
DATA7001 - Introduction to Data Science
Module 4: Making the data confess

Xin GUO

Email: xin.guo@uq.edu.au
Office: Priestley Building (67), Room 447
Telephone: +61 7 3346 9728
Office Hours: Tuesday 10–11 AM

1 / 86

Linear Models

The model:

Y = β∗
0 + β∗

1x1 + · · ·+ β∗
rxr + ε.

For example:
Y : called the response variable, or the dependent variable. For
example, it could be the reaction of a patient to some specific drug.
x1, x2, . . . , xr: called the predictor variables, or the independent
variables, or the explanatory variables. For example, they could be
the gene expression level, blood pressure, BMI, etc., respectively, of
the patient. We assume that the predictors are deterministic (not
random).
β∗
0 , β

∗
1 , . . . , β

∗
r : deterministic (not random) constants, assumed

unknown. Coefficients of the model. While β∗
0 is often called the

intercept, β∗
1 , . . . , β

∗
r are sometimes called the effects.

ε: called the error term, or the noise. We assume that ε ∼ N(0, σ2)
for some unknown σ2 > 0.

2 / 86

The data:

D =
{
(xi

1, x
i
2, . . . , x

i
r, y

i)
}n

i=1
⊂ Rr+1

We have

y1 = β∗
0 + β∗

1x
1
1 + · · ·+ β∗

rx
1
r + ε1,

y2 = β∗
0 + β∗

1x
2
1 + · · ·+ β∗

rx
2
r + ε2,

...
yn = β∗

0 + β∗
1x

n
1 + · · ·+ β∗

rx
n
r + εn.

We assume that the error terms are independent. That is,

ε1, ε2, . . . , εn
i.i.d.∼ N(0, σ2),

where “i.i.d.” stands for “independent and identically distributed”.

3 / 86

We rewrite the equations.

To estimate the unknown coefficient vector β∗, we try different vectors
β ∈ Rr+1 to minimize the least-squares loss function S(β),

S(β) = ∥y − Xβ∥2

=

n∑
i=1

(
yi − β0 − β1x

i
1 − · · · − βrx

i
r

)2
.

We denote β̂ls the minimizer of the function S(β).
4 / 86

Multivariate Normal Distributions

Recall the one-dimensional normal distributions N(µ, σ2), of which the
density function is

fµ,σ2(x) =
1√
2πσ2

exp
{
− (x− µ)2

2σ2

}
, x ∈ R.

Let d ≥ 1 be an integer. Let µ be a d-dimensional real vector. That is,
µ ∈ Rd. Let Σ be a d× d real matrix, i.e., Σ ∈ Rd×d. Assume that Σ is
symmetric and positive definite. The d-dimensional normal distribution
N(µ,Σ) is defined through the density function

fµ,Σ(x) =
1

(2π)d/2
√

detΣ
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
.

5 / 86

Example: density functions of some 1-dimensional normal distributions

x

y

N(−0.7, 0.52)

N(0.2, 0.22)

N(1, 0.32)

6 / 86

Example: density functions of some 2-dimensional normal distributions

x

y

z

x

y

z

7 / 86

Theorem
Suppose X = (X1, X2, . . . , Xd)

′ ∼ N(µ,Σ). Write

µ =


µ1

µ2

...
µd

 , Σ =


Σ1,1 Σ1,2 · · · Σ1,d

Σ2,1 Σ2,2 · · · Σ2,d

...
...

Σd,1 Σd,2 · · · Σd,d

 .

Then for any 1 ≤ i ≤ d,

Xi ∼ N(µ = µi, σ
2 = Σi,i).

Moreover, for i ̸= j, Xi and Xj are independent if and only if Σi,j = 0.

We skip the proof.

8 / 86

A Toy Example: Inference for the Population Mean

Recall the process of estimating the mean of a 1-dim normal distribution.
Data: ξ1, ξ2, . . . , ξn

i.i.d.∼ N(µ, σ2), where µ and σ2 are unknown.
Estimate of the population mean:

µ̂ =
1

n

n∑
i=1

ξi = arg min
−∞<t<∞

n∑
i=1

(t− ξi)2.

Here “argminf(t)” means the minimizer of the function f(t). For
example, argmin(t− 5)2 = 5.

9 / 86

We have (skipping the mathematics) µ̂ ∼ N(µ, σ2/n). So,
σ2
µ̂ := Var(µ̂) = σ2/n.

The variance σ2
µ̂ is unknown but is useful in constructing the

confidence interval of µ̂ and conducting hypothesis test (e.g.
H0 : µ = 0 v.s. H1 : µ ̸= 0).
We compare µ̂ with β̂ls (recall that β = (β0, β1, . . . , βr)

′),

µ̂ = arg min
t∈R

n∑
i=1

(t− ξi)2,

β̂ls = arg min
β∈Rr+1

n∑
i=1

(
β0 + β1x

i
1 + · · ·+ βrx

i
r − yi

)2
.

10 / 86

Usually, one uses the estimate σ̂2 = s2, called the sample variance,

s2 :=
1

n− 1

n∑
i=1

(
ξi − µ̂

)2
.

We skip the mathematics but point out that E[s2] = σ2. Therefore
it is reasonable to use σ̂2

µ̂ = s2/n as an estimate of the unknown
variance σ2

µ̂ = σ2/n.
One defines the (1− α)× 100% confidence interval of µ,[

µ̂− tα/2,n−1σ̂µ̂, µ̂+ tα/2,n−1σ̂µ̂

]
,

where tα/2,n−1 is the top α/2 quantile of the t distribution with
n− 1 degrees of freedom (we skip the details).
One defines the rejection region for the null hypothesis H0 : µ = 0
(against the alternative hypothesis H1 : µ ̸= 0),

Rα := {|µ̂| > tα/2,n−1σ̂µ̂}.

