DATA7001 - Introduction to Data Science
Basic R programming

Xin GUO

Email: xin.guo®ug.edu.au
Office: Priestley Building (67), Room 447
Office Hours: Tuesday 10-11 AM

1/75

R

R is a programming language. R also refers to
a free software environment for statistical
computing and visualization. It compiles and
runs on a wide variety of UNIX platforms,
Windows and MacOS. R was originally
designed for statistical computing, and now
people also use it to do numerical analysis. It is
stable, powerful, and widely used.

@ An interpreter-based programming, graphics and statistics package.
Free, stable, can be extended.
Can easily perform standard statistical and numerical analysis.
Can be programmed to handle non-standard cases.
For complex tasks, it is often used as a first step to interface with C
or FORTRAN.
@ Almost all new statistical methodologies are published with

ready-to-use packages built with R.

Figure: the R logo.

e 66 6 ¢

2/75

R is free in the sense of “free beer”, so that you can download it, run it,
and re-distribute it with no cost. R is free also in the sense of “free
speech”, so that you can modify it, and release your modified version
(called “fork™) of R (for minimizing confusion, R requires that if you
modify and release your version of R, you must use some different name).
R is usually used in the command-line mode, which already offers a lot of
features and freedom. However, there is a graphical user interface (GUI)
shell available for R, called RStudio, available for download at
https://www.rstudio.com.

3/75

https://www.rstudio.com

Launching R

® - 0 xin@xin-tc-M91p: ~
xin@xin-tc-M91p:~%$ R
R version 3.2.2 (2015-08-14) -- "Fire Safety"

Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: xB86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY .

You are welcome to redistribute it under certaln conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to gquit R.

> 1

The welcome message of R environment on Linux system.

4/75

If you launch RStudio, you get the following welcome message.

did nothing but just call R.

® - o Rstudio
File Edit Code View Plots Session

o) -
Console
R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2815 The R Foundation for Statistical Computing

Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY HO WARRANTY
You are welcome to redistribute it under certain conditions
Type 'license()' or 'licence()' for distribution details

Natural language support but running in an English locale
R is a collaborative project with many contributors
Type 'contributors()' fer more information and
'citation(3' on how to cite R or R packages in publications
Type 'demo¢)’' for some demos, 'help()' for on-line help, or
'help start()' for an HTML browser interface to help
Type 'qQ)' to quit R

Build Debug Tools Help

& project: (None) =

Environment History =0
£ [| 22 Import Dataset~ | & Clear | (& = Lis

7} Global Environment~

Files Plots Packages Help Viewer (]

| Export -

The welcome message of RStudio.

RStudio

5/75

Downloading and installing R

visit https://www.r-project.org/

@ R: The R Project for Stati« % | + - 8@ x

CRONC) O 8 hitpswww.r-project.org 14 ® =
The R Project for Statistical
Computing

[Home]
Gemng Started
Download
CRAN ting and graphics. It compiles
aruimnsonumvmmUNIXphiwms,wmamMzOS To download R,
A Proj please choose your preferred CRAN mirror.
ey " what
m‘m you send an email.
What's New?
Reportng Bugs News
Contferences.
Boarth « R version 4.1.2 (Bird Hippie) has been released on 2021-11-01.
Lists
a :;Iwotv-d the R
Developer Pages Consortium YouTube channel.
R Biog 3
member
R Foundation . N
Foloon News via Twitter
Board News from the R Foundation
Members
Donors
Donate
Help With R
Getting Help

6/75

A server closer to you may provide faster downloading.

R CRAN - Mirrors x [- o x

« > C QO 8 nhitpsi/icran.r-project.org/mirrors.htm! b

CRAN Mirrors

The Comprehensive R Archive Network is available at the following URLSs, please choose a location close to you. Some statistics
on the status of the mirrors can be found here: main page, windows release, windows old release.

If you want to host a new mirror at your institution, please have a look at the CRAN Mirror HOWTO.

0-Cloud
https://cloud.r-project.org/ Automatic redirecti(_)n to servers worldwide, currently
e g sponsored by Rstudio
Algeria
https://cran.usthb.dz/ University of Science and Technology Houari Boumediene
Argentina
http://mirror.fcaglp.unlp.edu.ar/CRAN/ Universidad Nacional de La Plata
Australia
https://cran.csiro.au/ CSIRO
https://mirror.aarnet.edu.au/pub/CRAN/ AARNET
. School of Mathematics and Statistics, University of
https://cran.ms.unimelb.edu.au/ Melbourne ty
https://cran.curtin.edu.au/ Curtin University
Austria
https://cran.wu.ac.at/ ‘Wirtschaftsuniversitat Wien
Belgium
https://www.freestatistics.org/cran/ Patrick Wessa
https://ftp.belnet.be/mirror/CRAN/ Belnet, the Belgian research and education network
Brazil
https://cran-r.c3slufprbr/ Universidade Federal do Parana
https://cran.fiocruz.br/ Oswaldo Cruz Foundation, Rio de Janeiro
https://vps.fmvz.usp.br/CRAN/ University of Sao Paulo, Sao Paulo
https://brieger.esalq.usp.br/CRAN/ University of Sao Paulo, Piracicaba

7/75

R The Comprehensive R A x

4

< 2 C QO & hitpsiicran csiro.au g

About R
R Homepage
The R Journal

Software
R Sources
R Binaries
Packages
Other

Documentation
Manuals
EAQs

Contributed

The Comprehensive R Archive Network

Download and Install R

Precumplled])mary dlstnbuuuns of the base system and contributed packages,
inde most likely want one of these versions of R:

ian, Fedora/Redhat, Ubuntu),

d butions, you should check with your Linux package
il addmon to the link above.

Source Code for all Platforms

\Windows and Mac users most likely want to download the precompiled binaries
listed in the upper box, not the source code. The sources have to be compiled
Ibefore you can use them. If you do not know what this means, you probably do
mnot want to do it!

« The latest release (2021-11-01, Bird Hippie) R-4.1.2.tar.gz, read what's new
in the latest version.

