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Abstract

We propose an early stopping algorithm for learning gradients. The motivation
is to choose “useful” or “relevant” variables by a ranking method according to
norms of partial derivatives in some function spaces. In the algorithm, we used an
early stopping technique, instead of the classical Tikhonov regularization, to avoid
over-fitting. The advantage includes that we need no longer consider the choice of
a regularization parameter.

After stating dimension-dependent learning rates valid for any dimension of
the input space, we present a novel error bound when the dimension is large. Our
novelty is the independence of power index of the learning rates on the dimension
of the input space.
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1. Introduction and Learning Algorithm

Variable and feature selection is a classical topic in statistics with the aim also
of dimension reduction. A vast literature in learning theory addresses this issue.
Recently, Mukherjee and Zhou [10] proposed a new method for variable selection
with an idea of comparing norms of partial derivatives of an involved regression
function in a regression setting. The learning algorithm was motivated by some
applications from gene sequence analysis [7]. Following the work, Dong and Zhou
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[5] used a gradient descent method to reduce computational complexity. Mukher-
jee and Wu [8] studied a general class of loss functions and constructed the cor-
responding efficient algorithms for classification problems. Mukherjee et. al. [9]
studied the gradient learning problem on manifolds to capture the manifold prop-
erty of the data spaces. The learning rates achieved in these results are low when
the input space (or manifold) is of very high dimension. For example, in [5], the
rate for any fixed confidence is O(m−θ) with θ ≤ 1

6n+32 , where m is the sample
size and n is the dimension of the input space. Note that n is often very large for
learning problems with dimension reduction or variable selection. The purpose of
this paper is to study an early stopping algorithm for gradient learning. Our main
novelty is that learning rates O(m−θ) achieved by our algorithm have power index
θ independent of the input space dimension n when n is large. Such a dimension-
independent learning rate has never appeared in the literature of gradient learning.

We set our input space X to be a compact subset of Rn, and Y to be R. Let
Z = X × Y , and ρ be a Borel probability measure on Z. We write ρX as the
marginal distribution of ρ on X , and ρ(y|x) the conditional distribution at x =
(x1, · · · , xn) ∈ X . Suppose we have a least square regression function fρ(x) :=∫
Y y dρ(y|x) which has almost everywhere the gradient

∇fρ(x) =

(
∂fρ(x)

∂x1
, · · · , ∂fρ(x)

∂xn

)T
∈
(
L2
ρX

)n
.

Our learning algorithm is a kernel method. The reproducing kernel Hilbert
space (RKHS) HK corresponding to a Mercer kernel (see Aronszajn [2]) K is
defined as a completion of the linear span of the function set {Kx : Kx(·) :=
K(x, ·)} with respect to the inner product 〈Kx,Ku〉HK := K(x, u). We denote
HnK := {~f = (f1, · · · , fn)T : fi ∈ HK , i = 1, · · · , n}, then it is another Hilbert

space with norm ‖~f‖HnK :=
(∑n

i=1 ‖fi‖2HK
)1/2

, where ‖ · ‖HK is the norm on
HK .

The risk functional for learning the gradient came from the Taylor expansion
(see [10]): fρ(u) ≈ fρ(x) +∇fρ(x)T · (u − x) when u ≈ x. So, to approximate
∇fρ by a vector valued function ~f = (f1, · · · , fn)T ∈ HnK , one method is to
minimize the risk

E(~f) =

∫
X

∫
X
w(s)(x, u)(fρ(x)−fρ(u)+~f(x)T ·(u−x))2 dρX(x) dρX(u) (1.1)

in the space HnK , where w(s)(x, u) > 0 is the weight function to restrict x ≈ u.
Same as in [10], we require w(s)(x, u) → 0 as x−u

s → ∞ to reduce the sample
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error. In the following discussion we will use a special weight only

w(x, u) = w(s)(x, u) =
1

sn+2
e−
|x−u|2

2s2 .

For the sample set z = {(xi, yi)}mi=1 drawn i.i.d. from ρ, denoting w(s)
ij =

w(s)(xi, xj), we have the empirical risk functional

Ez(~f) =
1

m2

m∑
i,j=1

w
(s)
ij (yi − yj + ~f(xi)

T (xj − xi))2

=
〈
~f, Lz

K,s
~f
〉
HnK
− 2

〈
~fzρ,s,

~f
〉
HnK

+ Cz
0 ,

where Lz
K,s : HnK → HnK is defined as

Lz
K,s

~f =
1

m2

m∑
i,j=1

w
(s)
ij (xi − xj)(xi − xj)T ~f(xi)Kxi ,

and

~fzρ,s :=
1

m2

m∑
i,j=1

w
(s)
ij (yi − yj)(xi − xj)Kxi ,

Cz
0 :=

1

m2

m∑
i,j=1

w
(s)
ij (yi − yj)2.

Now our learning algorithm can be expressed as

~fzk+1 = ~fzk − γkLz
K,s

~fzk + γk ~f
z
ρ,s, k = 1, 2, · · · , k∗, (1.2)

where γk is the step size, having absorbed the constant 2. We set ~fz1 = 0. The
algorithm is called early stopping because the iteration procedure stops at step
k∗. Instead of finding computational criteria for determining k∗, we shall conduct
theoretical study on how a choice of type k∗ = ma with a > 0 yields learning rates
for gradient learning.

2. Main Results

We require some regularity of X , namely the cone property (see [1]), defined
as
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Definition 1. A set Ω ⊂ Rn has the cone property with parameter 0 < ϕ < π/2
and 0 < R < +∞ if there exits a function ~α : Ω → Sn−1, such that for each
x ∈ Ω, the cone

Cx = Cx(R,ϕ) := {u ∈ Rn : (u− x)T · ~α(x) > |u− x| cosϕ, |u− x| < R}

is contained in Ω.

In the following, we suppose that X satisfies the cone property, which in fact
could be guaranteed by the Lipschitz condition of the boundary of X (denoted by
∂X). That is, for each x ∈ ∂X , there exists a neighborhood Ux ⊂ Rn such that
∂X ∩ Ux is the graph of a Lipschitz continuous function (of order 1) with some
change of coordinates if necessary. Considering the compactness of X , we can
thus bound the Lipschitz constant away from infinity. See [1], page 66-67.

We here use the Mercer kernel K defined on X × X , thus the RKHS HK is
contained in L2

ρX
∩ C(X). We define LK :

(
L2
ρX

)n → (
L2
ρX

)n as

(LK ~f)(u) :=

∫
X

~f(x)K(x, u) dρX(x),

thus LK becomes a positive operator on
(
L2
ρX

)n.The range of LK lies in HnK and

the restriction of LK onto HnK is also positive. Besides, L1/2
K

((
L2
ρX

)n) ⊂ HnK
and ‖~f‖ρ = ‖L1/2

K
~f‖HK for ~f ∈ L

1/2
K

((
L2
ρX

)2), where ‖ · ‖ρ is the canonical

norm defined on
(
L2
ρX

)n as

‖~f‖ρ :=

(
n∑
k=1

∫
X
f2
k (x) dρX(x)

)1/2

.

We suppose that∇fρ ∈ LK
((
L2
ρX

)n) ⊂ HnK , then

‖∇fρ‖∞ := ess sup
x∈X

(
n∑
i=1

(
∂fρ(x)

∂xi

)2
)1/2

exists and it is finite. Denote κ := supx∈X
√
K(x, x) < +∞.

Denote Jp =
∫
Rn |x|

2e−
|x2|
2 dx for p ≥ 0. For learning gradients we assume

throughout the paper that ρX has a C1 density function p on X and we write cp =
‖p‖C(X). The case n = 1 is omitted because it is trivial for ranking based variable
selection problems.
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Theorem 1. Let n ≥ 2 and 0 ≤ τ < 1. Assume that X satisfies the cone property
with parameters (R,ϕ), and p(x) ≥ β(dist(x, ∂X))α for some β > 0 and 0 ≤
α < 3/2. Take the iteration step size γt = γ1t

−τ with γ1 = sn

κ2(1+cpJ2)
. If

|y| ≤ M almost surely and ∇fρ has the regularity that ∇fρ ∈ LK
((
L2
ρX

)n),
then by taking the weight parameter s = s0m

−1/(4n+11−2α) and the step k∗ =

k∗(m) =

⌈(
(1− τ)m(n+ 3

2
)/(4n+11−2α)

)1/(1−τ)
⌉
− 1, for m > (1− τ)

4α−22−8n
2n+3 ,

we have with confidence 1− δ for 0 < δ < 1,

‖~fzk∗+1 −∇fρ‖ρ ≤ C1m
−

3
2−α

11+4n−2α

(
1 +

logm

4(1− τ)

)
log

4

δ
,

with s0 = min
{

1, R
3
√
n+4

}
, and C1 is a constant independent of m or δ.

