
DATA7001 - Introduction to Data Science
Basic R programming

Xin GUO

Email: xin.guo@uq.edu.au
Office: Priestley Building (67), Room 447
Office Hours: Tuesday 10–11 AM

1 / 75

R

R is a programming language. R also refers to
a free software environment for statistical
computing and visualization. It compiles and
runs on a wide variety of UNIX platforms,
Windows and MacOS. R was originally
designed for statistical computing, and now
people also use it to do numerical analysis. It is
stable, powerful, and widely used. Figure: the R logo.

An interpreter-based programming, graphics and statistics package.
Free, stable, can be extended.
Can easily perform standard statistical and numerical analysis.
Can be programmed to handle non-standard cases.
For complex tasks, it is often used as a first step to interface with C
or FORTRAN.
Almost all new statistical methodologies are published with
ready-to-use packages built with R.

2 / 75

R is free in the sense of “free beer”, so that you can download it, run it,
and re-distribute it with no cost. R is free also in the sense of “free
speech”, so that you can modify it, and release your modified version
(called “fork”) of R (for minimizing confusion, R requires that if you
modify and release your version of R, you must use some different name).
R is usually used in the command-line mode, which already offers a lot of
features and freedom. However, there is a graphical user interface (GUI)
shell available for R, called RStudio, available for download at
https://www.rstudio.com.

3 / 75

https://www.rstudio.com

Launching R

The welcome message of R environment on Linux system.

4 / 75

If you launch RStudio, you get the following welcome message. RStudio
did nothing but just call R.

The welcome message of RStudio.

5 / 75

Downloading and installing R

visit https://www.r-project.org/

6 / 75

A server closer to you may provide faster downloading.

7 / 75

8 / 75

RStudio is an integrated development environment (IDE) for R, which is
optional and may provide some help. RStudio is available at
https://www.rstudio.com/

9 / 75

On the homepage of RStudio, scroll down to find the download link.

10 / 75

You may explore the “RStudio Server” but the basic “RStudio Desktop”
is good enough.

11 / 75

Select the package that matches your operating system.

12 / 75

Some simple commands
You can directly type commands at the prompt:
> 2 + 3
[1] 5
> 5 * pi
[1] 15.70796
> rnorm(20)
[1] -0.57442492 1.68545014 -0.01613824 -0.14110880 0.59271169
[6] 0.08165454 0.16220551 -0.53236657 -0.11977163 0.56726110

[11] -0.19887324 -0.77690512 -1.10581382 -0.70444775 -0.03470233
[16] -0.92088930 -2.95547369 0.22873348 -0.30088267 -0.27960355

If you hit enter before completely entering a command, you will get
a + prompt. You must complete the command or type CTR+C (Esc in
MSW) to continue.
> 3 +
+ 5
[1] 8

All arithmetic operations are represented via standard symbols (+ -
* /) and have the usual order of precedence.
> 3 + 4 * 2
[1] 11
> sin(pi / 6)
[1] 0.5
> exp(log(2) + log(3))
[1] 6
> atan(Inf)/pi
[1] 0.5

13 / 75

Vectors

R has six common types of atomic vectors: integer, double, logical,
character, complex, and raw1.

> a <- c(1, 3, 5, 7, 9)
> a
[1] 1 3 5 7 9
> typeof(a)
[1] "double"
> length(a)
[1] 5
> b <- 1:5
> typeof(b)
[1] "integer"
> x <- (a >= 5)
> x
[1] FALSE FALSE TRUE TRUE TRUE
> typeof(x)
[1] "logical"
> x[2]
[1] FALSE

> y <- c("hello", "world", "!")
> typeof(y)
[1] "character"
> length(y)
[1] 3
> nchar(y)
[1] 5 5 1
> z <- 3 + 5i
> typeof(z)
[1] "complex"
> z^2
[1] -16+30i
> sin(z)
[1] 10.47251-73.46062i
> exp(z)
[1] 5.69751-19.26051i

In each vector, all the elements must have the same atomic data
type.

1In this course we will not expand complex and raw.
14 / 75

List

List is a data structure like vector, but can have components of mixed
data types.
> a <- list(1:4, sin, "hello", TRUE, 1+3i)
> a[[1]]
[1] 1 2 3 4
> a[[2]](pi/6)
[1] 0.5
> a[[3]]
[1] "hello"
> a[[4]]
[1] TRUE
> Arg(a[[5]])
[1] 1.249046
> Arg(a[[5]]) -> e
> Mod(a[[5]]) -> r
> r * (cos(e) + 1i * sin(e))
[1] 1+3i
> names(a) <- letters[1:5]
> a$a
[1] 1 2 3 4
> a$b
function (x) .Primitive("sin")
> a$c
[1] "hello"

15 / 75

Reading documentation
Documentation is important for learning R. Type ?log, or ?"log", for
example, to see the help page of the function log. Why quoting?
Because sometimes we need the help page of operators. Try ?"+" and ?+
separately. Press q to quit the help page.