« Sources of R alpha and beta releases (daily snapshots, created only in time
periods before a planned release).

+ Daily snapshots of current patched and devel versions are availabl

here. Please read about new features and bug_fixes ﬂxes before filing
corresponding feature requests or bug reports.

« Source code of older versions of R is available here.

« Contributed extension packages

lQuestions About R

8/75

RStudio is an integrated development environment (IDE) for R, which is
optional and may provide some help. RStudio is available at
https://www.rstudio.com/

© RStudio | Open source & [% | + - o x
« > C O & hitps/hwwwrstudio.com < ® =
L DOWNLOAD SUPPORT DOCS COMMUNITY e
eStUdlo Products v Solutions v Customers Resources v About v Pricing
[J
Deliver the insights that your
stakeholders want with RStudio q
Connect .
S
]
d s

9/75

On the homepage of RStudio, scroll down to find the download link.

RStudio | Open source & | X | + - @ x
<« [¢] QO 8 nt w =
[]
RStudio Workbench RStudio Connect RStudio Package Manager
Take control of your R and Python Easily share your insights Control and distribute packages
code
Share data products across your Control, organize, and govern your use of R
An integrated development environment organization. One button deployment of packages to increase reproducibility and
for R and Python, with a console, syntax- Shiny applications, R Markdown reports, decrease the time you spend installing and
highlighting editor that supports direct Jupyter Notebooks, and more. troubleshooting.

code execution, and tools for plotting,
history, debugging and workspace

management.

DOWNLOAD FREE DESKTOP IDE D LEARN MORE ABOUT OUR PROFESSIONAL SOLUTIONS

What Makes RStudio Different

10/75

You may explore the "RStudio Server” but the basic “RStudio Desktop”

is good enough.

o+
B %

‘ ® Download the RStudio IDf x
anasnaring aata proaucts.

O & hitps:/www.rstudio.com/products/rstudio/download/

& = @

I LEARN MORE ABOUT THE RSTUDIO IDE
Learn more about RStudio Team

RStudio

RStudio Server
Workbenche

RStudio Desktop

RStudio Desktop
Pro Open Source License

Commercial License

Free Commercial License Free
$995 $4,975

Jyear
(5 Named Users)

Evaluation | Learn more

Open Source License

Jyear

DOWNLOAD

£arn moj Learn more Learn more

Integrated Tools for R v v v v
Priority Support v v
v v

Access via Web Browser

11/75

Select the package that matches your operating system.

| © Download the RStutio D" x| +

« > C O 8 hiips/iwww.rstudio.

tudio/download/download

B

Linux users may need to import RStudio's public code-signing key prior to installation, depending on the operating

system's security policy.

RStudio requires a 64-bit operating system. If you are on a 32 bit system, you can use an older version of RStudio.

0s

Windows 10

mac0S 10.14+
Ubuntu 18/Debian 10
Fedora 19/Red Hat 7
Fedora 28/Red Hat 8
Debian 9

OpenSUSE 15

Zip/Tarballs

Download

&, RStudio-2021.09.2-382.exe

& RStudio-2021.09.2-382.dmg

&, rstudio-2021.09.2-382-amd64.deb

&, rstudio-2021.09.2-382-x86_64.rpm

&, rstudio-2021.09.2-382-x86_64.rpm

& rstudio-2021.09.2-382-amd64.deb

&, rstudio-2021.09.2-382-x86_64.rpm

Size

156.89 MB

20409 MB

11715 M8

13382 MB

13385 MB

11743M8

11868 MB

SHA-256

7f957beb

ae18a925

3ddss23

al19ef21

ce832b22

2c9c4af3

6206848

12/75

Some simple commands

@ You can directly type commands at the prompt:

>2+3
[1] 5
> 5 * pi
[1] 15.70796
> rnorm(20)
[1] -0.57442492 1.68545014 -0.01613824 -0.14110880 0.59271169
[6] ©0.08165454 0.16220551 -0.53236657 -0.11977163 0.56726110
[11] -0.19887324 -0.77690512 -1.10581382 -0.70444775 -0.03470233
[16] -0.92088930 -2.95547369 0.22873348 -0.30088267 -0.27960355

@ If you hit enter before completely entering a command, you will get
a + prompt. You must complete the command or type CTR+C (Esc in
MSW) to continue.

>3 +
+5
[1] 8

o All arithmetic operations are represented via standard symbols (+ -

* /) and have the usual order of precedence.
>3+ 4 *2

[1] 11

> sin(pi / 6)

[1] 0.5

> exp(log(2) + log(3))

[1] 6

> atan(Inf)/pi

[1] 0.5

13/75

Vectors

@ R has six common types of atomic vectors: integer, double, logical,

character, complex, and raw’.

>a«<-c(1, 3,5,7,9) >y <- c("hello", "world", "!")
>a > typeof(y)
[1113579 [1] "character"
> typeof(a) > length(y)
[1] "double" [1] 3
> length(a) > nchar(y)
[1] 5 [1] 551
>b <- 1:5 >z <- 3+ 51
> typeof(b) > typeof(z)
[1] "integer" [1] "complex"
> X <- (a >=5) > z72
> x [1] -16+301
[1] FALSE FALSE TRUE TRUE TRUE > sin(z)
> typeof(x) [1] 10.47251-73.460621
[1] "logical" > exp(z)
> x[2] [1] 5.69751-19.260511
[1] FALSE
@ In each vector, all the elements must have the same atomic data
type.

LIn this course we will not expand complex and raw.
14/75

List

List is a data structure like vector, but can have components of mixed
data types.

> a <- list(1:4, sin, "hello", TRUE, 1+31)
> a[[1]]

[11 1234

> a[[2]1(pi/6)

[1] ©.5

> a[[3]]

[1] "hello"

> a[[4]]

[1] TRUE

> Arg(a[[51])

[1] 1.249046

> Arg(a[[5]]) -> e

> Mod(a[[5]]) -> r

>r * (cos(e) + 11 * sin(e))
[1] 1431

> names(a) <- letters[1:5]
> a$a

[1]1234

> asb

function (x) .Primitive("sin")
> asc

[1] "hello"

15/75

Reading documentation

Documentation is important for learning R. Type ?1log, or ?"log", for
example, to see the help page of the function log. Why quoting?
Because sometimes we need the help page of operators. Try 2"+" and ?+
separately. Press q to quit the help page.