The learning rates in Theorem 1 depend on the dimension n of the input space.

The corresponding power index −
3
2
−α

11+4n−2α is very small when n is large. Similar
rates were achieved in [5, 10]. Meanwhile, learning rates in classical results (e.g.
[12, 13]) of least square regression learning by kernel methods do not have the
shortcoming. The upper bounds achieved in [12, 13] of the rates are independent
of the input space dimension. To achieve such a dimension-independent learning
rate, we give the following theorem.

Theorem 2. Let n ≥ 23. Under the same conditions as in Theorem 1, take the step
size γt = γ1t

−τ and 0 < γ1 ≤ (
√
nκ2cpJ2)−1. By taking the weight parameter

s = sz0m
−1

11−2α
+ 2
n with

sz0 = min

{
1,

R

3
√
n+ 4

,
εz

2(n+2)
e +

√
2| log(εnzcpJ2)|

}
,

εz = min{|xi − xj | : 1 ≤ i < j ≤ m},

and the step k∗ = k∗(m) =

⌈(
(1− τ)m

3/2
11−2α

)1/(1−τ)
⌉
− 1, for m > (1 −

τ)
2α−11
3/2 , we have with confidence 1− δ for 0 < δ < 1, that

‖~fzk∗+1 −∇fρ‖ρ ≤ C2m
−( 3

2
−α)( 1

11−2α
− 2
n)

(
1 + 2

√
logm

1− τ

)2

δ−
3
2n

(
log

6e

δ

) 5
2

,

where C2 is a constant independent of m or δ.

Remark. The power index
(

3
2 − α

) (
1

11−2α −
2
n

)
≥
(

3
2 − α

) (
1

11−2α −
2
23

)
is

independent of the dimension n. Though δ appears in a form of polynomial, the
power 3

2n is very small when n is large.
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3. Structure of Integral Operators

The gradient descent algorithm, although simple and economic in computation,
does not always provide satisfactory convergence rates. In some cases we cannot
guarantee the convergence at all since there may exist some directions to which
the risk function (or functional) could be very flat, having the principle curvature
hard to be bounded away from zero. This problem could be solved by adding the
Tikhonov regularization term as done in [15] and [5], with the shortcoming that
the regularization parameter may sometimes be difficult to fix, as well as that bias
may be introduced. Another way, called the early stopping method, as in [14],
is to exploiting more properties of the gradient, and prove that during the whole
process of iterations, one never goes through those directions of low curvature. We
will use the early stopping method, the shortcoming of which, as will be shown
below, is that we have to compose more prior assumptions, which might restrict its
applicability.

Let us define a sample-free limit of algorithm (1.2). We rewrite (1.1) as a
quadratic functional inHnK :

E(~f) =
〈
~f, LK,s ~f

〉
HnK
− 2

〈
~fρ,s, ~f

〉
HnK

+ C0, (3.1)

where LK,s : (L2
ρX

)n → HnK is defined as (see [10])

LK,s ~f =

∫
X

∫
X
w(x, u)(u− x)(u− x)T ~f(x)Kx dρX(u) dρX(x),

and

~fρ,s =

∫
X

∫
X
w(x, u)(fρ(u)− fρ(x))(u− x)Kx dρX(u) dρX(x),

C0 =

∫
X

∫
X
w(x, u)(fρ(x)− fρ(u))2 dρX(u) dρX(x).

So we can take gradient of E(~f) inHnK

GradE(~f) = 2(LK,s ~f − ~fρ,s),

and thus we get the so-called population iteration scheme for minimizing E(~f) in
HnK :

~fk+1 = ~fk −
1

2
γkGradE(~fk) = ~fk − γkLK,s ~fk + γk ~fρ,s, k = 1, 2, · · · .

We set ~f1 = 0.
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From the reproducing property

f(x) = 〈f,Kx〉HK , ∀f ∈ HK , x ∈ X,

we see that |f(x)| ≤ ‖f‖HK‖Kx‖HK ≤ κ‖f‖HK . Hence

‖~f‖ρ ≤ κ‖~f‖HnK . (3.2)

We define Γs : (L2
ρX

)n → (L2
ρX

)n (∀s > 0) as

(Γs ~f)(x) :=

∫
X
w(x, u)(u− x)(u− x)T dρX(u)~f(x).

Obviously, Γs is a positive operator. For any ~f ∈ (L2
ρX

)n,

LKΓs ~f =

∫
X
Kx

~f(x) dρX(x)

∫
X
w(x, u)(u− x)(u− x)T dρX(u)

=

∫
X

∫
X
w(x, u)(u− x)(u− x)T ~f(x)Kx dρX(x) dρX(u)

= LK,s ~f,

that is, LK,s = LK ◦ Γs. Unfortunately, LK and Γs do not commute, so generally
we can not represent LrK,s by LrK ◦ Γrs. But Γs is invertible when s is sufficiently
small. For proving this, we need a lemma.

Lemma 1. For a ≥ 1
2 ,

1

Γ(a)

∫ +∞

2a
e−yya−1 dy ≤ 1

2
,

where Γ(a) is the Gamma function defined by Γ(a) =
∫ +∞

0 e−yya−1 dy.

Proof. For a ≥ 1
2 , denote

I =

∫ +∞

2a
e−yya−1 dy = aa

∫ +∞

2
e−atta−1 dt.

Let e−1−u = te−t, we have u = t− log t− 1 and dt
t = du

t−1 . Note that t ≥ 2, so

I = aa
∫ +∞

1−log 2
e−ae−au

1

t− 1
du ≤ aae−a

∫ +∞

1−log 2
e−au du = aa−1e−a(2−log 2).

By the Stirling’s formula,

Γ(a) ≥
√

2πaa−
1
2 e−a,
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because a ≥ 1
2 ,

1

Γ(a)

∫ +∞

2a
e−yya−1 dy ≤ e−a(1−log 2)

√
2πa

≤
√

2√
πe

<
1

2
,

which completes the proof.

Theorem 3. If the density function of ρX satisfies the boundary condition: there
exists β > 0 and 0 ≤ α < 3/2 such that p(x) ≥ β(dist(x, ∂X))α, and if X
has the cone property with parameters (R,ϕ) as was mentioned before, then Γs is
invertible for 0 < s ≤ R

3
√
n+4

, and ‖Γ−1
s ‖ ≤ 1

sαw , where

w = w(α, β,R, ϕ) := β
πn/2Γ(n+α+2

2 )

Γ(n−2
2 )

2
n+α
2
−3(ϕ− sinϕ) sinα

ϕ

2
.(3.3)

Proof. For any vector ξ ∈ Rn and x ∈ X , we claim that for 0 < s ≤ R
3
√
n+4

,

I1 =

∫
X
w(u, x)

(
(u− x)T ξ

)2
p(u) du ≥ sαw|ξ|2.

Note that

I1 ≥
∫
Cx

w(u, x)
(
(u− x)T ξ

)2
β (dist(u, ∂Cx))α du.