Help page of the logarithm functions.

16 / 75

Save your commands in a file

Each R session works under a directory (“folder”). To see the
current working directory, type the following command
> getwd()
[1] "/home/xin/Downloads"

To change the current working directory, use the function “setwd”.
> setwd("/home/xin/Documents")
> getwd()
[1] "/home/xin/Documents"

For example, one can make a file “a.R” (different filename
extensions are OK, for example you can use the text file “a.txt”)
under the working directory. Save the following code to the file a.R.
print("hello, world")

Then in the R session, “source” it.
> source("a.R")
[1] "hello, world"

17 / 75

Loops

The following for loop is used to find e = 2.71828 · · · =
∑∞

i=0
1
i! .

There are two key words: for and in.
a <- 0
for(i in 0:18){
a <- a + 1/factorial(i)

}
below are the results:
> a
[1] 2.718282
> 0:18
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

> typeof(0:18)
[1] "integer"

One more example:
for(i in c("Brisbane", "New York")){
print(paste("I love", i))

}
below are the results:
[1] "I love Brisbane"
[1] "I love New York"

18 / 75

R also provides the while loop
a <- 0
while(a < 4){
a <- a + 1
print(a)

}
below are the results:
[1] 1
[1] 2
[1] 3
[1] 4

The keyword “break” is used to break from a loop. Save the
following code to “a.R”.
a <- 0
repeat{
a <- a + 1
if(a > 4) break
print(a)

}

In the R session,
> source("a.R")
[1] 1
[1] 2
[1] 3
[1] 4

Note that, for practicing programming, the best way is to program,
especially on some problems well motivated.

19 / 75

Example
Use the for loop to find

100∑
k=1

k.

If you get the answer 5050, your code is probably correct.

20 / 75

Example
Recall the definition of the Fibonacci numbers: a1 = a2 = 1 and for any
i ≥ 3,

ai = ai−1 + ai−2.

Find the first 100 Fibonacci numbers.

21 / 75

Vectors (mathematical concept)

An array x of n real numbers x1, . . . , xn is called a vector, and it is
written as

x =

x1

x2

...
xn

 , or x′ = [x1, x2, · · · , xn].

Here the prime denotes the operation of transposing a column to a
row.
The number n is referred to as the dimension of the vector x.
The coordinates x1, . . . , xn can also be complex numbers, in which
case x is a complex vector. However in this course we consider
ONLY real numbers and real vectors.

22 / 75

The set of all the real vectors of dimension n, is denoted by Rn.
One can scale a vector x by multiplying it by a constant c.

x =

x1

x2

...
xn

 ⇒ cx =

cx1

cx2

...
cxn

 .

Vectors can be added.

x+ y =

x1

x2

...
xn

+

y1
y2
...
yn

 =

x1 + y1
x2 + y2

...
xn + yn

 .

23 / 75

inner product: if vectors x and y have the same dimension n,

⟨x,y⟩ :=
n∑

i=1

xiyi = ⟨y,x⟩ .

length, or norm:

∥x∥ :=
√
⟨x,x⟩ =

√
x2
1 + x2

2 + · · ·+ x2
n.

For any constant c,

⟨cx,y⟩ = c ⟨x,y⟩ ;

∥cx∥ =
√
⟨cx, cx⟩ =

√
c2 ⟨x,x⟩ = |c|

√
⟨x,x⟩ = |c|∥x∥.

triangle inequality: (proof left as a warming up exercise)

∥x+ y∥ ≤ ∥x∥+ ∥y∥.

24 / 75

Basic linear algebra with R

There are several ways to generate a vector in R.
> a <- 1:5
> a
[1] 1 2 3 4 5
> b <- 5:1
> b
[1] 5 4 3 2 1
> x <- seq(1, 5, length = 10)
> x
[1] 1.000000 1.444444 1.888889 2.333333 2.777778 3.222222 3.666667
[8] 4.111111 4.555556 5.000000

> runif(5)
[1] 0.1664853 0.6454725 0.3244731 0.4217759 0.3419001
> rep(1, times = 5)
[1] 1 1 1 1 1
> rep(1:5, each = 3)
[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

> rep(1:5, times = 3)
[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

> rep(1:5, length = 14)
[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4

25 / 75

We may take a look at the properties of a vector
> x <- 1:5
> length(x)
[1] 5
> typeof(x)
[1] "integer"
> str(x)
int [1:5] 1 2 3 4 5

> object.size(x)
80 bytes
> object.size(1:10000)
40048 bytes
> object.size(1:100000)
400048 bytes
> object.size(1:1000000)
4000048 bytes
> object.size(as.double(1:10000))
80048 bytes
>
> y <- seq(1, 5, len = 10000)
> head(y)
[1] 1.0000 1.0004 1.0008 1.0012 1.0016 1.0020
> tail(y)
[1] 4.9980 4.9984 4.9988 4.9992 4.9996 5.0000
> length(y)
[1] 10000
> typeof(y)
[1] "double"
> object.size(y)
80048 bytes