® - o xin@xin-tc-M91p: ~
log package :base R Documentation
Logarithns and Exponentials
Description:

log’ conputes logariths, by default natural logarithas, +loglo

conputes conmon (1.e., base 10) logarithms, and ‘log2’ computes

binary (i.e., base 2) logar)thms The general form ‘log(x, base:

conputes logarithms with base ‘base’

“loglp(x)’ computes log(1+x) accurately also for |x| << 1

‘exp’ computes the exponential function.

‘expm1(x)’ computes exp(x) - 1 accurately also for |x| << 1
Usage

log(x, base = exp(1))

lodb(x, base = exp(1))

10g10(x;

Tog2(x)

oglp(x)

exp(x)
expn(x)

Arqunents
x: a numeric or complex vector.

pase: positive or complex number: the base with respect to which
" Tlogarithns are computed. Defaults to e=‘exp(1

Help page of the logarithm functions.

16/75

Save your commands in a file

o Each R session works under a directory (“folder”). To see the
current working directory, type the following command

> getwd()
[1] "/home/xin/Downloads"

@ To change the current working directory, use the function “setwd”.

> setwd("/home/xin/Documents")
> getwd()
[1] "/home/xin/Documents"

o For example, one can make a file “a.R" (different filename
extensions are OK, for example you can use the text file “a.txt")
under the working directory. Save the following code to the file a.R.
print("hello, world")

@ Then in the R session, “source” it.

> source("a.R")
[1] "hello, world"

17/75

Loops

@ The following for loop is used to find e = 2.71828 - - - = Z?io %

There are two key words: for and in.
a<-0
for(i in 0:18){

a <- a + 1/factorial(i)

}
#it#t below are the results:

> a
[1] 2.718282
> 0:18
[1] © 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18
> typeof(0:18)
[1] "integer"

One more example:
for(i in c("Brisbane", "New York")){

print(paste("I love", 1))

below are the results:
[1] "I love Brisbane"
[1] "I love New York"

18/75

@ R also provides the while loop
a<-0
while(a < 4){
a<-a+1
print(a)

below are the results:
[1] 1
[1] 2
[1] 3
[1] 4

@ The keyword “break” is used to break from a loop. Save the

following code to “a.R".
a<-0
repeat{

a<-a+1

if(a > 4) break

print(a)

In the R session,

> source("a.R")
[1] 1
[1] 2
[1] 3
[1] 4

Note that, for practicing programming, the best way is to program,
especially on some problems well motivated.

19/75

Use the for loop to find

If you get the answer 5050, your code is probably correct.

20/75

Recall the definition of the Fibonacci numbers: a; = as = 1 and for any
>3,

a; = Q;—1 + aj—2.

Find the first 100 Fibonacci numbers.

21/75

Vectors (mathematical concept)

An array of n real numbers x1,...,x, is called a vector, and it is
written as
T
X2 ,
x = o oor & =[x, @0, 2.
T

@ Here the prime denotes the operation of transposing a column to a
row.

@ The number n is referred to as the dimension of the vector .

@ The coordinates x1,...,x, can also be complex numbers, in which
case x is a complex vector. However in this course we consider
ONLY real numbers and real vectors.

22/75

@ The set of all the real vectors of dimension n, is denoted by R".

@ One can scale a vector by multiplying it by a constant c.

@ Vectors can be added.

T+y=

x
1)

In

T1
Z2

Tn

Y1
Y2

Yn

CcI

CX1
CXo

cxy,
1+ Y1

To + Y2

Tn + Yn

23/75

@ inner product: if vectors « and y have the same dimension n,

Z TilYi = 'ya

@ length, or norm:

[l || ::m:\/ﬁ"‘x%-ﬁ-'“—&-x%.

@ For any constant c,

(cx,y) = c(x,y);
leall = /e, ca) = /e (@, @) = lel/ (@ @) = |ell@].

o triangle inequality: (proof left as a warming up exercise)

l +yl <[zl + llyl-

24/75

Basic linear algebra with R

There are several ways to generate a vector in R.

> a <- 1:5

> a

[1112345

>b <- 5:1

>b

[1]154321

> x <- seq(1, 5, length = 10)

> X

[1] 1.000000 1.444444 1.888889 2.333333 2.777778 3.222222 3.666667
[8] 4.111111 4.555556 5.000000

> runif(5)

[1] 0.1664853 0.6454725 0.3244731 0.4217759 0.3419001
> rep(1, times = 5)

[1]11111

> rep(1:5, each = 3)
[11111222333444555

> rep(1:5, times = 3)
[1]123451234512345

> rep(1:5, length = 14)
[1]12345123451234

25/75

We may take a look at the properties of a vector

> X <- 1:5

> length(x)

[1] 5

> typeof(x)

[1] "integer"

> str(x)

int [1:5] 12345

> object.size(x)

80 bytes

> object.size(1:10000)

40048 bytes

> object.size(1:100000)

400048 bytes

> object.size(1:1000000)

4000048 bytes

> object.size(as.double(1:10000))
80048 bytes

>

>y <- seq(1, 5, len = 10000)

> head(y)

[1] 1.0000 1.0004 1.0008 1.0012 1.0016 1.0020
> tail(y)

[1] 4.9980 4.9984 4.9988 4.9992 4.9996 5.0000
> length(y)

[1] 10000

> typeof(y)

[1] "double"

> object.size(y)

80048 bytes

26/75

By default, R takes vectors as
column matrices, so a transpose of a
vector is a row matrix.

> a
[1112345
> t(a)
[,11 [,2] [,3]1 [,4] [,5]
[1,] 1 2 3 4 5
> a <- 1:5
> t(a) # THE TRANSPOSE OF a
[,11 [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5

> t(t(a))

[,1]
[1,] 1
[2,] 2
[3,] 3
(4,1 4
(51 5

However, vectors do not have the
“dimension” attribute, and only
matrices have.