Without loss of generality, we set x = 0, Cx = C0(R,ϕ) = {u ∈ Rn : uT e1 >
|u| cosϕ, |u| < R}, and ξ = |ξ| cosψe1+|ξ| sinψe2, where e1 = (1, 0, · · · , 0)T , e2 =
(0, 1, 0, · · · , 0)T ∈ Rn. We use the standard polar coordinates for u = (u1, · · · , un)T ∈
Rn: u1 = t cosϕ1, u2 = t sinϕ1 cosϕ2, · · · , un = t sinϕ1 sinϕ2 · · · sinϕn−1.
We write a = uT e1, b =

√
|u|2 − a2, so for any u ∈ C0, dist(u, ∂C0) =

min{R − |u|, a sinϕ − b cosϕ}, thus when R − |u| ≥ a sinϕ − b cosϕ, or suffi-
ciently when |u| ≤ R

2 ≤
R

1+sinϕ , dist(u, ∂X) ≥ a sinϕ− b cosϕ. We have

I1 ≥
∫
C0(R2 ,ϕ)

1

sn+2
e−
|u|2

2s2
(
uT ξ

)2
β (a sinϕ− b cosϕ)α du,

which equals

βsα|ξ|2
∫ R

2s

0
tn+1+αe−

t2

2 dt

∫ 2π

0
dϕn−1

∫ π

0
sinϕn−2 dϕn−2 · · ·

∫ π

0
(sinϕ3)n−4 dϕ3

·
∫ ϕ

0
dϕ1

∫ π

0
(cosϕ1 cosψ + sinϕ1 cosϕ2 sinψ)2 sinα(ϕ− ϕ1) dϕ2.
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Hence

I1 ≥ βsα|ξ|2 2
√
π
n−2

Γ(n−2
2 )

∫ R
2s

0
tn+1+αe−

t2

2 dt

·
∫ ϕ

0
sinα(ϕ− ϕ1) dϕ1

∫ π

0
(cos2 ϕ1 cos2 ψ + sin2 ϕ1 sin2 ψ cos2 ϕ2) dϕ2,

which implies

I1 ≥ βsα|ξ|2 2
√
π
n−2

Γ(n−2
2 )

2
n+α
2

∫ R2

8s2

0
y
n+α
2 e−y dy

·π
∫ ϕ

0
sinα(ϕ− ϕ1)(cos2 ϕ1 cos2 ψ +

1

2
sin2 ϕ1 sin2 ψ) dϕ1.

When 0 ≤ ϕ1 ≤ ϕ
2 <

π
4 , 3

2 sin2 ϕ1 − 1 ≤ 3
4 − 1 < 0, so

cos2 ϕ1 cos2 ψ +
1

2
sin2 ϕ1 sin2 ψ = cos2 ϕ1 + sin2 ψ

(
3

2
sin2 ϕ1 − 1

)
≥ cos2 ϕ1 +

3

2
sin2 ϕ1 − 1 =

1

2
sin2 ϕ1,

and also, when s ≤ R
3
√
n+4

, we have R2

8s2
≥ 2

(
n+α

2 + 1
)
, so by Lemma 1,

I1 ≥ βsα|ξ|2 2
n+α
2 πn/2

Γ
(
n−2

2

) Γ

(
n+ α+ 2

2

)(
sinα

ϕ

2

)∫ ϕ/2

0

1

2
sin2 ϕ1 dϕ1

= βsα|ξ|2
πn/2Γ

(
n+α+2

2

)
Γ
(
n−2

2

) 2
n+α
2
−3(ϕ− sinϕ) sinα

ϕ

2
= sαw|ξ|2.

This verifies our claim.
For any ~f ∈

(
L2
ρX

)n,

‖Γs ~f‖2ρ =

∫
X

∣∣∣∣∫
X
w(x, u)(u− x)(u− x)T dρX(u)~f(x)

∣∣∣∣2 dρX(x)

≤
∫
X

∣∣∣∣∫
X
w(x, u)|u− x|2p(u) du

∣∣∣∣2 ∣∣∣~f(x)
∣∣∣2 dρX(x)

≤ J2
2 c

2
p‖~f‖2ρ,

so Γs is bounded and

‖Γs‖ ≤ cpJ2. (3.4)
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On the other hand, we have〈
Γs ~f, ~f

〉
ρ
≥ sαw

∫
X
|~f(x)|2 dρX(x) = sαw‖~f‖2ρ,

which implies the conclusion.
Remark: We find from the proof that the lower bound with parameters (α, β),
p(x) ≥ β(dist(x, ∂X))α could be replaced by

p(x) ≥ β(dist(x, ∂Cy))
α (3.5)

for any y ∈ X and x ∈ Cy. Condition (3.5) keeps the assumption away from the
severe requirement of p(x) when x is far away from the boundary ∂X .

4. Sample Error

The main results in this section are Lemma 2 and Lemma 3, which are for prov-
ing Theorem 1 and Theorem 2 respectively. In the following analysis we suppose
that |y| ≤ M <∞ almost surely. M is also used as an upper bound of 1

2‖∇fρ‖∞
for saving the notations.

Lemma 2. Let z = {(xi, yi)}mi=1 be drawn independently from (Z, ρ), and 0 <

γ1 ≤
(
κ2(1+cpJ2)

sn

)−1
, for any δ ∈ (0, 1

2) and any s > 0, we have with confidence
1− 2δ:

‖~fzk+1 − ~fk+1‖HnK ≤
C3(k + 1)2−2τ

√
ms(1− τ)2

log
2

δ
, (4.1)

where

C3 =
34M

κ
√

e

(√
n

e
+ 1

)
.

Lemma 3. Let z = {(xi, yi)}mi=1 be drawn independently from (Z, ρ). Set 0 <

γ1 ≤
(√
nκ2cpJ2

)−1. For any δ ∈ (0, 1/3), we have with confidence at least
1− 3δ the estimation

‖~fzk+1 − ~fk+1‖HnK ≤
91M

(
2
√

logm+ 1
)

(k + 1)2−2τ

κ
√
nC4δ1/n(1− τ)2

m
2α−9

2(11−2α)

(
log

2e

δ

) 5
2

,(4.2)

where we define the weight parameter s = sz0m
−1

11−2α
+ 2
n with

sz0 = min

{
1,

R

3
√
n+ 4

,
εz

2(n+2)
e +

√
2| log(εzcpJ2)|

}
,

and C4 is a constant depending only on (X, ρX).
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Lemma 2 and Lemma 3 will be proved later in this section.
A linear bounded operator L on a Hilbert space H is said to be a Hilbert-

Schmidt operator if for an orthonormal basis {ei}i∈I of H , one has ‖L‖HS :=(∑
i∈I ‖Lei‖2H

)1/2
< +∞. It can be proved that the Hilbert Schmidt norm ‖ · ‖HS

is independent of the choice of the basis {ei}i∈I . Any finite rank operator is a
Hilbert-Schmidt operator. For any self-adjoint Hilbert-Schmidt operator L, one
has ‖L‖HS ≥ ‖L‖.

In the Hilbert spaceHnK , we define for any x ∈ X , Ax : ~f 7→ ~f(x)Kx. Then

‖Ax ~f‖2HnK ≤
n∑
i=1

‖fi‖2HK‖Kx‖4HK = K(x, x)2‖~f‖2HnK ≤ κ
4‖~f‖2HK .

So ‖Ax‖ ≤ κ2. Also, it is obvious that Ax is self-adjoint. Since the rank of Ax is
no greater than n, it is a Hilbert Schmidt operator. Let e1, · · · , eq ∈ HnK be an or-
thonormal set spanning the range of Ax. So one has ‖Ax‖2HS =

∑q
i=1 ‖Aei‖2HnK ≤

qκ4 ≤ nκ4, and thus ‖Ax‖HS ≤
√
nκ2 for any x ∈ X . We have the relations

LK,s =

∫
X

∫
X
w(x, u)(u− x)(u− x)TAx dρX(u) dρX(x) (4.3)

Lz
K,s =

1

m2

m∑
i,j=1

w
(s)
i,j (xi − xj)(xi − xj)TAxi . (4.4)

LK,s and Lz
K,s are both self-adjoint. Also, from (4.3) and (4.4) one can directly

compute

‖LK,s‖HS ≤
∫
X

∫
X
w(x, u)|u− x|2‖Ax‖HS dρX(x) dρX(u)

≤
√
nκ2cpJ2. (4.5)

Moreover, ELz
K,s = m−1

m LK,s, and similarly, E~fzρ,s = m−1
m

~fρ,s.
Preparing for proving Lemma 2, we cite the following lemma from [5] with

a little refinement, which could be done as noticing that 1
sn+2 e−

v2

2s2 v2 ≤ 2
esn and

1
sn+2 e−

v2

2s2 v ≤ 1√
esn+1 for any v ∈ R, during the proof in [5].