26 / 75

By default, R takes vectors as
column matrices, so a transpose of a
vector is a row matrix.
> a
[1] 1 2 3 4 5
> t(a)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
> a <- 1:5
> t(a) # THE TRANSPOSE OF a

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
> t(t(a))

[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5

However, vectors do not have the
“dimension” attribute, and only
matrices have.
> dim(a)
NULL
> dim(t(a))
[1] 1 5
> dim(t(t(a)))
[1] 5 1
> attributes(t(a))
$dim
[1] 1 5

> attributes(a)
NULL

27 / 75

R does not have handy functions for inner product or vector norms. These
operations are usually implemented through functions sum and sqrt.
> a <- 1:5
> a * 2
[1] 2 4 6 8 10
> a ^ 2
[1] 1 4 9 16 25
> 2 ^ a
[1] 2 4 8 16 32

> a + rep(10, length = 5)
[1] 11 12 13 14 15
> b <- rep(1, length = 5)
> b
[1] 1 1 1 1 1
> sum(a * b) # INNER PRODUCT
[1] 15
> sqrt(sum(b ^ 2)) # VECTOR NORM
[1] 2.236068

> sqrt(sum((-2 * b) ^ 2))
[1] 4.472136
> 2 * sqrt(sum(b ^ 2))
[1] 4.472136

28 / 75

Matrix
Matrix A, of dimension m× n, is just a table of (real) numbers.

A =

A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

Am,1 Am,2 · · · Am,n

 .

Ai,j is called the (i, j)-entry of the matrix A.
Transpose: A′ is a n×m matrix, defined by

A′ =

A1,1 A2,1 · · · Am,1

A1,2 A2,2 · · · Am,2

...
...

A1,n A2,n · · · Am,n

 .

Example:

 1 2
3 4
5 6

 transpose=⇒
[

1 3 5
2 4 6

]
29 / 75

Write Rm×n the space of all the n×m matrices.
Matrix addition: A = Am×n, B = Bm×n, then A+B is an m× n
matrix with (A+B)i,j = Ai,j +Bi,j . Matrix A−B is similarly
defined.
Matrix multiplication: A = Am×n, B = Bn×p, then AB is a m× p
matrix with

(AB)i,j =

n∑
k=1

Ai,kBk,j

Hadamard product: A,B ∈ Rm×n, (A ◦B)i,j = Ai,jBi,j .
Let c be a constant, then cA is an m× n matrix with
(cA)i,j = cAi,j .
Let A = Am×n be a matrix and x = xn×1 be a vector, then Ax is
an m× 1 vector with (Ax)i := Ai,1x1 +Ai,2x2 + · · ·+Ai,nxn.

30 / 75

Examples [
a b
c d

]
+

[
α β
γ δ

]
=

[
a+ α b+ β
c+ γ d+ δ

]
∈ R2×2,[

a b
c d

]
◦
[

α β
γ δ

]
=

[
aα bβ
cγ dδ

]
∈ R2×2,

[
a b c
d e f

] α
β
γ

 =

[
aα+ bβ + cγ
dα+ eβ + fγ

]
∈ R2,

 a b
c d
e f

[
α β
γ δ

]
=

 aα+ bγ aβ + bδ
cα+ dγ cβ + dδ
eα+ fγ eβ + fδ

 ∈ R3×2.

31 / 75

In R, generating a matrix is easy. Note that R is “column-major”, i.e.,
when we feed a vector into a matrix, elements of the vector are fed into
the matrix one column after another.

32 / 75

> a <- matrix(1:6, nrow = 3)
> b <- matrix((1:6) * 100, ncol = 2)
> a

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> b

[,1] [,2]
[1,] 100 400
[2,] 200 500
[3,] 300 600
> a + b # matrix addition

[,1] [,2]
[1,] 101 404
[2,] 202 505
[3,] 303 606
> a * b # Hadamard product

[,1] [,2]
[1,] 100 1600
[2,] 400 2500
[3,] 900 3600
> x <- c(7, 8)
> x
[1] 7 8
> a %*% x # matrix-vector product

[,1]
[1,] 39
[2,] 54
[3,] 69

> b[1:2,] # a submatrix
[,1] [,2]

[1,] 100 400
[2,] 200 500
> a %*% b[1:2,] # matrix-matrix product

[,1] [,2]
[1,] 900 2400
[2,] 1200 3300
[3,] 1500 4200
> a

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> a + 10 # adding a scalar to a matrix

[,1] [,2]
[1,] 11 14
[2,] 12 15
[3,] 13 16
> a * 10 # multiplying a matrix by a scalar

[,1] [,2]
[1,] 10 40
[2,] 20 50
[3,] 30 60

33 / 75

For linear equation systems where the coefficient matrix is a square
matrix of full rank,

the solution is x = A−1y, where A−1 denotes the matrix inverse of A.
Then A−1A = AA−1 = I, which is the identity matrix.