> dim(a)

NULL

> dim(t(a))
[1115

> dim(t(t(a)))
[1] 51

> attributes(t(a))
$dim
[1] 15

> attributes(a)
NULL

27/75

R does not have handy functions for inner product or vector norms. These
operations are usually implemented through functions sum and sqrt.

> a <- 1:5

>a*2

[1] 2 4 6 810
>a N2

[1] 1 4 9 16 25
>2"a

[1] 2 4 8 16 32

> a + rep(10, length
[1] 11 12 13 14 15

> b <- rep(1, length
>b

[1]11111

> sum(a * b) # INNER
[1] 15

> sqrt(sum(b ~ 2)) #
[1] 2.236068

= 5)

= 5)

PRODUCT

VECTOR NORM

> sqrt(sum((-2 * b) ~ 2))

[1] 4.472136

> 2 * sqrt(sum(b ~ 2))

[1] 4.472136

28/75

Matrix

e Matrix A, of dimension m X n, is just a table of (real) numbers.

Al,l A1,2 o Al,n

A2,1 A2,2 te AQ,n
A= . . . :

Am,l Am,2 e Am,n

e A;; is called the (i, j)-entry of the matrix A.
o Transpose: A’ is a n X m matrix, defined by

Aiqn Asq - Apa
A/ A1,2 A2,2 o AnL,Q
Al,n A2,n e Am,n
12 transpose | 1 3 5
Example: 3 4 =
5 6 2 4 6

29/75

Write R™*™ the space of all the n x m matrices.

Matrix addition: A = A,,«n, B = Byxn, then A+ Bisan m xn
matrix with (A + B); ; = A, j + B; ;. Matrix A — B is similarly
defined.

Matrix multiplication: A = A, xyn, B = Bpxp, then ABisam xp
matrix with

(AB)ij = AixBr;
k=1

Hadamard product: A, B € R™*", (Ao B); ; = A, ;B ;.

Let ¢ be a constant, then cA is an m x n matrix with
(CA)@]' = CAZ'J'.

Let A = A,,xn, be a matrix and x = z,,«1 be a vector, then Ax is
an m x 1 vector with (AI)l = Ai71],‘1 + Ai)gxg + -+ Ai,n$n~

30/75

Examples

a b O[ﬂ . a+ « b+ﬁ X
el Sl A e
a b a B _[ax b8 x
|:c d]o{v 5}_[0’}/ d(S}GR?Q,

a b c @ | aa+ b8 +cy
[d . f}[g]_{da—i—eﬂﬁ-f’Y]ER?v
[aa+b’y af + bd

catdy cB+ds | €RP2
ea+ fy ef+ fo

31/75

In R, generating a matrix is easy. Note that R is “column-major”, i.e.,
when we feed a vector into a matrix, elements of the vector are fed into
the matrix one column after another.

Row-major order
e.g., C, C++, Python

i ai | A1—Qo—pa3
a9 —p | G —A5p06
as aF—ag—»dg
Qg
as Column-major order
Qe e.g., R, Julia, MATLAB
ar ay @4 Gg
as | ay /a5 Jas
| Q9 as Qg Qg

32/75

> a <- matrix(1:6, nrow = 3)
> b <- matrix((1:6) * 100, ncol = 2)

>3
[,1] [,2]
[1,] 1 4
[2,] 2 s
3,1 3 6

>b
[,1]1 [,2]

[1,] 100 400

[2,] 200 500

[3,] 300 600

> a + b # matrix addition
[,1]1 [,2]

[1,] 101 404

[2,] 202 505

[3,] 303 606

> a * b # Hadamard product
[,1] [,2]

[1,] 100 1600

[2,] 400 2500

[3,] 900 3600

> x <- c(7, 8)

> X

[1]17 8

> a %*% x # matrix-vector product
[,1]

[1,] 39
[2,] 54
[3,] 69

> b[1:2,] # a submatrix
[,1] [,2]

,] 100 400

,]1 200 500

a %*% b[1:2,] # matrix-matrix product
[,1]1 [,2]

[1,] 900 2400

[2,] 1200 3300

[3,] 1500 4200

[1
[2
>

> a
[,1]1 [,2]

[1,] 1 4

[2,] 2 s

[3.] 3 6

> a + 10 # adding a scalar to a matrix
[,1]1 [,2]

[1,] 11 14

[2,] 12 15

[3,] 13 16
> a * 10 # multiplying a matrix by a scalar

[,1] [,2]
1,] 10 40
[2,] 20 50
[3,] 30 60

33/75

For linear equation systems where the coefficient matrix is a square

matrix of full rank,

Avq A1,2 Al,n T n
Az Az,z Az,n T2 2
T Yn

/47%1 f47u2 e /1n,n
\@wy

the solution is & = A~ 'y, where A~! denotes the matrix inverse of A
Then A='A = AA~! = I, which is the identity matrix.

34/75

Finding matrix inverse, and solving linear equations are easy in R.

> A <- matrix(c(1,2,3,6,5,4,8,7,9), nrow = 3)

> A
[,1] [,2] [,3]
B’} ; g g > solve(A)
3.0 3 4 9 [,1] [,2] [,3]
> % <= €(2,3,5) [1,] -0.8095238 1.0476190 -0.0952381
> x > [2,] -0.1428571 0.7142857 -0.4285714
[1] 235 [3,] 0.3333333 -0.6666667 ©0.3333333
>y <- A %%% x > A %*% solve(A)
i [.1] [.2] [,3]
[,1] [1,] 1.000000e+00 0.000000e+00 4.440892e-16
[1,] ’60 [2,] 1.665335e-16 1.000000e+00 1.665335e-16
[2,] 54 [3,] -1.665335e-16 3.330669e-16 1.000000e+00
[3.] 63 > solve(A) %*% y # method 2, slower
> solve(A, y) # method 1 [1,] [’1%
[,1] 2. 5
El’} 2 [3,] 5
2, 3 s
[3,] 5 > solve(A) %*% y - x