Lemma 4. Let z = {(xi, yi)}mi=1 be independently drawn from (Z, ρ), and Lz
K,s,

LK,s, ~fzρ,s, ~fρ,s be defined as before. For any s > 0 and any δ ∈ (0, 1/2), with
confidence 1− 2δ, the following inequalities hold,

‖Lz
K,s − LK,s‖HS ≤

34κ2√n log 2
δ

e
√
msn

‖~fzρ,s − ~fρ,s‖HnK ≤
34Mκ log 2

δ√
emsn+1

.

11



Lemma 5. Let z = {(xi, yi)}mi=1 be independently drawn from (Z, ρ) and s > 0,
then

‖~fzρ,s‖HnK ≤ 2κM√
esn+1

, (4.6)

and

‖Lz
K,s‖L(HnK) ≤

2κ2

esn
(4.7)

hold almost surely.

Proof. (4.6) follows directly from the definition. (4.7) holds because∣∣∣∣〈Lz
K,s

~f, ~f
〉
HnK

∣∣∣∣ =
1

m2

n∑
i,j=1

w
(s)
ij

(
(xi − xj)T ~f(xi)

)2

≤ m− 1

m

2

esn
κ2‖~f‖2HnK

for any ~f ∈ HnK .

We see that if we set 0 < γ1 ≤
(
κ2(1+cpJ2)

sn

)−1
, then for t = 1, 2, · · · ,

‖γtLz
K,s‖L(HnK) ≤ 1 almost surely.

Lemma 6. Let s > 0, for ~fzk recurrently defined in (1.2) and 0 < γ1 ≤
(
κ2(1+cpJ2)

sn

)−1
,

we have

‖~fzk‖HnK ≤
2κMγ1k

1−τ
√

esn+1(1− τ)
, k = 2, 3, · · ·

almost surely.

Proof. Since Lz
K,s is positive and ‖γtLz

K,s‖L(HnK) ≤ 1 for any t ≥ 1, so ‖I −
γtL

z
K,s‖L(HnK) ≤ 1 a.s. for t ≥ 1. We have from Lemma 5 that when k ≥ 2,

‖~fzk‖HnK ≤
k−1∑
l=1

γ1l
−τ 2κM√

esn+1
≤

2κMγ1

(
(k − 1)1−τ − τ

)
√

esn+1(1− τ)

almost surely.

12



Proof of Lemma 2. By definition, we get

~fzk+1 − ~fk+1 = (1− γkLK,s)(~fzk − ~fk) + γkχk,

where χk = (LK,s−Lz
K,s)

~fzk + ~fzρ,s− ~fρ,s. Since ~fz1 = ~f1 = 0, we have by simple
iteration:

~fzk+1 − ~fk+1 =
k∑
j=1

γj

k∏
p=j+1

(1− γpLK,s)χj ,

so,

‖~fzk+1 − ~fk+1‖HnK ≤
k∑
j=1

γj‖χj‖HnK

with confidence 1− 2δ. Hence

‖~fzk+1 − ~fk+1‖HnK ≤
k∑
j=1

γj

(
34κ2√n log 2

δ

e
√
msn

· 2κMγ1j
1−τ

√
esn+1(1− τ)

+
34Mκ log 2

δ√
emsn+1

)

≤
34
√
nM log 2

δ

κe3/2
√
ms(1− τ)2

(k + 1)2−2τ +
34M log 2

δ

κ
√

ems(1− τ)
(k + 1)1−τ

≤
34M log 2

δ

κ
√

ems(1− τ)2
(k + 1)2−2τ

(√
n

e
+ 1

)
=
C3(k + 1)2−2τ

√
ms(1− τ)2

log
2

δ
.

Let M(H) denote the class of all the sequence f = (f0, f1, · · · ) of Bochner-
integrable random variables with values in the separable Hilbert space H such that
f0 = 0 and f is a martingale. Pinelis proved the following result ([11], special case
with D = 1 of Theorem 3.2).

Lemma 7. Let H be a separable Hilbert space, f ∈ M(H) and f be adapted
to a non-decreasing sequence {Fj}∞j=0 of sub-σ-fields of the Borel set B on the
probability space Ω. Suppose λ > 0 satisfies that Eeλ‖dj‖ < +∞ for j = 1, 2, · · · ,
where dj = fj − fj−1. Then for all r ≥ 0,

Prob

{
sup
j
‖fj‖ ≥ r

}
≤ 2 exp

−λr +

∥∥∥∥∥∥
∞∑
j=1

ej

∥∥∥∥∥∥
∞

 ,

where ej := E
{

eλ‖dj‖ − 1− λ‖dj‖
∣∣Fj−1

}
≥ 0, a.e..

Lemma 7 directly implies

13



Lemma 8. For a finite martingale f = (f0, · · · , fm), f0 = 0, with the same
settings as Lemma 7, one has

Prob

{
max

1≤j≤m
‖fj‖ ≥ r

}
≤ 2 exp

{
−λr +m(eλ∆ − 1− λ∆)

}
,

where ∆ ≥ max1≤j≤m ‖dj‖∞.

One can obtain the following corollary directly by modifying Pinelis’ proof
[11] to Lemma 7 by a few lines. Probability inequalities of the similar type are
also proved in [11].

Corollary 1. For a finite martingale f = (f0, · · · , fm), f0 = 0, with the same
settings as Lemma 7, for any ∆ ≥ 0, one has

Prob

(
max

1≤j≤m
‖fj‖ ≥ r, max

1≤i≤m
‖di‖ ≤ ∆

)
≤ 2 exp

{
−λr +m

(
eλ∆ − 1− λ∆

)}
.

Proof. As was done in [11], we build a positive super-martingale

G0 = 1, Gj = cosh(λ‖fj‖)

/
j∏
i=1

(1 + ei) , j = 1, · · · ,m.

We denote J := min{j : ‖fj‖ ≥ r} if it exists. Since f is a finite martingale, one
has J ≤ m. Thus

Prob

(
max

1≤j≤m
‖fj‖ ≥ r

∣∣∣∣ max
1≤i≤m

‖di‖ ≤ ∆

)

≤ Prob

GJ ≥ cosh(λr)

/
m∏
j=1

(1 + ej)

∣∣∣∣∣∣ max
1≤i≤m

‖di‖ ≤ ∆


≤ Prob

GJ ≥ eλr

2

/
m∏
j=1

(
1 + eλ∆ − 1− λ∆

)∣∣∣∣∣∣ max
1≤i≤m

‖di‖ ≤ ∆


≤ 2E (GJ |max1≤i≤m ‖di‖ ≤ ∆)

eλr

(
1 +

(
eλ∆ − 1− λ∆

))m
,

where Chebyshev’s inequality is used in the last step. Since GJ is non-negative,
one has

Prob

(
max

1≤i≤m
‖di‖ ≤ ∆

)
· E
(
GJ

∣∣∣∣ max
1≤i≤m

‖di‖ ≤ ∆

)
≤ EGJ ≤ EG0 = 1.

14



Also, since for all t ≥ 0, et − 1 − t ≥ 0, hence for all p ≥ 0, 1 + p ≤ ep, so we
have (

1 + eλ∆ − 1− λ∆
)m

= exp
(
m log(1 + (eλ∆ − 1− λ∆))

)
≤ exp

(
m(eλ∆ − 1− λ∆)

)
,

which implies the conclusion.
In the large dimension, small sample problem, a primary observation is that

the probability of any two sample points be very close should be very small. To
formulate the fact precisely, for x = {xi}mi=1 drawn i.i.d. from ρX , we give the
following

Lemma 9. For any δ ∈ (0, 1), with confidence 1− δ, we have

εz ≥
(
δnΓ(n/2)

πn/2cpm2

)1/n

.

