphism f : Bn → G provided f̄(r−1r′) = ε, or
equivalently that f̄(r) = f̄(r′) for all braid relations r = r′. For the first braid relation
we have:

f̄(bibj) = f̄(bi)f̄(bj) = sisj = sjsi = f̄(bj)f̄(bi) = f̄(bjbi)

And for the second braid relation, we have

f̄(bibi+1bi) = sisi+1si = si+1sisi+1 = f̄(bibi+1bi),

as required.

From this lemma, we will prove that there is an epimorphism from the braid group
Bn to Sn. But first, let us gain some intuition of why this should be the case.

In fact, if we discard the notion of strands twisting and crossing in the braid group and
instead consider a ”flat braid”, then every braid of n strands determines a permutation
on n elements.

A close inspection of both the braid group Bn and the symmetric group Sn shows us
that both groups have the same amount of generators, and that the generators also of Sn
also satisfy the braid relations, as well as the extra condition that s2

i = 1. This implies
that the assignment bi 7→ si is structure-preserving and thus defines a homomorphism

ϕ : Bn → Sn, bi 7→ si

And finally, since ϕ(Bn) contains all the generators of Sn by our construction, ϕ is thus
surjective. As such, ϕ is an epimorphism.

Now, we apply the previous lemma with G = Sn. We are able to do this as Sn satisfies
the braid relations by definition. As we have already seen, an element of Sn is merely the
permutation of the set {1, · · · , n}. So, if we let {s1, · · · , sn−1} be the transpositions that
we defined before, then the mapping

ϕ : Bn → Sn, bi → si
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is a group homomorphism.

To justify the surjectivity of ϕ, let us consider another group homomorphism

θ : G→ G′

where {g1, · · · gd} are generators of G and {θ(g1), · · · , θ(gd)} are generators for G′. Then,
it follows that θ is a surjection since for each g′ ∈ G, there exists a g ∈ G such that

θ(g) = g′

And so, by this construction, it follows that since bi is a generator for Bn, and since
ϕ(bi) = si is also a generator for Sn, we have that ϕ is surjective, and thus an epimor-
phism.

And in fact, it is possible to construct an isomorphism between the braid group Bn and
the symmetric group Sn by imposing some extra structure on the braid group. Consider

Θ : Bn/〈s2
i 〉 → Sn, bi〈s2

i 〉 7→ si

It follows that ker Θ = 〈s2
i 〉. And since the map ϕ has been shown to be a group

epimorphism, it follows from the first isomorphism theorem that Bn/〈s2
i 〉 is isomorphic

to Sn. That is, Θ is an isomorphism and thus

Bn/〈s2
i 〉 ∼= Sn

• Introduction to Lie Algebras and Representation Theory (chapter 3)

• number of conjugacy classes is equal to the number of partitions of n

• Schur polynomial for partitions

• Realise that Sn is the Weyl group of An

• build the An group system (yellow humphrey boi), use A2 as an example

• define a root system in reflection groups part

• define simple roots

• define the weyl group W , and then show that W ∼= Sn in type A

• You get more semidirect products on type B and C

• include the signed permutation signs
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