11 / 86

Density functions of t-distributions with different degrees of freedom.
Note that t∞ = N(0, 1). As ν → ∞, tν becomes more and more

concentrated.
Picture: wikipedia

12 / 86

Properties of the least squares estimator β̂ls

Recall the linear model y = Xβ∗ + ε where
ε = (ε1, . . . , εn)′ ∼ N(0, σ2I) is the noise vector. The unknown
coefficient vector β∗ is estimated by the least squares method
β̂ls = argminβ∥y − Xβ∥2. We have (proof skipped)

β̂ls ∼ N(β∗, σ2(X′X)−1).

Therefore, for 0 ≤ i ≤ r, the i-th coordinate (β̂ls)i has the normal
distribution

(β̂ls)i ∼ N(β∗
i , σ

2[(X′X)−1]i,i).

With the help of the estimator σ̂2 = ∥y − Xβ̂ls∥2/(n− r − 1), the
(1− α)× 100% confidence interval of β∗

i is given by[
(β̂ls)i − tα/2,n−r−1σ̂

√
[(X′X)−1]i,i, (β̂ls)i + tα/2,n−r−1σ̂

√
[(X′X)−1]i,i

]
.

13 / 86

Test of Significance of Regression
The test of significance of regression

H0 : β∗
1 = · · · = β∗

r = 0, v.s. H1 : otherwise

Insight: to test if there is a linear relationship between Y and
x1, . . . , xr.
Test statistic

F =
(SSY − SSE)/r

SSE/(n− r − 1)

Write ŷ = (ŷ1, . . . , ŷn)′ := Xβ̂ls and ȳ = 1
n

∑n
i=1 y

i. We have

SSE =

n∑
i=1

(yi − ŷi)2 = ∥y − ŷ∥2, SSY =

n∑
i=1

(yi − ȳ)2.

Under H0, F ∼ Fr,n−r−1, the F distribution with degrees of
freedom r and n− r− 1. One rejects H0 if F is too large (depending
on the test significance), in which case β∗

1 , . . . , β
∗
r are significant.

14 / 86

Test on Individual Regression Coefficient

The test of significance of β∗
j , 1 ≤ j ≤ r,

H0 : β∗
j = 0, v.s. H1 : β∗

j ̸= 0.

Test statistic

Tj =
β̂j

σ̂
√
[(X′X)−1]i,i

Under the null hypothesis H0, Tj ∼ tn−r−1. The rejection region is
determined accordingly.
Recall that σ̂2 = ∥y − Xβ̂ls∥2/(n− r − 1). The product
σ̂
√
[(X′X)−1]i,i is called the estimated standard error, or simply

standard error of the coefficient β̂j .

15 / 86

Linear Regression with R
Example. In this example, we generate artificial data use the model

Y = β∗
0 + β∗

1x1 + β∗
2x2 + ε,

with (β∗
0 , β

∗
1 , β

∗
2) = (1,−3, 2), and ε ∼ N(0, σ2 = 0.22). For

convenience, we generate the predictors (x1, x2) through standard normal
distribution N(0, 1). We shall see that as the sample size n tends to
infinity, the error vector β̂ls − β∗ becomes smaller and smaller.

betaOracle <- c(1, -3, 2)
genData <- function(n){
 x <- cbind(1, matrix(rnorm(2 * n), ncol = 2))
 epsilon <- rnorm(n = n, sd = 0.2)
 y <- x %*% betaOracle + epsilon
 dta <- as.data.frame(cbind(y, x))
 colnames(dta) <- c("y", "1", "x1", "x2")
 return(dta)
}
print(betaOracle)
set.seed(123)
for(n in c(1e2, 1e3, 1e4, 1e5, 1e6)){
 a <- lm(y ~ x1 + x2, data = genData(n))
 print(paste("data size:", n))
 print(rbind(a$coefficients, a$coefficients - betaOracle))
}

16 / 86

The program output is listed below.

[1] 1 -3 2
[1] "data size: 100"

(Intercept) x1 x2
[1,] 1.02701309 -3.02663431 2.004762258
[2,] 0.02701309 -0.02663431 0.004762258
[1] "data size: 1000"

(Intercept) x1 x2
[1,] 0.9998569029 -3.008709992 2.009790489
[2,] -0.0001430971 -0.008709992 0.009790489
[1] "data size: 10000"

(Intercept) x1 x2
[1,] 0.9997507513 -2.997007679 1.996400911
[2,] -0.0002492487 0.002992321 -0.003599089
[1] "data size: 1e+05"

(Intercept) x1 x2
[1,] 0.9990855487 -3.001188885 2.0003540759
[2,] -0.0009144513 -0.001188885 0.0003540759
[1] "data size: 1e+06"

(Intercept) x1 x2
[1,] 1.000079e+00 -3.0002596327 1.9999565308
[2,] 7.899183e-05 -0.0002596327 -0.0000434692

17 / 86

We use the above data generator to study the program output.

betaOracle <- c(1, -3, 2)
genData <- function(n){
 x <- cbind(1, matrix(rnorm(2 * n), ncol = 2))
 epsilon <- rnorm(n = n, sd = 0.2)
 y <- x %*% betaOracle + epsilon
 dta <- as.data.frame(cbind(y, x))
 colnames(dta) <- c("y", "1", "x1", "x2")
 return(dta)
}
print(betaOracle)
set.seed(123)
print(summary(lm(y ~ x1 + x2, data = genData(50))))

18 / 86

The program output is listed below.