Proof. Since x is i.i.d. drawn, for any ε0 > 0,

Prob(εz < ε0) ≤
∑

1≤i<j≤m
Prob(|xi − xj | < ε0) =

(
m

2

)
Prob(|x1 − x2| < ε0)

≤ m2

2

∫
X

dρX(x1)

∫
B(x1,ε0)∩X

dρX(x2) ≤ m2

2

∫
X

dρX(x1)

∫
B(x1,ε0)

cp dx2

=
m2cp

2

∫
X

2πn/2εn0
nΓ(n/2)

dρX(x1) =
πn/2cpε

n
0m

2

nΓ(n/2)
,

which implies the result.

Lemma 10. Let n ≥ 23, with confidence 1− 3δ for δ ∈ (0, 1/3), we have

‖Lz
K,s − LK,s‖HS ≤ 5

√
nκ2 cp J2√
m

log
2e

δ
(4.8)

‖~fzρ,s − ~fρ,s‖HnK ≤ 26κMcpJ2

C4
m

2α−9
2(11−2α)

(
2
√

logm+ 1
)
δ−

1
n

(
log

2e

δ

) 3
2

,(4.9)

where s and C4 are set coherent with Lemma 3.

Proof. Consider

∂

∂t

(
t2

sn+2
e−t

2/2s2
)

=
1

sn+2

(
2t− t3

s2

)
e−t

2/2s2 (4.10)

∂

∂s

(
t2

sn+2
e−t

2/2s2
)

= t2
(
−n+ 2

sn+3
+

t2

sn+5

)
e−t

2/2s2 , (4.11)
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we see that when 0 < s ≤ εz√
n+2

, and t ≥ εz, the function t2

sn+2 e−t
2/2s2 is increas-

ing w.r.t. s, and decreasing w.r.t. t, so by (4.4) we have

‖Lz
K,s‖HS ≤

κ2√n
m2

m∑
i,j=1

w
(s)
ij |xi − xj |

2 ≤ κ2√n(m− 1)ε2
z

msn+2
exp

{
− ε2

z

2s2

}
.

Since

0 < s ≤ εz
2(n+2)

e +
√

2| log(εnzcpJ2)|
,

we have (
εz
s
− n+ 2

e

)2

≥
(
n+ 2

e
+
√

2| log(εnzcpJ2)|
)2

≥
(
n+ 2

e

)2

− 2 log(εnzcpJ2),

hence

− ε2
z

2s2
+

(n+ 2)εz
es

≤ log(εnzcpJ2).

Because log t ≤ t
e for any t > 0, we have

− ε2
z

2s2
+ (n+ 2) log

εz
s
≤ log(εnzcpJ2),

that is,

ε2
z

sn+2
e−

ε2z
2s2 ≤ cpJ2, a.s., (4.12)

so,

‖Lz
K,s‖HS ≤ κ2√ncpJ2 (4.13)

almost surely. Owing to the continuity of Lz
K,s with respect to z1, · · · , zm, Lz

K,s is
a Bochner integrable random variable.

We define a sequence f = (f0, f1, · · · , fm) with f0 = 0 and

fi = E
{
Lz
K,s −

m− 1

m
LK,s

∣∣∣∣ z1, · · · , zi
}
, i = 1, · · · ,m.
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Then f is a martingale. We define dj = fj − fj−1 for 1 ≤ j ≤ m. From (4.5) and
(4.13), we see that fj’s are uniformly bounded, so are dj’s, j = 0, 1, · · · ,m, thus
Eeλ‖dj‖HS < +∞ for any 1 ≤ j ≤ m and λ ≥ 0.

We have

dj = E
{
Lz
K,s − EzjL

z
K,s

∣∣ z1, · · · , zj
}
.

Now,

Lz
K,s − EzjL

z
K,s

=
1

m2

m∑
i=1

w
(s)
ij (xj − xi)(xj − xi)T (Axj +Axi)

− 1

m2

m∑
i=1,i 6=j

∫
X
w(x, xi)(x− xi)(x− xi)T (Ax +Axi) dρX(x)

=: W1 −W2,

and

‖W2‖HS ≤ 2
√
nκ2

m2

m∑
i=1,i 6=j

∫
X

1

sn+2
exp

{
−|x− xi|2

2s2

}
|x− xi|2p(x) dx

≤ 2κ2√n
m

cpJ2.

Following from (4.10), (4.11), and (4.12),

‖W1‖HS ≤ 2
√
nκ2

m2

m∑
i=1

w(xi, xj)|xi − xj |2

≤ 2
√
nκ2ε2

z

msn+2
exp

{
− ε2

z

2s2

}
≤ 2
√
nκ2cpJ2

m
.

So,

‖dj‖HS ≤ ‖W1‖HS + ‖W2‖HS ≤
4
√
nκ2cpJ2

m

almost surely.
Using Lemma 8 by taking ∆ = 4

√
nκ2cpJ2/m and λ = 1

∆
√
m
≤ 1

∆ which

implies eλ∆ − 1− λ∆ ≤ (λ∆)2 = 1
m , we have for any r1 > 0,

Prob

{
max

1≤j≤m
‖fj‖HS ≥ r1

}
≤ 2 exp

{
− r1

∆
√
m

+ 1

}
. (4.14)
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Put δ = 2 exp
{
− r1

∆
√
m

+ 1
}

, we get r1 =
4
√
nκ2cpJ2√
m

log 2e
δ , so, with confidence

1− δ,∥∥∥∥Lz
K,s −

m− 1

m
LK,s

∥∥∥∥
HS

≤ max
1≤j≤m

‖fj‖HS ≤
4
√
nκ2cpJ2√
m

log
2e

δ
, (4.15)

which, combined with (4.5), proves (4.8).
We let now f ′i := E

{
~fzρ,s − m−1

m
~fρ,s

∣∣∣ z1, · · · , zi
}

, i = 1, · · · ,m, and f ′0 = 0.

{f ′i} also forms a finite martingale with each random variable taking value inHnK .
We define d′j = f ′j − f ′j−1 for 1 ≤ j ≤ m. Similarly,

d′j = E{~fzρ,s − Ezj ~f
z
ρ,s|z1, · · · , zj}.

Now

~fzρ,s − Ezj ~f
z
ρ,s

=
1

m2

m∑
i=1

wij(yj − yi)(xj − xi)(Kxj +Kxi)

− 1

m2

m∑
i=1,i 6=j

∫
X
w(x, xi)(fρ(x)− yi)(x− xi)(Kx +Kxi) dρX(x)

=: W ′1 −W ′2.

Since |yi| ≤M a.s. for i = 1, · · · ,m, we have

‖W ′1‖HnK ≤
1

m2

m∑
i=1

4κM
|xi − xj |
sn+2

e−|xi−xj |
2/2s2 .

Thanks to

∂

∂t

(
t

sn+2
e−

t2

2s2

)
=

1

sn+2

(
1− t2

s2

)
e−

t2

2s2 ,

we see that when s ≤ t√
n+2

< t, the function t
sn+2 e−t

2/2s2 is decreasing w.r.t. t,
so

‖W ′1‖HnK ≤
4Mκεz
msn+2

exp

{
− ε2

z

2s2

}
≤ 4MκcpJ2

mεz
,

where the second inequality follows from (4.12). The next inequality is derived
easily from the fact J1 ≤ J2 as

‖W ′2‖HnK ≤
1

m
4κMcpJ1s

−1 ≤ 4κMcpJ2

ms
.
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So we get

‖d′j‖HnK ≤
4κMcpJ2

m

(
1

εz
+

1

s

)
≤ 8κMcpJ2

ms
, a.s.,

where the second inequality comes from s ≤ εz√
n+2
≤ εz.