34 / 75

Finding matrix inverse, and solving linear equations are easy in R.

> A <- matrix(c(1,2,3,6,5,4,8,7,9), nrow = 3)
> A

[,1] [,2] [,3]
[1,] 1 6 8
[2,] 2 5 7
[3,] 3 4 9
> x <- c(2,3,5)
> x
[1] 2 3 5
> y <- A %*% x
> y

[,1]
[1,] 60
[2,] 54
[3,] 63
> solve(A, y) # method 1

[,1]
[1,] 2
[2,] 3
[3,] 5
> solve(A, y) - x # numerical errors

[,1]
[1,] 1.776357e-15
[2,] 4.440892e-16
[3,] -8.881784e-16
> 10^(-15)
[1] 1e-15

> solve(A)
[,1] [,2] [,3]

[1,] -0.8095238 1.0476190 -0.0952381
[2,] -0.1428571 0.7142857 -0.4285714
[3,] 0.3333333 -0.6666667 0.3333333
> A %*% solve(A)

[,1] [,2] [,3]
[1,] 1.000000e+00 0.000000e+00 4.440892e-16
[2,] 1.665335e-16 1.000000e+00 1.665335e-16
[3,] -1.665335e-16 3.330669e-16 1.000000e+00
> solve(A) %*% y # method 2, slower

[,1]
[1,] 2
[2,] 3
[3,] 5
> solve(A) %*% y - x

[,1]
[1,] -1.332268e-15
[2,] 1.332268e-15
[3,] 8.881784e-16

35 / 75

The following example (demonstrated via the Julia language) shows the
limit on precision of double. This is also an example that in general,
floating-point addition and multiplication are not associative (i.e. one
may have a+ b+ c ̸= a+ (b+ c) and a× b× c ̸= a× (b× c))
julia> eps(1.0)
2.220446049250313e-16

julia> eps(1.0) / 2 + 1.0 - 1.0
0.0

julia> eps(1.0) / 2 + (1.0 - 1.0)
1.1102230246251565e-16

julia> bitstring(1.0 + eps(1.0))
"0011111111110001"

julia> bitstring(1.0 + eps(1.0)/2)
"00111111111100"

julia> bitstring(1.0)
"00111111111100"

36 / 75

There are some other matrix operations.

> a <- matrix(1:9, nrow = 3)
> a

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> cbind(1, a, t(a))

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1 1 4 7 1 2 3
[2,] 1 2 5 8 4 5 6
[3,] 1 3 6 9 7 8 9
> rbind(sqrt(1:3), a)

[,1] [,2] [,3]
[1,] 1 1.414214 1.732051
[2,] 1 4.000000 7.000000
[3,] 2 5.000000 8.000000
[4,] 3 6.000000 9.000000

> b <- matrix(1:6, nrow = 2)
> b

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> apply(b, 1, sum)
[1] 9 12
> apply(b, 2, prod)
[1] 2 12 30
> sum(1:100)
[1] 5050
> prod(1:4)
[1] 24

37 / 75

Example (exercise, Fibonacci sequence, revisited)
Recall the Fibonacci sequence {an}∞n=1 defined by a1 = a2 = 1 and then
iteratively by an+2 = an+1 + an for any integer n ≥ 1. The iterative
relation could be written in the vector form as[

an+2

an+1

]
=

[
1 1
1 0

] [
an+1

an

]
, for n ≥ 1.

Use the above form to find a30. Do you have a faster way to compute
a30?

38 / 75

Vectors and Indexing
A vector is an 1-dim array of data of the same basic data types. These
basic data types include: integer, double, logical, character, complex
(complex numbers), etc.
> a <- seq(0, 1, by = 0.1)
> a
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> seq(0, 1, len = 5)
[1] 0.00 0.25 0.50 0.75 1.00
> names(a) <- paste0("the", 1:11)
> a
the1 the2 the3 the4 the5 the6 the7 the8 the9 the10 the11
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> typeof(a)
[1] "double"
> str(a)
Named num [1:11] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...
- attr(*, "names")= chr [1:11] "the1" "the2" "the3" "the4" ...

> a["the3"]
the3
0.2

> a[3]
the3
0.2

> a[-3]
the1 the2 the4 the5 the6 the7 the8 the9 the10 the11
0.0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

39 / 75

The components of a vector could be retrieved by number indexes, logical
indexes, and names. We can even change the vector values in this way.
> a <- seq(0, 1, by = 0.1)
> names(a) <- paste0("the",1:11)
> a[7]
the7
0.6

> a[1] <- 8
> a>0.8
the1 the2 the3 the4 the5 the6 the7 the8 the9 the10 the11
TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

> a[a>0.8] <- 12
> a
the1 the2 the3 the4 the5 the6 the7 the8 the9 the10 the11
12.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 12.0 12.0

> a[a>0.8] <- 1:2
Warning message:
In a[a > 0.8] <- 1:2 :
number of items to replace is not a multiple of replacement length