[,1]
[1,] -1.332268e-15
[2,] 1.332268e-15
[3,] 8.881784e-16

> solve(A, y) - x # numerical errors
[,1]

[1,] 1.776357e-15

[2,] 4.440892e-16

[3,] -8.881784e-16

> 107(-15)

[1] 1le-15

35/75

The following example (demonstrated via the Julia language) shows the
limit on precision of double. This is also an example that in general,
floating-point addition and multiplication are not associative (i.e. one
may havea+b+c#a+ (b+c¢) andaxbxc#ax (bxc))

julia> eps(1.0)
2.220446049250313e-16

julia> eps(1.0) / 2 + 1.0 - 1.0
0.0

julia> eps(1.0) / 2 + (1.0 - 1.0)
1.1102230246251565e-16

julia> bitstring(1.0 + eps(1.0))
"0011111111110001"

julia> bitstring(1.0 + eps(1.0)/2)
"001111111111 0000000 0000000 0000000 "

julia> bitstring(1.0)
"001111111111 "

36/75

There are some other matrix operations.

> a <- matrix(1:9, nrow = 3) > b <- matrix(1:6, nrow = 2)
> a >b

[,11 [,2] [,3] [,11 [,2] [,3]
[1,] 1 4 7 [1,] 1 3 5
[2,] 2 5 8 [2,1] 2 4 6
[3,1 3 6 9 > apply(b, 1, sum)
> cbind(1, a, t(a)) [1] 9 12

[,11 [,2] [,3] [,4] [,5] [.6] [,7] > apply(b, 2, prod)
[1,] 1 1 4 7 1 2 3 [1] 2 12 30
[2,] 1 2 5 8 4 5 6 > sum(1:100)
[3,1 1 3 6 9 7 8 9 [1] 5050
> rbind(sqrt(1:3), a) > prod(1:4)

[,1] [,2] [,3] [1] 24

[1,] 1 1.414214 1.732051
[2,] 1 4.000000 7.000000
[3,1] 2 5.000000 8.000000
[4,] 3 6.000000 9.000000

37/75

Example (exercise, Fibonacci sequence, revisited)

Recall the Fibonacci sequence {a, }52 ; defined by a; = az = 1 and then
iteratively by a,12 = an+1 + a, for any integer n > 1. The iterative
relation could be written in the vector form as

An+2 . 1 1 Ap41
][] e

Use the above form to find a3g. Do you have a faster way to compute

030?

38/75

Vectors and Indexing

A vector is an 1-dim array of data of the same basic data types. These
basic data types include: integer, double, logical, character, complex
(complex numbers), etc.

> a <- seq(0, 1, by = 0.1)

> a

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> seq(@, 1, len = 5)

[1] 0.00 0.25 0.50 0.75 1.00

> names(a) <- paste@("the", 1:11)

> a

thel the2 the3 the4 the5 the6 the7 the8 the9 theld thell
6.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> typeof(a)

[1] "double"

> str(a)

Named num [1:11] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...

- attr(*, "names")= chr [1:11] "thel" "the2" "the3" "the4" ...

> a["the3"]

the3

0.2

> a[3]

the3

0.2

> a[-3]

thel the2 the4 the5 the6 the7 the8 the9 thel0® thell
0.0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

39/75

The components of a vector could be retrieved by number indexes, logical
indexes, and names. We can even change the vector values in this way.

> a <- seq(0, 1, by = 0.1)
> names(a) <- paste0("the",1:11)
> a[7]
the7
0.6
> af1] <- 8
> a>0.8
thel the2 the3 the4 the5 the6 the7 the8 the9 theld thell
TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
> a[a>0.8] <- 12
> a
thel the2 the3 the4 the5 the6 the7 the8 the9 thel® thell
12.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 12.0 12.0
> a[a>0.8] <- 1:2
Warning message:
In afa > 0.8] <- 1:2 :
number of items to replace is not a multiple of replacement length
> a
thel the2 the3 the4 the5 the6 the7 the8 the9 theld thell
1.6 0.1 0.2 6.3 0.4 0.5 0.6 0.7 0.8 2.0 1.0
> a[a>0.8] <- 1:5
Warning message:
In afa > 0.8] <- 1:5 :
number of items to replace is not a multiple of replacement length
> a
thel the2 the3 the4 the5 the6 the7 the8 the9 thel0 thell
1.6 0.1 0.2 6.3 0.4 0.5 0.6 0.7 0.8 2.0 3.0

40/75

We now try number indexes

>a<- 4:9
> names(a) <- paste@("ID", 1:6)
> a
ID1 ID2 ID3 ID4 ID5 ID6
4 5 6 7 8 9
> a[-1]
ID2 ID3 ID4 ID5 ID6
5 6 7 8 9
> a[1]
D1

4

> a[-(3:5)]

ID1 ID2 ID6
4 5 9

41/75

We now try logical indexes

> a <- c("Tom", "John", "Xin", "Kosaku", "Rukawa")

> b <- c("Kosaku", "Xin", "Rukawa", "Barack", "Vladimir")
> afa %in% b]

[1] "Xin" "Kosaku" "Rukawa"

> a %in% b

[1] FALSE FALSE TRUE TRUE TRUE

> b[b %in% a]

[1] "Kosaku" "Xin" "Rukawa"

> b[!(b %in% a)]

[1] "Barack" "Vladimir"

> ?setdiff

> union(a,b)

[1] "Tom" "John" "Xin" "Kosaku" "Rukawa" "Barack" "Vladimir"
> intersect(a,b)

[1] "Xin" "Kosaku" "Rukawa"

We now try name indexes

> scores <- runif(5)
> names(scores) <- c("Tom", "John", "Xin", "Kosaku", "Rukawa")
> scores

Tom John Xin Kosaku Rukawa
0.28629591 0.31875371 0.03418924 0.51401365 0.49811182
> names(scores)[scores > 0.5]

[1] "Kosaku"
> names(sort(scores, decreasing=T))
[1] "Kosaku" "Rukawa" "John" "Tom" "Xin"

42/75

Use the following code to generate a score table for 100 students. Now
the president plans to locate the best two students. Write code to find
their names.