By definition sz0 ≤ 1, on the other hand, by Lemma 9 we have with confidence
1− δ,

εz ≥
(
δnΓ(n/2)√
πncpm2

)1/n

, (4.16)

which implies

| log εz| ≤ | log Diam(X)|+ 2

n
logm+

1

n

∣∣∣∣log

(
δnΓ(n/2)√

πncp

)∣∣∣∣ .
Therefore, when (4.16) holds, we have

εz
2(n+2)

e +
√

2| log(εnzcpJ2)|
≥ CXm

−2/nδ1/n(
2
√

logm+ 1
) (√

2 log 1
δ + 1

) ,
where

CX :=

(
nΓ(n/2)√
πncp

)1/n

2(n+2)
e +

√
2| log(cpJ2)|+

√
2n| log Diam(X)|+ 2

∣∣∣log
(
nΓ(n/2)√
πncp

)∣∣∣ ,
which depends only on (X, ρX). Since δ ∈ (0, 1/3), then δ ≤ 1/

√
e, which

implies √
2 log

1

δ
≥ 1,

so by definition we have with confidence 1− δ,

sz0 ≥ C4
m−2/nδ1/n

3
(
2
√

logm+ 1
)√

log 1
δ

, (4.17)

where

C4 = min

{
1,

R

3
√
n+ 4

, CX

}
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depends also only on (X, ρX).
Therefore, we have with confidence 1− δ, ‖d′j‖HnK ≤ ∆′, where

∆′ =
24κMcpJ2

C4δ1/n
m

2α−10
11−2α

(
2
√

logm+ 1
)√

log
1

δ
.

We take λ′ = 1
∆′
√
m

which implies eλ
′∆′ − 1− λ′∆′ ≤ 1

m . So, for any r2 ≥ 0, by
Corollary 1,

Prob

{
max

1≤j≤m
‖f ′j‖HnK ≥ r2

}
≤ Prob

{
max

1≤j≤m
‖f ′j‖HnK ≥ r2, max

1≤j≤m
‖d′j‖HnK ≤ ∆′

}
+ δ

≤ δ + 2 exp

{
− r2

∆′
√
m

+ 1

}
.

Put δ = 2 exp
{
− r2

∆′
√
m

+ 1
}

, we have

r2 = ∆′
√
m log

2e

δ
(4.18)

≤ 24κMcpJ2

C4δ1/n
m
−9+2α

2(11−2α)

(
2
√

logm+ 1
)(

log
2e

δ

) 3
2

, (4.19)

thus with confidence 1− 2δ,∥∥∥∥~fzρ,s − m− 1

m
~fρ,s

∥∥∥∥
HnK

≤ max
1≤j≤m

‖f ′j‖HnK ≤ r2, (4.20)

which, combined with (4.19) and the estimation 1
m‖~fρ,s‖HnK ≤

2κMcpJ2
m , proves

(4.9). The proof is thus completed.

Corollary 2. when (4.20) holds,

‖~fzρ,s‖HnK ≤
26κMcpJ2

C4δ1/n

(
2
√

logm+ 1
)(

log
2e

δ

) 3
2

.

Proof. Direct computing verifies the result.

Lemma 11. For ~fzk recurrently defined in (1.2) and k ≥ 2, we have

~fzk =

k−1∑
l=1

γl

k−1∏
p=l+1

(
I − γpLz

K,s

)
~fzρ,s, (4.21)
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where we denote
∏k−1
p=k

(
1− γpLz

K,s

)
:= I for saving the notations. Moreover,

when (4.9) holds true, setting 0 < γ1 ≤
(√
nκ2cpJ2

)−1, we have

‖~fzk‖HnK ≤
26M

κ
√
nC4δ1/n

(
2
√

logm+ 1
)(

log
2e

δ

) 3
2 (k − 1)1−τ

1− τ
.

Proof. (4.21) could be verified directly by computing. From (4.13), we have 1 −
γp‖Lz

K,s‖L(HnK) ≥ 0. Since Lz
K,s is positive, ‖1 − γpLz

K,s‖L(HnK) ≤ 1. So when
(4.9) holds true, for any k ≥ 2,

‖~fzk‖ ≤
k−1∑
l=1

γl‖~fzρ,s‖HnK

≤ 26M

κ
√
nC4δ1/n

(
2
√

logm+ 1
)(

log
2e

δ

) 3
2 (k − 1)1−τ

1− τ
.

Proof of Lemma 3. By definition, we get

~fzk+1 − ~fk+1 = (1− γkLK,s)(~fzk − ~fk) + γkχk,

where χk = (LK,s−Lz
K,s)

~fzk + ~fzρ,s− ~fρ,s. Since ~fz1 = ~f1 = 0, we have by simple
iteration:

~fzk+1 − ~fk+1 =

k∑
j=1

γj

 k∏
q=j+1

(1− γqLK,s)

χj .

Since LK,s ∈ L(HnK) is positive,

‖LK,s‖L(HnK) = sup
~g∈HnK ,‖~g‖HnK=1

〈LK,s~g,~g〉HnK

= sup
~g∈HnK ,‖~g‖HnK=1

∫
X

∫
X
w(x, u)

(
(u− x)T~g(x)

)2
dρX(u) dρX(x) ≤ κ2cpJ2,

thus 1− γq‖LK,s‖L(HnK) ≥ 0, so for any q ≥ 1, ‖1− γqLK,s‖L(HnK) ≤ 1. We have

‖~fzk+1 − ~fk+1‖HnK ≤
k∑
j=1

γj‖χj‖HnK .
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Since (4.8), (4.9) and Lemma 11 imply

‖χj‖HnK ≤ ‖Lz
K,s − LK,s‖L(HnK)‖~fzj ‖HnK + ‖~fzρ,s − ~fρ,s‖HnK

≤ 5
√
nκ2cpJ2√
m

(
log

2e

δ

) 5
2 26M(j − 1)1−τ

κ
√
nC4δ1/n(1− τ)

(
2
√

logm+ 1
)

+
26κMcpJ2

C4δ1/n
m

2α−9
2(11−2α)

(
2
√

logm+ 1
)(

log
2e

δ

) 3
2

,

for j = 1, 2, · · · , we have with confidence 1− 3δ,

‖~fzk+1 − ~fk+1‖HnK ≤
65M(k + 1)2−2τ

(
2
√

logm+ 1
)

κ
√
mnC4δ1/n(1− τ)2

(
log

2e

δ

) 5
2

+
26M

(
2
√

logm+ 1
)

(k + 1)1−τ

κ
√
nC4δ1/n(1− τ)

m
2α−9

2(11−2α)

(
log

2e

δ

) 3
2

,

which implies the result.

5. Approximation Error

We put here the approximation error estimation first.

Theorem 4. For the global iteration and the step size γt = γ1t
−τ with 0 < γ1 ≤(

κ2cpJ2

)−1 and 0 ≤ τ < 1, if k ≥ 1, one has

‖~fk+1 −∇fρ‖ρ ≤
‖L−1

K ∇fρ‖ρ(1− τ)

ewsαγ1(1− 2τ−1)(k + 1)1−τ

+C5γ1κ
2s3/2 +

6C5

ew
s

3
2
−α log

k + 1

1− τ
,

with w, s, and C5 set in (3.3), (5.5), and (5.6) respectively.

In the analysis of this section, we assume that the regression function fρ has
the following regularity

Mν := ess sup
x∈X

 ∑
1≤i1,··· ,iν≤n

(
∂νfρ(x)

∂xi1 · · · ∂xiν

)2
1/2

< +∞ (5.1)

with ν = 2, 3. We assume for the density function p(x),

Mp := ess sup
x∈X
|∇p(x)| = ess sup

x∈X

(
n∑
i=1

(
∂p(x)

∂xi

)2
)1/2

< +∞. (5.2)
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We define

ψ(r) = ρX({x ∈ X : dist(x, ∂X) ≤ r}), (5.3)

then ∀r ≤ 0, ψ(r) = 0, and ∀r ≥ Diam(X)/2, ψ(r) = 1, where Diam(X) :=
supx,y∈X |x− y|. ψ(r) is an increasing function and so it is differentiable a.e.. We
assume that ψ is absolutely continuous with its derivative ψ′(r) bounded:

|ψ′(r)| ≤Mψ′ < +∞ (5.4)

for a.e. r ∈ R. For the weight parameter s, we require during this section that

0 < s ≤ min

{
1,

R

3
√
n+ 4

}
(5.5)

with R set as were in Theorem 3. Denote

~ζ(x) :=

∫
X
w(x, u)(fρ(u)− fρ(x))(u− x) dρX(u),

then LK~ζ = ~fρ,s, and we have

Lemma 12. With regularity assumptions (5.1), (5.2) and (5.4) being satisfied, one
has

‖~ζ − Γs∇fρ‖ρ ≤ C5s
3/2,

where

C5 =
Γ((n+ 3)/2)