> a
the1 the2 the3 the4 the5 the6 the7 the8 the9 the10 the11
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 2.0 1.0

> a[a>0.8] <- 1:5
Warning message:
In a[a > 0.8] <- 1:5 :
number of items to replace is not a multiple of replacement length

> a
the1 the2 the3 the4 the5 the6 the7 the8 the9 the10 the11
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 2.0 3.0

40 / 75

We now try number indexes
> a <- 4:9
> names(a) <- paste0("ID", 1:6)
> a
ID1 ID2 ID3 ID4 ID5 ID6
4 5 6 7 8 9

> a[-1]
ID2 ID3 ID4 ID5 ID6
5 6 7 8 9

> a[1]
ID1
4

> a[-(3:5)]
ID1 ID2 ID6
4 5 9

41 / 75

We now try logical indexes
> a <- c("Tom", "John", "Xin", "Kosaku", "Rukawa")
> b <- c("Kosaku", "Xin", "Rukawa", "Barack", "Vladimir")
> a[a %in% b]
[1] "Xin" "Kosaku" "Rukawa"
> a %in% b
[1] FALSE FALSE TRUE TRUE TRUE
> b[b %in% a]
[1] "Kosaku" "Xin" "Rukawa"
> b[!(b %in% a)]
[1] "Barack" "Vladimir"
> ?setdiff
> union(a,b)
[1] "Tom" "John" "Xin" "Kosaku" "Rukawa" "Barack" "Vladimir"
> intersect(a,b)
[1] "Xin" "Kosaku" "Rukawa"

We now try name indexes
> scores <- runif(5)
> names(scores) <- c("Tom", "John", "Xin", "Kosaku", "Rukawa")
> scores

Tom John Xin Kosaku Rukawa
0.28629591 0.31875371 0.03418924 0.51401365 0.49811182
> names(scores)[scores > 0.5]
[1] "Kosaku"
> names(sort(scores, decreasing=T))
[1] "Kosaku" "Rukawa" "John" "Tom" "Xin"

42 / 75

Example
Use the following code to generate a score table for 100 students. Now
the president plans to locate the best two students. Write code to find
their names.
> set.seed(123)
> scores <- runif(100)
> names(scores) <- paste0("student", 1:100)
> head(scores)
student1 student2 student3 student4 student5 student6

0.2875775 0.7883051 0.4089769 0.8830174 0.9404673 0.0455565

43 / 75

Example
Use the following code to generate a sequence {xn}100n=1. Define

yn =
100∑

k=1,k ̸=n

xk.

Write your code to find the vector (yn)100n=1.
> set.seed(123)
> x <- runif(100)
> head(x)
[1] 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673 0.0455565

44 / 75

Matrix indexing is similar

> a <- 1:5 %*% t(2:6)
> a

[,1] [,2] [,3] [,4] [,5]
[1,] 2 3 4 5 6
[2,] 4 6 8 10 12
[3,] 6 9 12 15 18
[4,] 8 12 16 20 24
[5,] 10 15 20 25 30
> rownames(a) <- paste0("Rw", 1:5)
> colnames(a) <- paste0("Cl", 1:5)
> a

Cl1 Cl2 Cl3 Cl4 Cl5
Rw1 2 3 4 5 6
Rw2 4 6 8 10 12
Rw3 6 9 12 15 18
Rw4 8 12 16 20 24
Rw5 10 15 20 25 30
> a[Rw3, Cl4]
Error: object 'Rw3' not found
> a["Rw3", "Cl4"]
[1] 15
> a["Rw3", 2:4]
Cl2 Cl3 Cl4
9 12 15

Example
Use the following code to simulate the score
table of a class. Find the average score of
math, with top 2 and bottom 2 scores
removed. Find the math score of the
student with highest chem score.
> set.seed(123)
> sc <- matrix(runif(75), nrow = 25)
> rownames(sc) <- paste0("Student", 1:25)
> colnames(sc) <- c("bio", "math", "chem")

45 / 75

Reading data from files, and writing data to files
We explain the usage of the functions “read.table” and “write.table”.
> set.seed(123)
> a <- matrix(runif(20), nrow = 5)
> a

[,1] [,2] [,3] [,4]
[1,] 0.2875775 0.0455565 0.9568333 0.89982497
[2,] 0.7883051 0.5281055 0.4533342 0.24608773
[3,] 0.4089769 0.8924190 0.6775706 0.04205953
[4,] 0.8830174 0.5514350 0.5726334 0.32792072
[5,] 0.9404673 0.4566147 0.1029247 0.95450365
> write.table(a, file = "a.txt", col.names = FALSE, row.names = FALSE, sep = ",")
> b <- read.table("a.txt", sep = ",")
> b - a

V1 V2 V3 V4
1 -2.220446e-16 4.163336e-17 -1.110223e-16 4.440892e-16
2 3.330669e-16 2.220446e-16 4.996004e-16 8.326673e-17
3 1.110223e-16 -1.110223e-16 4.440892e-16 -3.469447e-17
4 -4.440892e-16 2.220446e-16 -2.220446e-16 3.885781e-16
5 -3.330669e-16 3.330669e-16 -2.775558e-16 -4.440892e-16