[1] 1 -3 2

Call:
lm(formula = y ~ x1 + x2, data = genData(50))

Residuals:
Min 1Q Median 3Q Max

-0.37627 -0.14811 -0.01275 0.10503 0.45409

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.95401 0.02861 33.34 <2e-16 ***
x1 -2.99497 0.03080 -97.23 <2e-16 ***
x2 1.96608 0.03150 62.42 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1995 on 47 degrees of freedom
Multiple R-squared: 0.9966,^^IAdjusted R-squared: 0.9965
F-statistic: 6902 on 2 and 47 DF, p-value: < 2.2e-16

Here, “Residuals” refer to the vector

ε̂ := y − Xβ̂ls.

19 / 86

20 / 86

In the test below, we purposely add one irrelevant variable to better
understand the program output

betaOracle <- c(1, -3, 2)
genData <- function(n){
 x <- cbind(1, matrix(rnorm(2 * n), ncol = 2))
 epsilon <- rnorm(n = n, sd = 0.2)
 y <- x %*% betaOracle + epsilon
 dta <- as.data.frame(cbind(y, x))
 colnames(dta) <- c("y", "1", "x1", "x2")
 return(dta)
}
print(betaOracle)
set.seed(123)
a <- cbind(genData(50), rnorm(50))
colnames(a) <- c("y", "1", "x1", "x2", "x3")
print(summary(lm(y ~ x1 + x2 + x3, data = a)))

21 / 86

The program output is listed below. We see that the p-value for the
variable x3 is too large (for example, larger than 0.05). In practice, one
usually removes x3 and starts over.

[1] 1 -3 2

Call:
lm(formula = y ~ x1 + x2 + x3, data = a)

Residuals:
Min 1Q Median 3Q Max

-0.37779 -0.14871 -0.01149 0.10858 0.45011

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.954448 0.028988 32.925 <2e-16 ***
x1 -2.995801 0.031386 -95.451 <2e-16 ***
x2 1.965011 0.032248 60.934 <2e-16 ***
x3 -0.006452 0.031581 -0.204 0.839

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2016 on 46 degrees of freedom
Multiple R-squared: 0.9966,^^IAdjusted R-squared: 0.9964
F-statistic: 4508 on 3 and 46 DF, p-value: < 2.2e-16

22 / 86

The following code generates an artificial dataset with model
y = −3 + 2x+ ϵ, carries out least squares algorithm on the data, and
generates predictions.

set.seed(123)
x.trn <- rnorm(20)
y.trn <- -3 + 2 * x.trn + rnorm(length(x.trn), sd = 0.3)
data.trn <- as.data.frame(cbind(y.trn, x.trn))
colnames(data.trn) <- c("y", "x")

x.tst <- seq(-2, 2, len = 50)
data.tst <- as.data.frame(x.tst)
colnames(data.tst) <- "x"

model <- lm(y ~ x, data = data.trn)
y.predicted <- predict(model, newdata = data.tst)

plot(range(c(x.trn, x.tst)), range(c(y.trn, y.predicted)),
 type = "n", xlab = "x", ylab = "y")
points(x.trn, y.trn, col = "black")
lines(x.tst, y.predicted, col = "red")

23 / 86

The obtained figure is pasted below.

−2 −1 0 1 2

−
6

−
4

−
2

0

x

y

24 / 86

Regularization

Recall the least squares estimation

β̂ls = arg min
β∈Rr+1

∥y − Xβ∥2 . (1)

The following theorem provides an analytical solution to (1).

Theorem
When the square matrix X′X is invertable, we have a unique solution to
(1),

β̂ls = (X′X)−1X′y.

The theorem is proved by taking gradient of the function
S(β) = ∥y − Xβ∥2. In fact, ∇S(β) = 2X′(Xβ − y). We skip the proof.

25 / 86

What if the minimizer of the least squares is not unique?

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.2

 0.4

 0.6

 0.8

 1
 1.2

 1.2

 1.2

 1.2

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.1

 0.2

 0.2

 0.3

 0.3

 0.4

 0.4

 0.5

 0.5

 0.6

 0.6

 0.7

 0.7

 0.8

 0.8

 0.
9

 0.
9

 1

 1

 1.
1

 1.
1

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

 0.
2

 0.
2

 0.4

 0.4

 0.6

 0.6

 0.8

 0.8

 1

 1

 1.2

 1.2

 1.4

 1.4

 1.
6

 1.
6

 1.8

 1.8

We may set a preference (a penalty) together with least squares. For
example the ridge regression (λ > 0)

β̂Ridge = arg min
β∈Rr+1

{
∥y − Xβ∥2 + λ∥β∥2

}
,

which prefers β with a smaller Euclidean norm.

Theorem
β̂Ridge = (X′X+ λI)−1X′y. (Again, we skip the proof.)

26 / 86

Different preference functions/penalties lead to different algorithms
LASSO (least absolute shrinkage and selection operator), λ > 0.

β̂LASSO = arg min
β∈Rr+1

{
∥y − Xβ∥2 + λ∥β∥1

}
,

where ∥β∥1 := |β0|+ · · ·+ |βr| is the 1-norm of vectors. Note that
however, the term |β0| is usually removed from the penalty.
Elastic Net, λ1, λ2 > 0.

β̂EN = arg min
β∈Rr+1

{
∥y − Xβ∥2 + λ1∥β∥1 + λ2∥β∥2

}
.

Set preference to some existing vector ξ∗. Here λ > 0.

β̂ξ∗ = arg min
β∈Rr+1

{
∥y − Xβ∥2 + λ∥β − ξ∗∥2

}
.

27 / 86

Prediction and Generalization
Recall that prediction is one of the most important purposes of linear
regression. Let (x1, . . . , xr)

′ be a new instance. We denote
x = (1, x1, . . . , xr)

′. Then, the output y = x′β∗ of the linear model is
predicted through

ŷ = x′β̂.