Γ(n/2)
M2cp2

n+1
2

√
(n+ 3)πnMψ′

+
1

6
M3cpJ4 +

1

2
M2MpJ4 +

1

6
M3MpJ5. (5.6)

Proof. For any x ∈ X , we write r(x) := dist(x, ∂X), then∣∣∣~ζ(x)− Γs(x)∇fρ(x)
∣∣∣

≤

∣∣∣∣∣
∫
B(x,r(x))

w(x, u)(fρ(u)− fρ(x)−∇fρ(x)T (u− x))(u− x) dρX(u)

∣∣∣∣∣
+

∫
X\B(x,r(x))

w(x, u)
M2

2
|u− x|3p(u) du

=: I1 + I2,
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where the inequality holds because

fρ(u)− fρ(x)−∇fρ(x)T (u− x) =
1

2
(u− x)THessfρ(x+ θx(u)(u− x))(u− x),

with 0 < θx(u) < 1.
Doing one step further the expansion:

fρ(u)− fρ(x)−∇fρ(x)T (u− x)

=
1

2
(u− x)THessfρ(x)(u− x)

+
1

6

n∑
i,j,k=1

∂3fρ(x+ θ̃x(u)(u− x))

∂xi∂xj∂xk
(ui − xi)(uj − xj)(uk − xk),

and

p(u) = p(x) +∇p(x+ µx(u)(u− x))T (u− x),

where θ̃x(u), µx(u) ∈ (0, 1), we have

I1 ≤

∣∣∣∣∣
∫
B(x,r(x))

w(x, u)
1

2

(
(u− x)THessfρ(x)(u− x)

)
(u− x)p(x) du

∣∣∣∣∣
+

∫
B(x,r(x))

w(x, u)|u− x|
(

1

6
|u− x|3M3p(x) +

1

2
|u− x|3M2Mp

+
1

6
|u− x|4M3Mp

)
du.

By a change of variable v = u−x
s , we see that

I1 ≤ 0 +

∫
B(0,r(x)/s)

s2e−|v|
2/2|v|4

(
1

6
M3p(x) +

1

2
M2Mp +

s

6
|v|M3Mp

)
dv

≤ s2

(
1

6
M3cp +

1

2
M2Mp

)
J4 +

s3

6
M3MpJ5,

since s ≤ 1, we have

‖I1‖ρ ≤ s2

(
1

6
M3cpJ4 +

1

2
M2MpJ4 +

1

6
M3MpJ5

)
. (5.7)

On the other hand,

I2 ≤
M2s

2
cp

∫
Rn\B(0,r(x)/s)

e−|v|
2/2|v|3 dv.
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We have

‖I2‖2ρ ≤
(
M2scp

2

)2 ∫
X

dρX(x)

(∫
Rn\B(0,r(x)/s)

e−|v|
2/2|v|3 dv

)2

=

(
M2scp

2

)2 ∫ Diam(X)/2

0
ψ′(r) dr

(
2
√
πn

Γ(n/2)

∫ +∞

r/s
tn+2e−t

2/2 dt

)2

≤
(
M2scp

√
πn

Γ(n/2)

)2

Mψ′s

∫ Diam(X)/2s

0
dξ

(∫ +∞

ξ
tn+2e−t

2/2 dt

)2

,

where ξ = r/s, and we emphasize that the notation ξ is different from the one in
the proof on Theorem 3. Also, u, x, y, r, and θ are temporarily employed in the
following inequalities as integral variables only.∫ Diam(X)/2s

0
dξ

(∫ +∞

ξ
tn+2e−t

2/2 dt

)2

≤
∫ +∞

0
dξ

∫ +∞

ξ

∫ +∞

ξ
xn+2yn+2e−(x2+y2)/2 dx dy

≤
∫ +∞

0
dξ

∫ +∞

ξ
dr

∫ π/2

0
r2(n+2)+1e−r

2/2 cosn+2 θ sinn+2 θ dθ

= 2n+1B

(
n+ 3

2
,
n+ 3

2

)∫ +∞

0
dξ

∫ +∞

ξ

(
r2

2

)n+2

e−r
2/2 d

(
r2

2

)
.

Where B(p, q) := 2
∫ π/2

0 sin2p−1 θ cos2q−1 θ dθ is the Euler-Beta function for any
p, q > 0, and B(p, q) = Γ(p)Γ(q)/Γ(p+ q). So by putting u = (r2 − ξ2)/2,∫ +∞

0
dξ

∫ +∞

ξ

(
r2

2

)n+2

e−r
2/2 d

(
r2

2

)
=

∫ +∞

0
dξ

∫ +∞

0

(
u+

ξ2

2

)n+2

e−u−
ξ2

2 du =

n+2∑
i=0

(n+ 2)!

i!2i

∫ +∞

0
e−ξ

2/2ξ2i dξ

=
n+2∑
i=0

(n+ 2)!

i!2i
2(2i−1)/2Γ

(
i+

1

2

)
≤ (n+ 2)!

n+2∑
i=0

1√
2
≤ (n+ 3)! .

Then we obtain

‖I2‖2ρ ≤
(
M2scp

√
πn

Γ(n/2)

)2

Mψ′s2
n+1 Γ((n+ 3)/2)2(n+ 3)!

Γ(n+ 3)
,
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hence

‖I2‖ρ ≤ s3/2M2cp
√
πnMψ′2

(n+1)/2Γ

(
n+ 3

2

)√
n+ 3

/
Γ
(n

2

)
,

which, combined with (5.7), implies our result since s ≤ 1.
We also need the following technical lemma.

Lemma 13. For any 0 ≤ τ < 1 and q ≥ 2,

q∑
i=2

(i− 1)−τ

/
q∑
j=i

j−τ

 ≤ 6 log
q + 1

1− τ
. (5.8)

Proof. Denote the left hand side of (5.8) by Q, then

Q ≤ 3

q−1∑
i=1

i−τ∑q
j=i j

−τ ≤ 3

q−1∑
i=1

i−τ (1− τ)

(q + 1)1−τ − i1−τ

=
3(1− τ)

q + 1

q−1∑
i=1

(
i

q+1

)−τ
1−

(
i

q+1

)1−τ .

Let ti =
(

i
q+1

)1−τ
for i = 1, · · · , q. For any i ≥ 1, (i + 1)1−τ − i1−τ =

(1 − τ)(i + θi)
−τ , where 0 < θi < 1. Since

(
i

q+1

)−τ
≥ 1 for any i = 1, · · · , q,

we have

ti+1 − ti =
(1− τ)(i+ θi)

−τ

(q + 1)1−τ ≥ (1− τ)(i+ 1)−τ

(q + 1)1−τ ,

then

1

q + 1
≤ (ti+1 − ti)(1− τ)−1(i+ 1)τ

(q + 1)τ
,

which implies

Q ≤ 3

q−1∑
i=1

(
1 + 1

i

)τ
(ti+1 − ti)

1− ti
≤ 6

q−1∑
i=1

ti+1 − ti
1− ti

≤ 6

∫ (
q
q+1

)1−τ

0

dx

1− x
= 6 log

(
(q + 1)1−τ

(q + 1)1−τ − q1−τ

)
≤ 6 log

(
(q + 1)1−τ

(1− τ)(q + 1)−τ

)
= 6 log

q + 1

1− τ
.

26



The proof is thus completed.
The following Lemma, also employed in [14], follows directly from the spec-

tral decomposition, and the fact that x
∏q
i=1(1 − αix) ≤ (e

∑q
i=1 αi)

−1 for any
0 ≤ x ≤ min1≤i≤1

1
αi

. We thus omit the proof.

Lemma 14. Let L ∈ L(H) be positive for some Hilbert space H . Suppose we
have non-negative numbers α1, · · · , αq, s.t. ‖L‖ ·max1≤i≤q αi ≤ 1. Then∥∥∥∥∥

(
q∏
i=1

(1− αiL)

)
L

∥∥∥∥∥ ≤
(

e

q∑
i=1

αi

)−1

.