46 / 75

One may directly store R objects to files.
> set.seed(123)
> a <- matrix(runif(20), nrow = 5)
> save(a, file = "a.RData")
> b <- a
> rm(a)
> a
Error: object 'a' not found
> load("a.RData")
> a

[,1] [,2] [,3] [,4]
[1,] 0.2875775 0.0455565 0.9568333 0.89982497
[2,] 0.7883051 0.5281055 0.4533342 0.24608773
[3,] 0.4089769 0.8924190 0.6775706 0.04205953
[4,] 0.8830174 0.5514350 0.5726334 0.32792072
[5,] 0.9404673 0.4566147 0.1029247 0.95450365
> b - a

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
[4,] 0 0 0 0
[5,] 0 0 0 0

47 / 75

Sometimes, to store a data spreadsheet that contains strings, we use the
data type “data frame” in R. It is stored as a list equipped with the data
frame structure. We will come back to the dataset “iris” later.
> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> is.data.frame(iris)
[1] TRUE
> as.matrix(head(iris))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 "5.1" "3.5" "1.4" "0.2" "setosa"
2 "4.9" "3.0" "1.4" "0.2" "setosa"
3 "4.7" "3.2" "1.3" "0.2" "setosa"
4 "4.6" "3.1" "1.5" "0.2" "setosa"
5 "5.0" "3.6" "1.4" "0.2" "setosa"
6 "5.4" "3.9" "1.7" "0.4" "setosa"
> as.matrix(head(iris)[, 1:4])
Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
> typeof(iris)
[1] "list"

48 / 75

Functions

A function is a fixed sequence of code that takes arguments, and
returns output. The following function adds two numbers up.
add <- function(x, y){
return(x + y)

}
we call the function:
> add(2,3)
[1] 5

The keyword return terminates the program flow and returns
immediately the value of the formula. If a function has no return
command, the value of the last formula will be returned.
add1 <- function(x, y){
x + y

}
we call the function:
> add1(2,3)
[1] 5

49 / 75

Example (Fibonacci sequence, revisited)
The Fibonacci sequence f1, f2, . . . is defined by f1 = 1, f2 = 1, and for
any k ≥ 3, fk = fk−1 + fk−2.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,· · ·

Make a function which takes argument k and returns fk. Note that in
the code below, we also used the if-else statement.

fibo <- function(k){
if(k <= 2){
return(1)

} else {
return(fibo(k-1) + fibo(k-2))

}}

below are the results:
> fibo(10)
[1] 55

Note that the above function fibo calls itself! This is called recursion.
On the one hand, each call of the function would generate a lot of
memory overhead, the efficiency of the program is reduced; on the other
hand however, this speeds up programming and saves the programmer’s
time.

50 / 75

Discrete probability distributions

We use binomial distributions as an example. Recall that for any positive
integer n and real number 0 < p < 1, a random variable X has the
binomial distribution Binomial(n, p) if

Prob(X = k) =

(
n

k

)
pk(1− p)n−k, for any X = 0, 1, . . . , n.

Here
(
n
k

)
:= n!

k!(n−k)! . The function fn,p(k) =
(
n
k

)
pk(1− p)n−k of k, is

called the probability function (or probability mass function, PMF). In R,
fn,p is implemented as

fn,p(k) = dbinom(x =k, size =n, prob =p)

Here, the placeholders x, size, and prob are called formal parameters.
When k ̸∈ {0, 1, . . . , n}, one simply takes fn,p(k) = 0.

51 / 75

Binomial package:stats R Documentation

The Binomial Distribution

Description:

Density, distribution function, quantile function and random
generation for the binomial distribution with parameters ‘size’
and ‘prob’.

This is conventionally interpreted as the number of ‘successes’ in
‘size’ trials.

Usage:

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

Arguments:

x, q: vector of quantiles.

p: vector of probabilities.

n: number of observations. If ‘length(n) > 1’, the length is
taken to be the number required.

size: number of trials (zero or more).

prob: probability of success on each trial.
...

52 / 75

x <- seq(-1, 4, by = 0.1)
y <- dbinom(x = x, size = 3, prob = 0.4)
plot(x, y)

−1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

y

53 / 75

The distribution function (also
called the cumulative
distribution function, CDF) is
defined for all x ∈ R,

Fn,p(x) =
∑
k≤x

fn,p(k).

