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Abstract

We propose an early stopping algorithm for learning gradients. The motivation
is to choose “useful” or “relevant” variables by a ranking method according to
norms of partial derivatives in some function spaces. In the algorithm, we used an
early stopping technique, instead of the classical Tikhonov regularization, to avoid
over-fitting. The advantage includes that we need no longer consider the choice of
a regularization parameter.

After stating dimension-dependent learning rates valid for any dimension of
the input space, we present a novel error bound when the dimension is large. Our
novelty is the independence of power index of the learning rates on the dimension
of the input space.
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1. Introduction and Learning Algorithm

Variable and feature selection is a classical topic in statistics with the aim also
of dimension reduction. A vast literature in learning theory addresses this issue.
Recently, Mukherjee and Zhou [10] proposed a new method for variable selection
with an idea of comparing norms of partial derivatives of an involved regression
function in a regression setting. The learning algorithm was motivated by some
applications from gene sequence analysis [7]. Following the work, Dong and Zhou
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[5] used a gradient descent method to reduce computational complexity. Mukher-
jee and Wu [8] studied a general class of loss functions and constructed the cor-
responding efficient algorithms for classification problems. Mukherjee et. al. [9]
studied the gradient learning problem on manifolds to capture the manifold prop-
erty of the data spaces. The learning rates achieved in these results are low when
the input space (or manifold) is of Very high dimension For example, in [5], the
rate for any fixed confidence is O(m~Y) with § < ) +32, where m is the sample
size and n is the dimension of the input space. Note that n is often very large for
learning problems with dimension reduction or variable selection. The purpose of
this paper is to study an early stopping algorithm for gradient learning. Our main
novelty is that learning rates O(m~?) achieved by our algorithm have power index
0 independent of the input space dimension n when n is large. Such a dimension-
independent learning rate has never appeared in the literature of gradient learning.

We set our input space X to be a compact subset of R™, and Y to be R. Let
Z = X x Y, and p be a Borel probability measure on Z. We write px as the
marginal distribution of p on X, and p(y|z) the conditional distribution at z =
(z',---,2™) € X. Suppose we have a least square regression function f,(z) :=
[y ydp(y|z) which has almost everywhere the gradient

T
Vi) = (A LY e a2

Our learning algorithm is a kernel method. The reproducing kernel Hilbert
space (RKHS) Hx corresponding to a Mercer kernel (see Aronszajn [2]) K is
defined as a completion of the linear span of the function set {K, : K,(-) :=
K(z,-)} with respect to the inner product (K, Ky)4, = K(z,u). We denote

no={f=(fi, -, fa)" : fi € Hg,i =1,--- ,n}, then it is another Hilbert

space with norm ||f]|7.y;( = (Z?:l HfiH%K)l/{ where || - ||, is the norm on
Hi.

The risk functional for learning the gradient came from the Taylor expansion
(see [10]): fo(u) = fo(z) + Vfy(x)T - (u — x) when u ~ z. So, to approximate
V f, by a vector valued function f = (f1,--, fn)T € H%, one method is to
minimize the risk

£(F) = // (3 0) (f (@)= £, (w)+ F (@) -(u=a))? dpx () dpx (u) (1.1)

in the space #'., where w(®) (x,u) > 0 is the weight function to restrict x ~ w.
Same as in [10], we require w®) (z,u) — 0 as Z=% — oo to reduce the sample



error. In the following discussion we will use a special weight only

1 lo—ul?
e_ 252
8n+2

w(z,u) = w(s)(x,u) =

For the sample set z = {(x;,y;)}/", drawn ii.d. from p, denoting wg) =

w'®)(z;, 2;), we have the empirical risk functional
1 m
e = 3 Z + flxi) (2 — 22))?