> set.seed(123)

> scores <- runif(100)

> names(scores) <- paste@("student", 1:100)

> head(scores)

studentl student2 student3 student4 student5 student6
0.2875775 0.7883051 0.4089769 0.8830174 0.9404673 0.0455565

43/75

Use the following code to generate a sequence {x,, }.% . Define

100

Yn = :E:: L.

k=1,k#n

R H 100
Write your code to find the vector (yy,) -
> set.seed(123)
> X <- runif(100)
> head(x)
[1] ©.2875775 0.7883051 0.4089769 0.8830174 0.9404673 0.0455565

44 /75

Matrix indexing is similar

> a <- 1:5 %*% t(2:6)
> a

[,11 [,2] [,3] [,41 [,5]
[1,] 2 3 4 5 6

[2,] 4 6 8 10 12
[3,] 6 9 12 15 18
[4,] 8 12 16 20 24
[5,1 10 15 20 25 30
> rownames(a) <- paste@("Rw", 1:5)
> colnames(a) <- paste@("Cl", 1:5)
> a
Cl1 Cl2 C13 Cl4 Cl5
Rwl 2 3 4 5 6
Rw2 4 6 8 10 12
Rw3 6 9 12 15 18
Rw4 8 12 16 20 24
Rw5 10 15 20 25 30
> a[Rw3, Cl4]
Error: object 'Rw3' not found
> a["Rw3", "Cl4"]
[1] 15
> a["Rw3", 2:4]
Cl2 C13 Ccl4
9 12 15

Example

Use the following code to simulate the score
table of a class. Find the average score of
math, with top 2 and bottom 2 scores
removed. Find the math score of the
student with highest chem score.
set.seed(123)

sc <- matrix(runif(75), nrow = 25)

rownames(sc) <- paste0("Student", 1:25)

>
>
>
> colnames(sc) <- c("bio", "math", "chem")

45/75

Reading data from files, and writing data to files

We explain the usage of the functions “read.table” and “write.table".

> set.seed(123)

> a <- matrix(runif(20), nrow

> a
[,1]
[1,

—

[,2]

0.2875775 0.0455565 0.
[2,] 0.7883051 0.5281055 0.
[3,] 0.4089769 0.8924190 0.
[4,] 0.8830174 0.5514350 0.
[5,] 0.9404673 0.4566147 0.
> write.table(a, file = "a.

> b <- read.table("a.txt",

>b - a

Vi
1 -2.220446e-16
2 3.330669e-16
3 1.110223e-16
4 -4.440892e-16
5 -3.330669e-16

= 5)

[,3] [,4]
9568333 0.89982497
4533342 0.24608773
6775706 0.04205953
5726334 0.32792072

1029247 0.95450365
txt", col.names

won

sep = ",")

V2

4.163336e-17
2.220446e-16
-1.110223e-16
2.220446e-16
3.330669%e-16

NN DR AR

V3
.110223e-16
.996004e-16
.440892e-16
.220446e-16
.775558e-16

FALSE, row.names

va
4.440892e-16
8.326673e-17
-3.469447e-17
3.885781e-16
-4.440892e-16

atxt (~) - GVIM3

= FALSE, sep = ",")

File Edit Tools Syntax Buffers Window Help

s&ae

B¢
[8.287577520124614,0.0455564993899316,0.956833345349878 ,0. 899824970401824
0.788305135443807,0.528105488047004,0.453334156190977,0.24608773435466
0.4089769218117,0.892419044394046,0.677570635452867,0.0420595335308462
0.883017404004931,0.551435014465824,0.572633401956409,0.327920719282702
0.940467284293845,0.456614735303447,0.102924682665616,0.954503649147227

B@H %0y

]

1,1

ALl

46/75

One may directly store R objects to files.

> set.seed(123)

> a <- matrix(runif(20), nrow = 5)
> save(a, file = "a.RData")
>b<-a

> rm(a)

>

a
Error: object 'a' not found
> load("a.RData")
> a
[,1] [,2] [,3] [,4]

1 0.2875775 0.0455565 0.9568333 0.89982497
[2,] 0.7883051 0.5281055 0.4533342 0.24608773
[3,] 0.4089769 0.8924190 0.6775706 0.04205953
[4,] ©0.8830174 0.5514350 0.5726334 0.32792072
[5,] 0.9404673 0.4566147 0.1029247 0.95450365

>b - a

[,1]1 [,2] [,3] [.4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,1 0 0 0 0
[4,] 0 0 0 0
[5,1 0 0 0 0

47/75

Sometimes, to store a data spreadsheet that contains strings, we use the
in R. It is stored as a list equipped with the data
frame structure. We will come back to the dataset "iris” later.

data type “data frame”

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.1

AN h WNE
LI
OG\\I\D

5.4

> is.data.frame(iris)

[1] TRUE

> as.matrix(head(iris))

Sepal.Length

3.

wWwwww
VO oORr N

5

Sepal.Width

"3.
"3.
"3.
"3.
.6"

"3
"3,

5"

9"

as.matrix(head(iris)[,

Sepal.Length Sepal.Width

1"5.1

2 "4.9"

3 "4.7"

4 "4.6"
5"5.0"

6 "5.4"

>

1 5.1
2 4.9
3 4.7
4 4.6
5 5.0
6 5.4
> typeof(iris)

[1] "list"

3.

wWwwww

LaRrNO WL

1.

I

NhUwhp

Petal.Length

"1.4"
"1.4"
ny3n
"1.5"
"y gn
"1.7"

1:4])

Petal.Length

1.

R RRRR

\l-bl.nw-b-l}

0.

[elcNooNo)

A NNNNN

Petal.Width

"0.
"0.
"0.
"0.
"0.
"0.

2
2
2
2
2
4

Petal.Width

0.