Here, β̂ could be any estimator, for example, β̂ls, β̂LASSO, β̂EN, among
others. The power of precisely predicting the labels of new instances that
may not be included in the training data, is referred to as generalization
ability.
A straightforward way to achieve generalization is to make sure that the
estimation error ∥β̂ − β∗∥ is small. Thanks to Cauchy’s inequality,

|x′β̂ − x′β∗| = |⟨x, β̂ − β∗⟩| ≤ ∥x∥ · ∥β̂ − β∗∥,
for any x ∈ Rr+1. In particular, we have
Definition
The mean of squared error (MSE) of an estimator β̂ is defined by

MSE(β̂) = E[∥β̂ − β∗∥2].
28 / 86

We have the following decomposition of MSE.

Theorem
For any estimator β̂ of β∗,

MSE(β̂) = ∥Bias(β̂)∥2 + Trace(Cov(β̂)),

where Bias(β̂) = E[β̂]− β∗ is the bias, and the variance term
Trace(Cov(β̂)) is the trace of the covariance matrix of β̂.

29 / 86

For β̂ls and β̂Ridge, we have (proof skipped)

β̂ “Bias”, ∥Bias(β̂)∥2 “Variance”, Trace(Cov(β̂))
β̂ls 0 σ2Trace((X′X)−1)

β̂Ridge −λ(X′X+ λI)−1β∗ σ2Trace
[
(X′X)(X′X+ λI)−2

]
As the smallest singular value of X tends to zero, Trace((X′X)−1)
diverges to infinity.
Bias Variance trade-off

λ

MSE
Bias

Variance

30 / 86

Example (collinearity). In this example, we build a design matrix X with
two columns,

X = [x1,x2],

push one column towards the other,

x1 = a,

x2 = x2(u) = ua+ (1− u)b,

where 0 ≤ u ≤ 1. We would observe the process that the variance term
tends to infinity.

31 / 86

The code is listed below.

set.seed(123)
n <- 30
a <- rnorm(n)
b <- rnorm(n)
f <- function(u){
 X <- cbind(a, u * a + (1 - u) * b)
 return(diag(solve(t(X) %*% X)))
}
print(f(0.6))
print(f(0.8))
print(f(0.9))
print(f(0.99))

The program output is listed below.
a

0.1251278 0.3032513
a

0.7576558 1.2130051
a

3.842219 4.852020
a

474.2121 485.2020

This test demonstrates how collinearity generates big “variance” term.

32 / 86

Kernel Methods
Consider a continuous function K : Rd × Rd → R. K is called a
reproducing kernel (or Mercer kernel) on Rd if it is symmetric
(K(x, u) = K(u, x) for any x, u ∈ Rd), and positive semi-definite (for
any x1, . . . , xm ∈ X, the Gram matrix (K(xi, xj))1≤i,j≤m is positive
semi-definite). Examples of reproducing kernels:

linear kernel, K(x, u) = ⟨x, u⟩ on Rd;
Gaussian kernel, K(x, u) = exp

(
− 1

2σ2 ∥x− u∥2
)

on Rd, where
σ > 0;
Polynomial kernel K(x, u) = (1 + ⟨x, u⟩)r on Rd, where r ≥ 1 is an
integer.
Inverse multiquadrics, K(x, u) =

(
c2 + ∥x− u∥2

)−α on Rd, for any
c, α > 0.

33 / 86

Kernel Ridge Regression
Model: y = f∗(x) + ϵ, where x ∈ Rd is a vector of predictors, ϵ ∈ R
is a random noise, y ∈ R is the observed value of the dependent
variable, and f∗ is a function (e.g. nonlinear).
Data: {(xi, yi)}mi=1, assumed sampled from the above model, so
yi = f∗(xi) + ϵi for 1 ≤ i ≤ m.
Reproducing kernel K : Rd × Rd → R. Note that it might not be
easy to find a kernel that matches the model well.
Algorithm output: f̂krr, a function on Rd defined by

f̂krr(x) =
m∑
i=1

c∗iK(xi, x),

where c∗ = (c∗1, c
∗
2, . . . , c

∗
m) is the vector obtained from the training

process (i.e., the process of solving an optimization problem)

c∗ = arg min
c∈Rm

 1

m

m∑
i=1

 m∑
j=1

cjK(xi, xj)− yi

2

+ λ

m∑
i,j=1

cicjK(xi, xj)

 ,

where λ > 0 is the regularization parameter.
34 / 86

Unfortunately it is difficult to find implementations of kernel ridge
regression in R. In package “e1071”, a similar support vector regression
algorithm is implemented with

c∗ = arg min
c∈Rm

 1

m

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

cjK(xi, xj)− yi

∣∣∣∣∣∣+ 1

C

m∑
i,j=1

cicjK(xi, xj)

 ,

where C > 0 plays the role of regularization.
Please note that specific implementations may introduce some technical
changes to the algorithms for good.