- (F. st§ <p,s,f7w+cz,

where L : Hy — Hi is defined as

and

Now our learning algorithm can be expressed as
fi = fi = wlic oJt +mfhe k=12, K, (1.2)

where ~; is the step size, having absorbed the constant 2. We set ff = 0. The
algorithm is called early stopping because the iteration procedure stops at step
k*. Instead of finding computational criteria for determining k*, we shall conduct
theoretical study on how a choice of type k* = m® with a > 0 yields learning rates
for gradient learning.

2. Main Results

We require some regularity of X, namely the cone property (see [1]), defined
as



Definition 1. A set QO C R™ has the cone property with parameter 0 < ¢ < 7/2
and 0 < R < +oo if there exits a function & : Q — S™ Y, such that for each
x € ), the cone

Co=Cu(R,p) :={uecR": (u—2z)"-adx) > |u—z|cosy,|u—z| <R}
is contained in ). O]

In the following, we suppose that X satisfies the cone property, which in fact
could be guaranteed by the Lipschitz condition of the boundary of X (denoted by
0X). That is, for each x € 0X, there exists a neighborhood U, C R" such that
0X N Uy is the graph of a Lipschitz continuous function (of order 1) with some
change of coordinates if necessary. Considering the compactness of X, we can
thus bound the Lipschitz constant away from infinity. See [1], page 66-67.

We here use the Mercer kernel K defined on X x X, thus the RKHS H g is
contained in L%X NC(X). We define Ly : (L?)X)n — (L?)X)n as

(LicF)(u) = /X Fl@) K (z,u) dpx (x),

thus Ly becomes a positive operator on (LIQJ X)”.The range of L lies in H% and
the restriction of L onto H% is also positive. Besides, L}(/Q ((L/%X)n) C Hy
and Hpr = HL}(/Qf_“HK for f € L}f ((L%X)2>, where || - ||, is the canonical

norm defined on (L%X)n as

n 1/2
£l == (;/szf(x)dpx(fc)) :

We suppose that V f,, € L ((L%X)n) C H'%, then

/2
" of,@)) )
IV folloo == 68822}2 (E <8pr ) )

i=1

exists and it is finite. Denote x := sup,c x /K (z, x) < +o0.

|22 | , .
Denote J, = fRn |z|?e™ 2 dx for p > 0. For learning gradients we assume
1 . . . _
throughout the paper that px has a C"* density function p on X and we write ¢, =
Ipllc(x)- The case n = 1 is omitted because it is trivial for ranking based variable
selection problems.



Theorem 1. Letn > 2 and 0 < 7 < 1. Assume that X satisfies the cone property
with parameters (R, ), and p(x) > [B(dist(z,0X))® for some f > 0 and 0 <
a < 3/2. Take the iteration step size v = 1t~ 7 with y1 = m If
ly| < M almost surely and V f, has the regularity that Vf, € Li ((sz)n),

then by taking the weight parameter s = sqm ™Y H11=20) gnd the step k* =
4a—22—8n

1/(1—7
k*(m) = [((1 — )i P an11-20) ! ﬂ — 1 form > (1— )" “%ts
we have with confidence 1 — § for 0 < § < 1,

7 __3=a logm 4
Hfl?*Jrl - vaHP S Clm H+dn—2a <1 + 4(1_7_)> log 57

with sg = min {1, 3\/% } and C'1 is a constant independent of m or 4.

The learning rates in Theorem 1 depend on the dimension n of the input space.
3

The corresponding power index — 11&% is very small when n is large. Similar
rates were achieved in [5, 10]. Meanwhile, learning rates in classical results (e.g.
[12, 13]) of least square regression learning by kernel methods do not have the
shortcoming. The upper bounds achieved in [12, 13] of the rates are independent
of the input space dimension. To achieve such a dimension-independent learning
rate, we give the following theorem.