[elicNoNoNol

-bNNNNN

Species
setosa
setosa
setosa
setosa
setosa
setosa

Species

"setosa"
"setosa"
"setosa"
"setosa"
"setosa"
"setosa"

48/75

Functions

@ A function is a fixed sequence of code that takes arguments, and

returns output. The following function adds two numbers up.

add <- function(x, y){
return(x +vy)

}
###t we call the function:

> add(2,3)
[1] 5

@ The keyword return terminates the program flow and returns
immediately the value of the formula. If a function has no return

command, the value of the last formula will be returned.
add1l <- function(x, y){
X +y

###t we call the function:
> add1(2,3)
[1] 5

49/75

Example (Fibonacci sequence, revisited)

The Fibonacci sequence fi, fo,. .. is defined by f; =1, fo =1, and for
any k >3, fr = fr—1+ fr—2.

1,1, 2 3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, - -

Make a function which takes argument & and returns fr. Note that in
the code below, we also used the if-else statement.

4
fibo <- function(k){ ### below are the results:
if(k <= 2){ > fibo(10)
return(1) [1] 55
} else {

return(fibo(k-1) + fibo(k-2))
1}

Note that the above function fibo calls itself! This is called recursion.
On the one hand, each call of the function would generate a lot of
memory overhead, the efficiency of the program is reduced; on the other
hand however, this speeds up programming and saves the programmer's
time.

50/75

Discrete probability distributions

We use binomial distributions as an example. Recall that for any positive
integer n and real number 0 < p < 1, a random variable X has the
binomial distribution Binomial(n, p) if

Prob(X = k) = (Z)pk(l —p)" k. forany X =0,1,...,n.

Here (}) := #Lk), The function f,, (k) = (})p"(1 — p)"~* of k, is
called the probability function (or probability mass function, PMF). In R,
fn,p is implemented as

fn.p(k) = dbinom(x =k, size =n, prob =p)

Here, the placeholders x, size, and prob are called formal parameters.
When k ¢ {0,1,...,n}, one simply takes f, ,(k) = 0.

51/75

Binomial package:stats R Documentation
The Binomial Distribution
Description:
Density, distribution function, quantile function and random
generation for the binomial distribution with parameters ‘size’

and ‘prob’.

This is conventionally interpreted as the number of ‘successes’ in
‘size’ trials.

Usage:
dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
gbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)
Arguments:
X, q: vector of quantiles.

p: vector of probabilities.

n: number of observations. If ‘length(n) > 1’, the length is
taken to be the number required.

size: number of trials (zero or more).

prob: probability of success on each trial.

52/75

x <- seq(-1, 4, by = 0.1)
y <- dbinom(x = x, size = 3, prob = 0.4)
plot(x, y)

°
<
15
«
© o
> o
N
S
<
o
o
S -+ 0000000000 000000000 COCOOC000 GOOCO0000 0000000000
T T T T T T
-1 0 1 2 3 4
x

53/75

The distribution function (also
called the cumulative
distribution function, CDF) is
defined for all x € R,

Fop(@) =Y fap(k).

k<zx

Therefore CDF F for any
probability distribution is
non-decreasing, and

lim F(z) =1
T—00

lim F(z)=0
r—r—00

The quantile @,, ,(&) for
0 < £ < 1 is defined as the

smallest value Q = Q, (&) such
that F, ,(Q) > £. Here we skip

the discussion.

x <- seq(-1, 4, by = 0.1)
y <- pbinom(q = x, size = 3, prob = 0.4)
plot(x, y)

1.0

— 00000000000

0000000000

0.8
I

0000000000

0.6
I

0000000000

0.2

0.0

~ 0000000000
T T T T T T
-1 0 1 2 3 4

54 /75

The function rbinom generates random numbers from a specified

binomial distribution.

> set.seed(123)
> rbinom(n = 10, size = 3, prob = 0.4)
[1112123061211
> x <- rbinom(n = 100000, size = 3, prob = 0.4)
> table(x)
X
0 1 2 3
21659 43256 28703 6382
> table(x) / length(x)
X
0 1 2 3
0.21659 0.43256 0.28703 0.06382
> dbinom(x = 0:3, size = 3, prob = 0.4)
[1] 0.216 0.432 0.288 0.064

55/75

Continuous probability distributions

We use normal distributions as an example. Recall that for any real
number p € R, and any positive variance 02 > 0, a random variable X
has the normal distribution N (u,0?) if

T t—)
Prob(X < z) =/ ”exp{—(20’5) }dt.
— 00 ™o

The density function for —oco < z < 00

is implemented in R as

Juo2(x) = dnorm(x =z, mean =y, sd =0)

56 /75

The CDF for —co < 2 < 00

1 (t —p)?
P‘ (72 / f# 0.2 dt / % exp {_M dt

is implemented in R as
F,, »2(x) = pnorm(q =z, mean =, sd =o)

The quantile Q,, ,2(z) = F ', (x) for 0 < 2 < 1 is the inverse function

v o?
of F, 52, and is implemented in R as

Qu02(x) = qnorm(p =z, mean =y, sd =o)

For a comprehensive list of probability distributions (discrete and
continuous) implemented in R, see
https://CRAN.R-project.org/view=Distributions.

57/75

The function rnorm generates random numbers from a specified normal
distribution.

> set.seed(123)

> a <- rnorm(n = 10000) # N(0,1) by default

> head(a) # get the first several (default=6) elements

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
> tail(a) # get the last several (default=6) elements

[1] -0.5896389 -1.0247840 -0.3671164 -0.7574729 1.0793289 -0.6449242

> hist(a, breaks = 30)

Histogram of a

600
I

Frequency

58/75

set.seed(123)

a <- rnorm(n = 10000) # N(0,1) by default
hist(a, breaks = 30, freq = FALSE)

x <- seq(-5, 5, length = 500)

lines(x, dnorm(x), lwd = 2, col = "red")

Histogram of a

0.4

7 Y

Density
0.2

0.1

0.0

59/75

Example (exercise)

In theory, Q,, ,2(F}, »2(x)) = x for any real number 2. However, the
output of the R command

qnorm(p = pnorm(q = 10))

is Inf (infinity, co). Please try the command yourself, explain the output,
and find a fix.)