35 / 86

library("e1071")

generating artificial data
set.seed(123)
N <- 20
x.train <- runif(n = N, min = 0, max = 10)
y.train <- sin(x.train) + rnorm(n = N, sd = 0.1)
x.test <- seq(0, 10, len = 300)
y.oracle <- sin(x.test)
dt.trn <- as.data.frame(cbind(y.train, x.train))
dt.tst <- as.data.frame(x.test)
colnames(dt.trn) <- c("y", "x")
colnames(dt.tst) <- "x"

training
gSeq <- function(from, to, len) exp(seq(log(from), log(to), len = len))
a <- tune.svm(y ~ x, data = dt.trn,
 gamma = gSeq(1, 10, 10), cost = gSeq(1, 10, 10))
print(summary(a$best.model))

prediction and visualization
y.predict <- predict(a$best.model, dt.tst)
yRange <- range(c(y.train, y.oracle, y.predict))
plot(c(0, 10), yRange, type = "n", xlab = "", ylab = "")
lines(x.test, y.oracle, col = "purple")
lines(x.test, y.predict, col = "blue")
points(x.train, y.train)

36 / 86

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

37 / 86

A test on real data, “mtcars”
The dataset “mtcars” is provided in R.
mtcars package:datasets R Documentation
Motor Trend Car Road Tests

Description:
The data was extracted from the 1974 _Motor Trend_ US magazine,
and comprises fuel consumption and 10 aspects of automobile design
and performance for 32 automobiles (1973-74 models).

Usage:
mtcars

Format:
A data frame with 32 observations on 11 (numeric) variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (1000 lbs)
[, 7] qsec 1/4 mile time
[, 8] vs Engine (0 = V-shaped, 1 = straight)
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburetors

......

38 / 86

library("e1071")

dt.trn <- mtcars[-1,]
dt.tst <- mtcars[1,]

training
gSeq <- function(from, to, len) exp(seq(log(from), log(to), len = len))
a <- tune.svm(mpg ~ disp + hp + drat + wt, data = dt.trn,
 gamma = gSeq(0.1, 5, 10), cost = gSeq(1, 10, 10))
print(summary(a$best.model))

prediction
print(predict(a$best.model, dt.tst))
print(dt.tst)

$ Rscript a.R
Call:
best.svm(x = mpg ~ disp + hp + drat + wt, data = dt.trn,
gamma = gSeq(0.1, 5, 10), cost = gSeq(1, 10, 10))

Parameters:
SVM-Type: eps-regression

SVM-Kernel: radial
cost: 1.668101

gamma: 0.1
epsilon: 0.1

Number of Support Vectors: 28

Mazda RX4
22.47167

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4

39 / 86

Classification

Suppose {xi, yi}ni=1 is a sample, where xi’s are from some set/space, and
yi ∈ {−1, 1} are labels. Suppose the sample is drawn from some
unknown yet fixed probability measure, or in another way of saying, some
existing and fixed pattern.
The classification task is to find some function f from the set where we
draw xi’s, to the label set {−1, 1}, so that when some new datum x
comes without label, we can have a large confidence that f(x) is the
right label that x should have. The function f is also called the
Classification Model.

There are also “multi-class”
classification tasks, where the label set
{1, 2, . . . , k} has more than two
elements.

picture from: http://www.clipartpanda.com/categories/classification-20clipart.

40 / 86

Dividing points from two classes with a hyperplane

In the above picture, the solid blue line, a hyperplane, divides a point
cloud into two parts according to their class label. The minimum
distance between the hyperplane and the points in class 1 (called the
margin) is d; for class 2, this minimum distance is also d.
The points that achieve this minimum are called support vectors.

41 / 86

Dividing points from two classes with a hyperplane

The blue hyperplane is found so that the margin of classification is
maximized.
If you change the position, or twist the hyperplane a little, the margin is
reduced.

42 / 86

Recall the data {(xi, yi)}ni=1 for classification, where xi ∈ Rd and
yi ∈ {−1, 1}. For any i,

when yi = −1, the vector xi belongs to the first class;
when yi = 1, the vector xi belongs to the second class.

Support Vector Machine (SVM) tries to find a function
f : Rd → R, so that its sign can be used for classification:

sign(f(x)) =
{

−1, when f(x) < 0,⇒ x ∈ Class1,
1, when f(x) ≥ 0,⇒ x ∈ Class2.

An efficient way to achieve this, is to make sure yif(xi) > 0 for all i.
When f is a linear function (excluding the zero function f ≡ 0), the
classification boundary {x ∈ Rd : f(x) = 0} is a hyperplane.

43 / 86

When f(x) =
∑n

i=1 c
∗
iK(xi, x) is a linear combination of reproducing

kernel functions, the classification boundary may be a nonlinear curve (or
hypersurface in high-dimensional space).

4 3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

44 / 86

SVM tries to make sure yif(xi) > 0 for all i, by setting a loss
ϕh(yif(xi)), where ϕh(t) = max{0, 1− t} is called the hinge loss.
The loss vanishes if yif(xi) is large enough: yif(xi) ≥ 1.

t

z

1

1

z
=
ϕ
h (t)

45 / 86

Support Vector Machine (SVM) with linear functions

Input data: {(xi, yi)}mi=1, where xi ∈ Rd, and yi ∈ {−1, 1}
Output classifier: sign(f∗(x)), with

f∗ = arg min
f

{
1

m

m∑
i=1

ϕh (yif(xi)) + γΩ(f)

}
,

where γ > 0 is the regularization parameter, and the minimum is
taken over all the linear functions f on Rd that have the form

f(x) = ⟨β, x⟩+ c

where β ∈ Rd and c ∈ R, with Ω(f) := ∥β∥2 = β2
1 + β2

2 + · · ·+ β2
d .

46 / 86

SVM with reproducing kernels

Let K be a reproducing kernel on Rd. Let γ > 0 be the regularization
parameter. SVM with kernel K is defined by

Input data: {(xi, yi)}mi=1, where xi ∈ Rd, and yi ∈ {−1, 1}
Output classifier: sign(f∗(x)), with

f∗ = arg min
f

{
1

m

m∑
i=1

ϕh (yif(xi)) + γΩ(f)

}
,

where the minimum is taken over all the functions f on Rd that
have the form

f(x) = c+

m∑
i=1

βiK(xi, x), with Ω(f) :=

m∑
i=1

m∑
j=1

βiβjK(xi, xj).