Theorem 2. Let n > 23. Under the same conditions as in Theorem 1, take the step
size yy = it " and 0 < v1 < (y/nk*cpJ2) "L By taking the weight parameter
2

*714,, .
§ = sgm1i-2a"n with

z . R Ez

sg = min< 1, ) ,
dvin+4 252 4 /2 log (e ey )|

g, = min{|z; — ;|1 <i<j<m},

1/(1-7)
and the step k* = k*(m) = |7<(1 —T)mllg/ga> “ — 1, form > (1 —

2a—11

T) 372, we have with confidence 1 — § for 0 < § < 1, that

2 5
- 1 2
1 Fess = Vhollp < Com= o) =) <1+2 fgm> 67 <1og6;§> :

-7

where Cy is a constant independent of m or 6.

Remark. The power index (% — a) (1;2& — %) > (% — a) (ﬁ — %) is
independent of the dimension n. Though § appears in a form of polynomial, the

power % is very small when n is large.



3. Structure of Integral Operators

The gradient descent algorithm, although simple and economic in computation,
does not always provide satisfactory convergence rates. In some cases we cannot
guarantee the convergence at all since there may exist some directions to which
the risk function (or functional) could be very flat, having the principle curvature
hard to be bounded away from zero. This problem could be solved by adding the
Tikhonov regularization term as done in [15] and [5], with the shortcoming that
the regularization parameter may sometimes be difficult to fix, as well as that bias
may be introduced. Another way, called the early stopping method, as in [14],
is to exploiting more properties of the gradient, and prove that during the whole
process of iterations, one never goes through those directions of low curvature. We
will use the early stopping method, the shortcoming of which, as will be shown
below, is that we have to compose more prior assumptions, which might restrict its
applicability.

Let us define a sample-free limit of algorithm (1.2). We rewrite (1.1) as a
quadratic functional in H’;:

—

) = (F Lo ),y = 2(FossF),, + O G.1)
where Ly : (L2 )" — H is defined as (see [10])

Lo = [ [ wlewe = a)— o) Fla) K dpx (0) dox @)
and

Foo = [ [ vl o) = fola)) = ) Ko dpx(u) dox (o)

Co = [ [ wleu)(fyle) = £,(u)? dox () dpx(a).

—

So we can take gradient of £(f) in H

Grad€(f) = 2(Lg.sf — fos),

—

and thus we get the so-called population iteration scheme for minimizing £(f) in

Hi:
. L1 . . . .
Jrop1 = fr — §'YkGrad€(fk> = fo —WwLlrsfe +fos k=1,2,---.

We setﬂ =0.



From the reproducing property
f(@)=(f,Ks)y, , Vf €Hk, z € X,
we see that | /()] < ||l | Kllree < ] - Henee
1F1lp < il Flleg - (3.2)
We define 'y : (L2 )" — (L2 )" (Vs > 0) as

—

(T f) () = /X we, ) (u — 2)(u — )7 dpx (u) f2).

n

Obviously, I, is a positive operator. For any f € (L,%X) ,
Ll = [ Kefla)doxo) [ e - o))" dpx ()
X X
= [ [ wlewu - o) o) Fo)k, dox(z) dox(w)
X JX

— LK,s]Fa

thatis, Lx s = Lk o I's. Unfortunately, Lg and I'y do not commute, so generally
we can not represent L’ by L o I';. But I'; is invertible when s is sufficiently
small. For proving this, we need a lemma.

Lemma 1. Fora > %,

1 —+o00 L 1
e Yy dy < =,
I'(a) /2a 2

where T'(a) is the Gamma function defined by I'(a) = 0+°O e Yyeldy.
Proof. Fora > % denote

+00 +oo
I = / e Yy ldy = a“/ e~ e q¢.
2 2

a

Lete !7% =te™!, wehaveu =t —logt — L and 4 = ;4% Note that ¢ > 2, so

+oo 1 +0oo
I = aa/ e G du < aae—a/ e~ qy = aa—le—a(2—log2).
1-log2 t—1 1-log2

By the Stirling’s formula,

I(a) >V 27raa_%e_a,



because a > %,

1 /*00 e Vyrldy < eZel17oe? ‘/5 1
F(a) 2a n V2ma vl 2
which completes the proof. O