Therefore CDF F for any
probability distribution is
non-decreasing, and

lim
x→∞

F (x) = 1

lim
x→−∞

F (x) = 0

The quantile Qn,p(ξ) for
0 < ξ < 1 is defined as the
smallest value Q = Qn,p(ξ) such
that Fn,p(Q) ≥ ξ. Here we skip
the discussion.

x <- seq(-1, 4, by = 0.1)
y <- pbinom(q = x, size = 3, prob = 0.4)
plot(x, y)

−1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

54 / 75

The function rbinom generates random numbers from a specified
binomial distribution.
> set.seed(123)
> rbinom(n = 10, size = 3, prob = 0.4)
[1] 1 2 1 2 3 0 1 2 1 1

> x <- rbinom(n = 100000, size = 3, prob = 0.4)
> table(x)
x

0 1 2 3
21659 43256 28703 6382
> table(x) / length(x)
x

0 1 2 3
0.21659 0.43256 0.28703 0.06382
> dbinom(x = 0:3, size = 3, prob = 0.4)
[1] 0.216 0.432 0.288 0.064

55 / 75

Continuous probability distributions

We use normal distributions as an example. Recall that for any real
number µ ∈ R, and any positive variance σ2 > 0, a random variable X
has the normal distribution N(µ, σ2) if

Prob(X ≤ x) =

∫ x

−∞

1√
2πσ2

exp
{
− (t− µ)2

2σ2

}
dt.

The density function for −∞ ≤ x ≤ ∞

fµ,σ2(x) =
1√
2πσ2

exp
{
− (x− µ)2

2σ2

}
is implemented in R as

fµ,σ2(x) = dnorm(x =x, mean =µ, sd =σ)

56 / 75

The CDF for −∞ ≤ x ≤ ∞

Fµ,σ2(x) =

∫ x

−∞
fµ,σ2(t)dt =

∫ x

−∞

1√
2πσ2

exp
{
− (t− µ)2

2σ2

}
dt

is implemented in R as

Fµ,σ2(x) = pnorm(q =x, mean =µ, sd =σ)

The quantile Qµ,σ2(x) = F−1
µ,σ2(x) for 0 ≤ x ≤ 1 is the inverse function

of Fµ,σ2 , and is implemented in R as

Qµ,σ2(x) = qnorm(p =x, mean =µ, sd =σ)

For a comprehensive list of probability distributions (discrete and
continuous) implemented in R, see
https://CRAN.R-project.org/view=Distributions.

57 / 75

The function rnorm generates random numbers from a specified normal
distribution.
> set.seed(123)
> a <- rnorm(n = 10000) # N(0,1) by default
> head(a) # get the first several (default=6) elements
[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
> tail(a) # get the last several (default=6) elements
[1] -0.5896389 -1.0247840 -0.3671164 -0.7574729 1.0793289 -0.6449242
> hist(a, breaks = 30)

Histogram of a

a

F
re

qu
en

cy

−4 −2 0 2 4

0
20

0
40

0
60

0
80

0

58 / 75

set.seed(123)
a <- rnorm(n = 10000) # N(0,1) by default
hist(a, breaks = 30, freq = FALSE)
x <- seq(-5, 5, length = 500)
lines(x, dnorm(x), lwd = 2, col = "red")

Histogram of a

a

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

59 / 75

Example (exercise)
In theory, Qµ,σ2(Fµ,σ2(x)) ≡ x for any real number x. However, the
output of the R command

qnorm(p = pnorm(q = 10))

is Inf (infinity, ∞). Please try the command yourself, explain the output,
and find a fix.

60 / 75

Plotting
plot is a generic function to plot variables. The default use is plot(x,
y) which plots a vector y against another vector x provided they have the
same length.

0 1 2 3 4 5 6

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

a

b

0 1 2 3 4 5 6
−

1
.0

−
0

.5
0

.0
0

.5
1

.0

a

b

0 1 2 3 4 5 6

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

a

b
0 1 2 3 4 5 6

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

a

b

1

2

3

4

5

Histogram of rnorm(10000)

rnorm(10000)

F
re

q
u

e
n

c
y

−4 −2 0 2 4

0
2

0
0

4
0

0
6

0
0

8
0

0

Figure: Some sample plots.

61 / 75

> a <- (1:50) / 50 * 2 * pi
> b <- sin(a)
> plot(a,b)
> plot(a,b,type="b")
> plot(a,b,type="b",col="red")
> plot(a,b,type="o",col="blue",pch=23)
> pie(1:5)
> hist(rnorm(10000),breaks=30)

For more options, see ?plot and ?plot.default. One may save the plot
into files.
> setEPS()
> postscript("a.eps")
> pie(1:5)
> dev.off()
null device

1
> bmp("a.bmp")
> pie(1:6)
> dev.off()
null device

1

62 / 75

Simple Optimization

R has a simple implementation of optimization function.

Example
Using R to find the minimizer of the following function

f(x1, x2, x3) = x2
1 + (x2 − 2)2 + (x3 + 2)2

f <- function(x) x[1]^2 + (x[2] - 2)^2 + (x[3] + 2)^2

Note
If the body of a function has only one sentence, the curly bracket {}
can be ignored.
Obviously the minimizer is (0, 2,−2). Knowing the true result helps
us to verify the program output.