47 / 86

The “factor” data type in R

R uses a special data type “factor” to represent categorical data, which
could be divided into (usually a small number of) groups. Examples
include age group, race, sex, postal code, and educational level.
In R, the data type factor is internally stored as integer, and printed as
character (string).

48 / 86

Example: The Iris Dataset

The Iris Dataset
Introduced by R. A. Fisher1. For a full description, see the web page
in the UCI Machine Learning Repository,
https://archive.ics.uci.edu/ml/datasets/iris.

Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:

Iris Setosa
Iris Versicolour
Iris Virginica

Picture from: https://archive.ics.uci.edu/ml/datasets/iris

1Fisher, Ronald A. The use of multiple measurements in taxonomic problems.
Annals of Human Genetics 7.2 (1936): 179-188.

49 / 86

> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> str(iris)
'data.frame':^^I150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
> typeof(iris[, "Species"])
[1] "integer"
> unique(iris[, "Species"])
[1] setosa versicolor virginica
Levels: setosa versicolor virginica
> write.table(iris, file = "iris.txt")
> irisDT <- read.table("iris.txt", stringsAsFactors = TRUE)

50 / 86

Now we use this real dataset to try SVM.
library("e1071")

we provide the code for reading data from file
write.table(iris, file = "iris.txt", sep = ",", row.names = FALSE)
dataIRIS <- read.table("iris.txt", stringsAsFactors = TRUE,
 sep = ",", header = TRUE)
data.trn <- dataIRIS[-1,]
data.tst <- dataIRIS[1,]

training
gSeq <- function(from, to, len) exp(seq(log(from), log(to), len = len))
a <- tune.svm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
 data = data.trn, gamma = gSeq(1, 10, 10), cost = gSeq(0.1, 5, 10))
print(summary(a$best.model))

prediction
y.predict <- predict(a$best.model, data.tst)
print(y.predict)

51 / 86

The program output is listed below.
$ Rscript a.R

Call:
best.svm(x = Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,

data = data.trn, gamma = gSeq(1, 10, 10), cost = gSeq(0.1, 5, 10))

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 0.3684031

Number of Support Vectors: 77

(17 31 29)

Number of Classes: 3

Levels:
setosa versicolor virginica

1
setosa
Levels: setosa versicolor virginica

52 / 86

Usually the automatically selected kernel is good enough, but one may
still specify a kernel themselves. Currently the package “e1071”
implements four classes of kernels, “linear”, “polynomial”, “radial
basis” (which is Gaussian kernel), and “sigmoid”. Here, linear kernel
recovers SVM with linear functions. For more details, please read the
reference manual of the package,
https://cran.r-project.org/web/packages/e1071/e1071.pdf

library("e1071")

we provide the code for reading data from file
write.table(iris, file = "iris.txt", sep = ",", row.names = FALSE)
dataIRIS <- read.table("iris.txt", stringsAsFactors = TRUE,
 sep = ",", header = TRUE)
data.trn <- dataIRIS[-1,]
data.tst <- dataIRIS[1,]

training
gSeq <- function(from, to, len) exp(seq(log(from), log(to), len = len))
a <- tune.svm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
 data = data.trn, cost = gSeq(0.1, 5, 10), kernel = "linear")
print(summary(a$best.model))

prediction
y.predict <- predict(a$best.model, data.tst)
print(y.predict)

53 / 86

The program output is listed below.
$ Rscript a.R

Call:
best.svm(x = Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,

data = data.trn, cost = gSeq(0.1, 5, 10), kernel = "linear")

Parameters:
SVM-Type: C-classification

SVM-Kernel: linear
cost: 0.2385332

Number of Support Vectors: 47

(3 24 20)

Number of Classes: 3

Levels:
setosa versicolor virginica

1
setosa
Levels: setosa versicolor virginica

54 / 86

Logistic Regression

If we replace hinge loss ϕh(t) = max{0, 1− t} by logistic loss
ϕlg(t) = ln(1 + e−t), we obtain the Logistic Regression algorithm

Input data: {(xi, yi)}mi=1, where xi ∈ Rd, and yi ∈ {−1, 1}
Output classifier: sign(f∗(x)), with

f∗ = arg min
f

{
1

m

m∑
i=1

ϕlg (yif(xi)) + γΩ(f)

}
,

where γ > 0 is the regularization parameter, and the minimum is
taken over all the linear functions f on Rd that have the form

f(x) = ⟨β, x⟩+ c

where β ∈ Rd and c ∈ R, with Ω(f) := ∥β∥2 = β2
1 + β2

2 + · · ·+ β2
d .

55 / 86

Note that as t → ∞, e−t → 0, so ϕlg(t) = ln(1 + e−t) → 0. As
t → −∞, ϕlg = ln e−t + ln(et + 1) = −t+ ln(et + 1), where
ln(et + 1) → 0, so ϕlg(t) ≈ −t as t → −∞. The following figure
compares ϕlg (the red line) and ϕh (the blue line).

−2 −1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t

y

56 / 86

The Python package “sklearn” provides a nice implementation of
logistic regression. It is, however, difficult to find a similar one in R. We
only provide a mature implementation with the “glm” function (standing
for generalized linear model).
set.seed(123)
gen.data <- function(s1, s0, d){
y <- c(rep(1, s1), rep(0, s0))
x <- matrix(rnorm((s1 + s0) * d), ncol = d)
x[,1] <- x[,1] + 4 * y - 2
the.data <- cbind(y, as.data.frame(x))
colnames(the.data) <- c("y", paste0("x", 1:d))
return(the.data)

}
d.trn <- gen.data(300, 300, 3)
d.tst <- gen.data(100, 50, 3)

model <- glm(y ~ x1 + x2 + x3, family = binomial, data = d.trn)
pr <- predict(model, newdata = d.tst)

The artificial data is generated that the intercept, the variables x2 and x3

are all irrelevant to the classification. We see the consistent inference
results below.