Since LK ,Γs are positive on
(
L2
ρX

)n, so is Γ
1/2
s LKΓ

1/2
s . As was proved in

(3.4), ‖Γs‖ρ ≤ cpJ2. On the other hand, for any ~g in
(
L2
ρX

)n,

‖LK~g‖2ρ =

∫
X

dρX(u)

∣∣∣∣∫
X
~g(x)K(x, u) dρX(x)

∣∣∣∣2
≤ κ4

∫
X

dρX(u)

∫
X
|~g(x)|2 dρX(x) = κ4‖~g‖2ρ.

So, ‖LK‖ρ ≤ κ2. We see that if γ1 ≤
(
κ2cpJ2

)−1,

‖Γ1/2
s LKΓ1/2

s ‖ρ max
1≤i≤q

γi ≤ 1, (5.9)

for any q ≥ 1. Base on the facts, we give the proof of Theorem 4.

Proof of Theorem 4. From the definition of iteration, one has

~fk+1 −∇fρ = (1− γkLK,s)~fk −∇fρ + γk ~fρ,s, k = 1, 2, · · · .

Since ~f1 = 0, direct computing shows

~fk+1 −∇fρ = −
k∏
i=1

(1− γiLK,s)∇fρ

+

k∑
i=1

γi

k∏
p=i+1

(1− γpLK,s)(~fρ,s − LK,s∇fρ)

=: −H1 +H2.
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So,

H1 = Γ
− 1

2
s

(
k∏
i=1

(1− γiΓ
1
2
s LKΓ

1
2
s )

)
Γ

1
2
s LKΓ

1
2
s Γ
− 1

2
s (L−1

K ∇fρ).

By (5.9) and Theorem 3, we get

‖H1‖ρ ≤
1

sαw
· 1

e
∑k

i=1 γi
‖L−1

K ∇fρ‖ρ ≤
‖L−1

K ∇fρ‖ρ(1− τ)

ewsαγ1 ((k + 1)1−τ − 1)

≤
‖L−1

K ∇fρ‖ρ(1− τ)

ewsαγ1(1− 2τ−1)(k + 1)1−τ .

On the other hand,

H2 = Γ
− 1

2
s

k−1∑
i=1

γi

 k∏
q=i+1

(1− γqΓ
1
2
s LKΓ

1
2
s )

Γ
1
2
s LKΓ

1
2
s Γ
− 1

2
s (~ζ − Γs∇fρ)

+γk(~fρ,s − LK,s∇fρ).

So we have by Lemma 12 and Lemma 13

‖H2‖ρ ≤
1

sαw

k−1∑
i=1

i−τ

e
k∑

j=i+1

j−τ

−1

C5s
3/2 + γ1k

−τκ2C5s
3/2

≤ 6C5

ew
s

3
2
−α log

k + 1

1− τ
+ C5κ

2γ1s
3/2,

which finishes the proof.

6. Proofs of the Main Results

Proof of Theorem 1. m > (1− τ)
4α−22−8n

2n+3 implies(
(1− τ)m(n+ 3

2)/(4n+11−2α)
)1/(1−τ)

> 1,

and thus k∗ ≥ 1, So we have(
(1− τ)m(n+ 3

2)/(4n+11−2α)
)1/(1−τ)

≤ k∗ + 1 ≤ 2
(

(1− τ)m(n+ 3
2)/(4n+11−2α)

)1/(1−τ)
,

that is

m(n+ 3
2)/(4n+11−2α) ≤ (k∗ + 1)1−τ

1− τ
≤ 21−τm(n+ 3

2)/(4n+11−2α).
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Then, we have by Lemma 2, Theorem 4, and inequality (3.2), with confidence at
least 1− 2δ for any δ ∈ (0, 1/2), that

‖~fzk∗+1 −∇fρ‖ρ ≤ κ‖~fzk∗+1 − ~fk∗+1‖HnK + ‖~fk∗+1 −∇fρ‖ρ

≤ C3κ(k∗ + 1)2−2τ

s
√
m(1− τ)2

log
2

δ
+
‖L−1

K ∇fρ‖ρ(1− τ)(1 + cpJ1)κ2

ewsα+n(1− 2τ−1)(k∗ + 1)1−τ

+
C5s

n+ 3
2

1 + cpJ2
+

6C5

ew
s

3
2
−α log

k∗ + 1

1− τ
,

so

‖~fzk∗+1 −∇fρ‖ρ ≤
22−2τC3κ

s0
m(− 3

2
+α)/(4n+11−2α) log

2

δ

+
‖L−1

K ∇fρ‖ρ(1 + cpJ1)κ2

ewsα+n
0 (1− 2τ−1)

m(− 3
2

+α)/(4n+11−2α) +
C5s

n+ 3
2

0

1− cpJ2
m−(n+ 3

2)/(4n+11−2α)

+
6C5

ew
s

3
2
−α

0 m(− 3
2

+α)/(4n+11−2α)

(
log 2 +

logm

4(1− τ)

)
≤ C1m

(− 3
2

+α)/(4n+11−2α)

(
1 +

logm

4(1− τ)

)
log

2

δ
,

where

C1 =
22−2τC3κ

s0
+
‖L−1

K ∇fρ‖ρκ2(1 + cpJ2)

ewsn+α
0 (1− 2τ−1)

+
C5s

n+ 3
2

0

1 + cpJ2
+

6C5

ew
s

3
2
−α

0 .

The proof of Theorem 1 is completed by replacing δ by δ/2.

Proof of Theorem 2. m > (1− τ)
2α−11
3/2 implies(

(1− τ)m
3/2

11−2α

)1/(1−τ)

> 1,

and thus k∗ ≥ 1. So we have(
(1− τ)m

3/2
11−2α

)1/(1−τ)

≤ k∗ + 1 ≤ 2

(
(1− τ)m

3/2
11−2α

)1/(1−τ)

,

which is equivalent to

m
3/2

11−2α ≤ (k∗ + 1)1−τ

1− τ
≤ 21−τm

3/2
11−2α . (6.1)
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By Theorem 4 and (4.17), for any δ ∈ (0, 1/3), we have with confidence 1− δ,

‖~fk∗+1 −∇fρ‖ρ

≤
3α‖L−1

K ∇fρ‖ρ
ewγ1(1− 2τ−1)Cα4 δ

α/n
m
− 3

2+α

11−2α

(
2
√

logm+ 1
)α(

log
1

δ

)α
2

+C5γ1κ
2m

−3/2
11−2α

+ 3
n +

6C5

ew
m

α− 3
2

11−2α
+ 2
n( 3

2
−α) log

k∗ + 1

1− τ
,

then

‖~fk∗+1 −∇fρ‖ρ ≤

(
3α‖L−1

K ∇fρ‖ρ
ewγ1(1− 2τ−1)Cα4

+ C5γ1κ
2 +

6C5

ew

)

·m( 3
2
−α)( −1

11−2α
+ 2
n)

(
2

√
logm

1− τ
+ 1

)2

δ−
α
n

(
log

1

δ

)α
2

, (6.2)

where we used

log
k∗ + 1

1− τ
≤ 1

1− τ

(
log 21−τ + logm

3/2
11−2α

)
≤ 1 +

3

16(1− τ)
logm ≤

(
1 + 2

√
logm

1− τ

)2

.

By Lemma 3 and (3.2), we have with confidence 1− 3δ,

‖~fzk∗+1 − ~fk∗+1‖ρ ≤ κ‖~fzk∗+1 − ~fk∗+1‖HnK

≤
364M

(
2
√

logm+ 1
)

√
nC4δ1/n

m
2α−9

2(11−2α)
+ 3

11−2α

(
log

2e

δ

) 5
2

≤ 364M√
nC4

m( 3
2
−α)( −1

11−2α
+ 2
n)

(
2

√
logm

1− τ
+ 1

)2

δ−
1
n

(
log

2e

δ

) 5
2

. (6.3)

Since (4.17) and (4.2) hold simultaneously with confidence 1 − 3δ, the proof is
completed by combining (6.2) and (6.3) together, and replacing δ by δ/3. The
constant C2 is defined as

C2 =
364M√
nC4

+
3α‖L−1

K ∇fρ‖ρ
ewγ1(1− 2τ−1)Cα4

+ C5γ1κ
2 +

6C5

ew
.

This proves Theorem 2.
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