60/75

Plotting

plot is a generic function to plot variables. The default use is plot(x,
y) which plots a vector y against another vector x provided they have the

same length.

AAAAA

N

Figure: Some sample plots.

61/75

a <- (1:50) / 50 * 2 * pi

b <- sin(a)

plot(a,b)

plot(a,b,type="b")
plot(a,b,type="b",col="red")
plot(a,b,type="0",col="blue",pch=23)
pie(1:5)
hist(rnorm(10000),breaks=30)

VVVVVVVYV

For more options, see ?plot and ?plot.default. One may save the plot
into files.

setEPS()
postscript("a.eps")
pie(1:5)
dev.off()
null device

1
> bmp("a.bmp")
> pie(1:6)
> dev.off()
null device
1

>
>
>
>

62/75

Simple Optimization

R has a simple implementation of optimization function.

Using R to find the minimizer of the following function

f(JIl,l‘Q,ZIIg) = Zl?% aF (1‘2 — 2)2 = (133 T 2)2

f <- function(x) x[1]72 + (x[2] - 2)72 + (x[3] + 2)”2

Note

o If the body of a function has only one sentence, the curly bracket {3}
can be ignored.

@ Obviously the minimizer is (0,2, —2). Knowing the true result helps
us to verify the program output.

63/75

optim(c(1,1,1), f, control = list(reltol = 1le-8))
below are the results:

$par

[1] 4.366903e-07 2.000140e+00 -2.000049e+00

Svalue Note
[1] 2.19478e-08

@ The output item par is the minimizer obtained of

Scounts .
function gradient the function.

186 NA @ The output item value is the minimum value of f.
$convergence @ The output item counts gives the time that f is
(1o called. Roughly speaking, the more times the
zﬂiisage function is called, the longer the program takes to

run. Sine we have never provided the gradient
information, we have not called the gradient
function.

@ The output item convergence has value 0 if the
function has confidence that a local minimizer is
achieved. The value is not 0 if some potential
problems are detected.

64/75

Recall
f(x1,20,23) = 22 + (22 — 2)% + (23 + 2)°.

We feed the optim function below, also with the gradient

6f/8$1 2$1
Vf($1,$2,$3) = 8f/8:c2 = 2(332 — 2)
of)Oxs 2(zs +2)

We define

gra.f <- function(x){
2 * c(x[1], x[2] - 2, x[3] + 2)

65/75

The updated optimization code is

optim(c(1,1,1), f, gr = gra.f, method = "CG", control = list(reltol = 1e-8))
below are the results:

$par

[1] 1.275786e-07 2.000000e+00 -2.000000e+00

$value
[1] 1.790392e-13

$counts

function gradient
15 7

$convergence

[1] o

$message

NULL

We see that although we call the gradient function 7 times, the times we
call the function f is reduced, from 186, to 15. More importantly, the
precision is much better than the previous run.

66/75

Use R to find the minimizer of the function

flz) = —ze™®.

Note that you may use calculus to verify that the minimizer is z = 1
where f(1) = —e~! = —0.3679.

67/75

0.0

©

68/75

Example (exercise, Maximum likelihood estimation, MLE)

Let 1,...,x, be drawn independently from Poisson(\). If X is
unknown, one may estimate A by maximizing the log-likelihood function

n n

1ogH _A/\ = _{-A+zilogA — log(x:!)}

p=ll

Set A and n, and generate data yourself. Then write a function mle to
minimize ¢ by the above R function optim. Compare your solution with
the analytical minimizer A = 1 3" z;.

69/75

Integration, 1-dim

Note that for integration with more than 1 dimension, methods like
Monte-Carlo may be better.

Use R to find the value of the integral
/ exp(—z?)dz.
Note that the true value of the integral is

/ exp(—2?)dr = 2/ exp(—2?)dx
0

— 0o

y:;r2 o0 1 1
= / y3~le=Vdy =T (5) = /T = 1.77245385.
0

v

integrate(function(x) exp(-x~2), lower = -Inf, upper = Inf)
#i#t#t below are the results:
1.772454 with absolute error < 4.3e-06

70/75

Note

o We see that the numerical integration is already very precise. We
skip the algorithm behind.
@ In R, one uses Inf to denote infinity oc.

@ We see that in the above command we have used a function
function(x) exp(-x"2)
which is passed to the function integrate immediately after it is
generated. We did not even give it a name! This kind of function is
called anonymous function.

71/75

Use R to evaluate the following function

B(z) = \/%/ exp{ ;}dt

Note that this function is the cumulative distribution function of the
standard normal distribution N (0,1). R has a high-performance
implementation of this function: pnorm. After writing your function, you
may compare it with pnorm.

72/75

Solving Nonlinear Equations

Numerically, R implements some algorithms to solve nonlinear equations,
e.g. Newton's method. It is not therefore guaranteed that all the roots

can be found.

Find the solution of the equation f(x) = 0 with

f(z) =e* +z.

73/75

install.packages("nlegslv") # install the package, just for the first time

library("nlegslv")
f <- function(x) exp(x) + x
nlegslv(1l, f) # 1: initial guess

#it# below are the results:
$x
[1] -0.5671433

$fvec
[1] 8.346891e-10

$termcd
[1]1

Smessage
[1] "Function criterion near zero"

So the solution is x = —0.5671433.

$scalex

[1] 1

Snfent
[1] 6

$njcnt
1] 1

$iter
[1] 6

74/75

Example (exercise)

Find the solution to the equation f(z) = 0 with

) = 5 — i Ak — L

In R, there is a function polyroot specially designed to find the roots of
polynomials. Let a = (a1, asz,...,a,11) € R be the coefficient vector
for the polynomial

p(z) = ay + agx + azx? + -+ app2”,

then we may use the command polyroot(a) to find ALL the roots of p.
For the above example,

> polyroot(c(-1,1,-1,1))
[1] 0+11 0-11 1+01

We see that some complex roots are also found.

75/75