57 / 86

> summary(model)
Call:
glm(formula = y ~ x1 + x2 + x3, family = binomial, data = d.trn)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.18246 -0.00166 0.00000 0.00367 2.52705

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7977 0.5207 -1.532 0.126
x1 6.4220 1.4088 4.558 5.16e-06 ***
x2 -0.2250 0.5050 -0.445 0.656
x3 -0.7091 0.5525 -1.283 0.199

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 831.777 on 599 degrees of freedom
Residual deviance: 34.772 on 596 degrees of freedom
AIC: 42.772

Number of Fisher Scoring iterations: 11

Note that the above implementation takes no regularization (i.e., using
γ = 0), so the implementation may suffer from numerical problems. The
good side is that like linear model, the program output provides much
information on p-value, confidence interval, and so on.

58 / 86

Score-based Classifiers

Recall that last time the output classifier of SVM is based on a function
(linear or nonlinear) fz(x) which has real values. The classifier we defined
is sign(fz(x)). Equivalently speaking,

fz(x) ≥ 0 ⇒ x ∈ class 1, or “Positive”,
fz(x) < 0 ⇒ x ∈ class 2, or “Negative”.

Sometimes, we hope to give one class some preference. For example,
when we design a fire alarm, it won’t hurt too much if the alarm bell
rings when there is indeed no fire; but not conversely!!

Therefore we set a threshold λ, and the above design of classifier is only
a special case of λ = 0.

fz(x) ≥ λ ⇒ x ∈ class 1, or “Positive”,
fz(x) < λ ⇒ x ∈ class 2, or “Negative”.

59 / 86

For a specified λ, let fC(x) = P when fz(x) ≥ λ, and fC(x) = N when
fz(x) < λ. We have the following table of errors.

True positive rate (also called Sensitivity): TPR = TP
TP+FN

False positive rate: FPR = FP
FP+TN

Specificity: 1− FPR = TN
FP+TN

60 / 86

Example
For the following classification prediction, compute the TPR and FPR.

Predicted True Label
P P
P N
N P
P P
N N
N N
N N
N N
N P
P P
N P

61 / 86

Recall: TPR = TP
TP+FN and FPR = FP

FP+TN . Note that TP + FN and
FP + TN are both independent of λ.

62 / 86

For a specified λ, let fC(x) = P when fz(x) ≥ λ, and fC(x) = N when
fz(x) < λ.

We see that for λ = −∞, the classifier predicts everything as
positive. By the previous definition, TPR = TPR(λ) = 1, and
FPR = FPR(λ) = 1. Of course, this is just a useless predictor.
We see that for λ = ∞, the classifier predicts everything as negative.
Then TPR = TPR(λ) = 0, and FPR = FPR(λ) = 0. Of course,
this is another useless predictor.
We see that as λ changes from ∞ to −∞, FPR(λ) and TPR(λ)
both increase.

63 / 86

The Receiver Operating Characteristics (ROC) Curve

“The Receiver Operating Characteristics (ROC) curves were originally
developed in signal detection theory in connection with radio signals, and
have been used since then in many other applications, in particular for
medical decision-making. Over the last few years, they have found
increased interest in the machine learning and data mining communities
for model evaluation and selection.” Cited from C. Cortes and M. Mohri,
NIPS 2004

64 / 86

The Receiver Operating Characteristics (ROC) Curve

Here we have five ROC curves. Curve I is typical. Curve II indicates a
total random hence useless classifier, since for any specific λ, it always
predict the actually positive observations as P with probability 0.5, and N
with probability 0.5; same for the actually negative observations. Curve
III is kind of useful in the sense that one benefits by using it reversely. IV
is nearly a perfect classifier, so is V.

65 / 86

The Area Under ROC Curve (AUC)

AUC is defined as the area under the ROC curve. So an AUC score
ranges from 0 to 1.
AUC could be used to evaluate the performance of a classifier.
AUC socre close to 1 indicates a good classifier.
AUC close to 0 indicates a good classifier yet one should use it
reversely.
AUC close to 0.5 indicates a bad classifier. In particular, AUC≈ 0.5
means the classifier has nearly the same performance like a random
guess. Note that a random guess is also a classifier, although with
poor performance.
AUC is designed for two-class classification problems only.

66 / 86

In the following program, we use the first 100 observations in the iris
dataset (recall that in this dataset, there are three classes, while the first
100 observations correspond to the first two classes), add some noise by
altering some class labels randomly, train SVM for classification, obtain
the decision values (the fz(x) scores), plot the ROC curve, and evaluate
the AUC score. Note that we use a factor→character→factor
transform to restrict the class labels to two.

a <- iris[1:100,]
a$Species <- as.factor(as.character(a$Species))
set.seed(123)
ind <- sample(1:100, 10)
a$Species[ind] <- sample(a$Species[ind])

library("e1071")
gSeq <- function(from, to, len) exp(seq(log(from), log(to), len = len))
w <- tune.svm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
 data = a, gamma = gSeq(1, 10, 10), cost = gSeq(0.1, 5, 10))
z <- predict(w$best.model, a, decision.values = TRUE)
dv <- c(attributes(z)$decision.values)

library("pROC")
plotting ROC curve
plot(roc(predictor = dv, response = a$Species))
computing AUC value
aucValue <- c(auc(predictor = dv, response = a$Species))
print(aucValue)

67 / 86

The ROC curve is plotted below.