63 / 75

optim(c(1,1,1), f, control = list(reltol = 1e-8))
below are the results:
$par
[1] 4.366903e-07 2.000140e+00 -2.000049e+00

$value
[1] 2.19478e-08

$counts
function gradient

186 NA

$convergence
[1] 0

$message
NULL

Note
The output item par is the minimizer obtained of
the function.
The output item value is the minimum value of f .
The output item counts gives the time that f is
called. Roughly speaking, the more times the
function is called, the longer the program takes to
run. Sine we have never provided the gradient
information, we have not called the gradient
function.
The output item convergence has value 0 if the
function has confidence that a local minimizer is
achieved. The value is not 0 if some potential
problems are detected.

64 / 75

Recall

f(x1, x2, x3) = x2
1 + (x2 − 2)2 + (x3 + 2)2.

We feed the optim function below, also with the gradient

∇f(x1, x2, x3) =

 ∂f/∂x1

∂f/∂x2

∂f/∂x3

 =

 2x1

2(x2 − 2)
2(x3 + 2)

 .

We define
gra.f <- function(x){
2 * c(x[1], x[2] - 2, x[3] + 2)

}

65 / 75

The updated optimization code is
optim(c(1,1,1), f, gr = gra.f, method = "CG", control = list(reltol = 1e-8))
below are the results:
$par
[1] 1.275786e-07 2.000000e+00 -2.000000e+00

$value
[1] 1.790392e-13

$counts
function gradient

15 7
$convergence
[1] 0
$message
NULL

We see that although we call the gradient function 7 times, the times we
call the function f is reduced, from 186, to 15. More importantly, the
precision is much better than the previous run.

66 / 75

Example
Use R to find the minimizer of the function

f(x) = −xe−x.

Note that you may use calculus to verify that the minimizer is x = 1
where f(1) = −e−1 = −0.3679.

67 / 75

68 / 75

Example (exercise, Maximum likelihood estimation, MLE)
Let x1, . . . , xn be drawn independently from Poisson(λ). If λ is
unknown, one may estimate λ by maximizing the log-likelihood function

ℓ(λ) = log
n∏

i=1

e−λλ
xi

xi!
=

n∑
i=1

{−λ+ xi logλ− log(xi!)}

Set λ and n, and generate data yourself. Then write a function mle to
minimize ℓ by the above R function optim. Compare your solution with
the analytical minimizer λ̂ = 1

n

∑
xi.

69 / 75

Integration, 1-dim
Note that for integration with more than 1 dimension, methods like
Monte-Carlo may be better.

Example
Use R to find the value of the integral∫ ∞

−∞
exp(−x2)dx.

Note that the true value of the integral is∫ ∞

−∞
exp(−x2)dx = 2

∫ ∞

0

exp(−x2)dx

y=x2

=

∫ ∞

0

y
1
2−1e−ydy = Γ

(
1

2

)
=

√
π = 1.77245385.

integrate(function(x) exp(-x^2), lower = -Inf, upper = Inf)
below are the results:
1.772454 with absolute error < 4.3e-06

70 / 75

Note
We see that the numerical integration is already very precise. We
skip the algorithm behind.
In R, one uses Inf to denote infinity ∞.
We see that in the above command we have used a function
function(x) exp(-x^2)

which is passed to the function integrate immediately after it is
generated. We did not even give it a name! This kind of function is
called anonymous function.

71 / 75

Example
Use R to evaluate the following function

Φ(x) :=
1√
2π

∫ x

−∞
exp

{
− t2

2

}
dt.

Note that this function is the cumulative distribution function of the
standard normal distribution N(0, 1). R has a high-performance
implementation of this function: pnorm. After writing your function, you
may compare it with pnorm.

72 / 75

Solving Nonlinear Equations

Numerically, R implements some algorithms to solve nonlinear equations,
e.g. Newton’s method. It is not therefore guaranteed that all the roots
can be found.
Example
Find the solution of the equation f(x) = 0 with

f(x) = ex + x.

73 / 75

install.packages("nleqslv") # install the package, just for the first time
library("nleqslv")
f <- function(x) exp(x) + x
nleqslv(1, f) # 1: initial guess

below are the results:
$x
[1] -0.5671433

$fvec
[1] 8.346891e-10

$termcd
[1] 1

$message
[1] "Function criterion near zero"

$scalex
[1] 1

$nfcnt
[1] 6

$njcnt
[1] 1

$iter
[1] 6

So the solution is x = −0.5671433.

74 / 75

Example (exercise)
Find the solution to the equation f(x) = 0 with

f(x) = x3 − x2 + x− 1.

In R, there is a function polyroot specially designed to find the roots of
polynomials. Let a = (a1, a2, . . . , an+1) ∈ Rn+1 be the coefficient vector
for the polynomial

p(x) = a1 + a2x+ a3x
2 + · · ·+ an+1x

n,

then we may use the command polyroot(a) to find ALL the roots of p.
For the above example,
> polyroot(c(-1,1,-1,1))
[1] 0+1i 0-1i 1+0i

We see that some complex roots are also found.

75 / 75