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

68 / 86

Cluster Analysis

Cluster analysis, is to find groups of objects such that the objects in a
group will be similar (or related) to one another and different from (or
unrelated to) the objects in other groups.

69 / 86

Notion of a cluster can be ambiguous. For most of the cluster
analysis problems, it is an art to decide how many clusters to divide the
sample into.

Picture From: https://www-users.cse.umn.edu/~kumar001/dmbook/slides/chap7_basic_cluster_analysis.pdf

70 / 86

Intrinsic distance vs ambient distance

Although for any black circle, there is another black circle that is farther
than a red star, we still wish to collect all the red stars as one group, and
the black circles as another group. This is because the black circles are
connected together by one another, forming a manifold structure.

71 / 86

K-means Clustering

Step 1 Select K points as the initial centroids.
Step 2 Form K clusters by assigning all points to the closest centroid.
Step 3 Recompute the centroid of each cluster. If all the centroid computed

is the same as those before previous step 2, stop, otherwise go to
step 2.

picture from https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

72 / 86

Shortcomings
Multiple runs: helps, but probability is not on your side
May yield empty clusters. One may, for example, re-place the
centroid of the empty cluster so that the following SSE is minimized

SSE =

K∑
i=1

∑
x∈Clusteri

dist2(Centoidi, x)

May get bad results when points are distributed on manifold yet
ambient distance is used.

Picture from: https://www-users.cse.umn.edu/~kumar001/dmbook/slides/chap7_basic_cluster_analysis.pdf

73 / 86

Hierarchical Clustering
Produces a set of nested clusters organized as a hierarchical tree
Usually visualized as a dendrogram (cluster tree), which is a tree-like
diagram that records the sequence of merges or splits.

Picture from: https://www-users.cse.umn.edu/~kumar001/dmbook/slides/chap7_basic_cluster_analysis.pdf

Strength of Hierarchical Clustering
One does not have to assume any particular number of clusters. One
needs however to cut the dendrogram at a specific level to make the
clusters.
The dendrogram may well correspond to meaningful taxonomies.

74 / 86

Agglomerative Clustering Algorithm

A polular hierarchical clustering algorithm
The algorithm

Compute the proximity matrix
Let each data point be a cluster
Repeat:

Merge the two closest clusters
Update the proximity matrix

Until: only one single cluster remains.

75 / 86

Starting Situation

Start with clusters of individual points and a proximity matrix (which
defines the distance between each pair of points).

76 / 86

Intermediate Situation

After some merging steps, we have some clusters, along with their
proximity matrix.

77 / 86

We now want to merge the two closest clusters (C2 and C4, for
example). We merge them and then update the proximity matrix.

78 / 86

Then the question is, how to update the proximity matrix? Indeed, we
update the matrix by computing the “distance” of the clusters. (Strictly
speaking, what we compute may not be a mathematical distance. We
call it linkage or similarity sometimes.)

79 / 86

Inter-cluster similarity: single linkage

80 / 86

Inter-cluster similarity: complete linkage

81 / 86

Inter-cluster similarity: group average linkage

82 / 86

Example: The Old Faithful Geyser Dataset

Description: (From R manual):

Waiting time between eruptions and the duration
of the eruption for the Old Faithful geyser in
Yellowstone National Park, Wyoming,
USA.

A data frame with 272 observations on
2 variables.

eruptions numeric Eruption time in mins
waiting numeric Waiting time to next eruption

References:

Hardle, W. (1991) Smoothing Techniques with
Implementation in S. New York: Springer.

Azzalini, A. and Bowman, A. W. (1990).
A look at some data on the Old Faithful
geyser. Applied Statistics 39, 357-365.

Picture in the Public Domain

83 / 86

The Old Faithful Geyser Dataset is very famous and is included in R

> head(faithful)
eruptions waiting

1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55
> plot(faithful$eruptions,
faithful$waiting)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

faithful$eruptions

fa
ith

fu
l$

w
ai

tin
g

84 / 86

The code below applies k-means algorithm on the Old Faithful Geyser
Dataset. The generated plot is also provided below.
nCluster <- 2
a <- kmeans(faithful, centers = nCluster, iter.max = 100)
plot(range(faithful[, 1]), range(faithful[, 2]),
 type = "n", xlab = "x", ylab = "y")
inds <- a$cluster
cols <- rainbow(nCluster)
for(i in 1:nCluster){
 points(faithful[inds == i,], col = cols[i])
}

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

x

y

85 / 86

Building a cluster tree in R is also simple. The following figure is
essentially generated by only one line of command:
plot(hclust(dist(iris[, 1:4])))

10
8

13
1 10

3
12

6
13

0 11
9

10
6

12
3

11
8

13
2 11

0
13

6
14

1
14

5
12

5
12

1
14

4 10
1

13
7

14
9

11
6

11
1

14
8

11
3

14
0

14
2

14
6 10

9
10

4
11

7
13

8 10
5

12
9

13
3 15

0
71

12
8

13
9 11

5
12

2
11

4
10

2
14

3
13

5
11

2
14

7
12

4
12

7 73 84 13
4 12

0
69 88 66 76
77 55 59

78
87 51 53
86

52 57 75 98
74 79 64 92

61
99

58 94
10

7
67 85 56 91 62 72 68 83 93 95 10
0 89 96 97

63
65 80 60

54 90 70 81 82
42

30 31 26 10 35 13 2 46
36 5 38 28 29 41 1 18 50 8 40

23
7

43 3 4 48
14 9 39
17 33 34
15 16 6 19 21 32 37

11 49
45 47 20 22 44 24 27 12 25

0
2

4
6

Cluster Dendrogram

hclust (*, "complete")
dist(iris[, 1:4])

H
ei

gh
t

86 / 86