Theorem 3. If the density function of px satisfies the boundary condition: there
exists f > 0 and 0 < o < 3/2 such that p(x) > [(dist(z,0X))?, and if X
has the cone property with parameters (R, ) as was mentioned before, then I is

invertible for 0 < s < 3 ﬁ, and [T < saw’ where
7.‘.n/QI\ nta+2y
=w(a, B, R, p) := 5% %_3@0 — sin ) sin® f.(3.3)
(%5=) 2
Proof. For any vector £ € R™ and z € X, we claim that for 0 < s < 3 \/Isﬂ,

L - / wiu, ) (- 2)7€) plu) du > s"wle]?.
X
Note that

L > /C w(u, ) ((u— x)T§)2 B (dist(u, 0C;))* du.

Without loss of generality, we set z = 0,C, = Co(R,¢) = {u € R" : ule; >

lu| cos p, |u| < R}, and & = |€] coser+|€|sinpes, wheree; = (1,0,---,0)7, eq =
(0,1,0,---,0)” € R™. We use the standard polar coordinates for u = (ug, - -- ,u,)? €
R™ w; = tcospr,ug = tsiny) coss, -+ , U, = tsing;sinesy - sin@,_1.

We write a = ule1,b = +/|u]2 — a2, so for any u € Cp, dist(u,dCp) =
min{R — |u|,asinp — bcos gp} thus when R — |u| > asin ¢ — bcos ¢, or suffi-

ciently when |u| < & < Hsm@ dist(u, 0X) > asin ¢ — bcos p. We have

L > /CO( )sn1+2 - (Tg) B (asing —beosp)® du,

R
7’§0

which equals

™

21 e
5sa|§|2/ tltag—t g dgpnl/ sin @, _9 dgpnz.../ (sin p3)" dis
0 0 0

. / dey / (cos 1 cos 1) + sin @ cos @o sin )2 sin® (¢ — ¢1) dgs.
0 0

8



Hence

n—2 t 9
L > a|£|22\/; 5 /2 tn+1+ae—% dt
I'(%3=) Jo

2
) T
. / sin®(p — ¢1) depy / (cos? @1 cos? 1) + sin? g sin? 1) cos? ) dey,
0 0

which implies

n—2 il
52 n (e}
I O[|€|2 \F 2 /8 y%e_ydy
0

>
r(e3?)
L 2 2 L .o .9
T sin®(p — ¢1)(cos” ¢y cos 1/1+§sm p1sin” ) deg.
0
When0§g01§%<%,%sin2gp1—1§%—l<0,so
2 2 L. o ) 2 .2 3 .9
cos” (1 COS w—i—ism (p1 8in“ Y = cos® 1 + sin“ Y 5 5in p1 —1
3 1
20082g01+§sin2<p1—1:fsin2g01,

2

and also, when s < 3\/%, we have % > 2 ("JQFO‘ + 1), so by Lemma 1,

e /2 9 ¢/2q
Lo e ”2 r() () [ gt e
(%32 2 200 2
n/2p (ntat2)
_ ﬁsa|§|2y2%_3(¢ —sinp) Sinag = Saw‘f|2-

This verifies our claim.
Forany f € (L2,)",

Ir A2 = /\/ (@ 0) (1 — @) — )T dpx (W )|

J,

< JSC?;IIin,

IN

so I'; is bounded and

ITs]| < epo. (3.4)



On the other hand, we have
(L7 F) =5 [ 1F@P dox(e) = 5wl I,
X

which implies the conclusion. 0
Remark: We find from the proof that the lower bound with parameters (o, ),
p(z) > p(dist(x, 0X))* could be replaced by

p(x) > p(dist(x, 0Cy))” (3.5)

forany y € X and z € (. Condition (3.5) keeps the assumption away from the
severe requirement of p(x) when x is far away from the boundary 0.X.

4. Sample Error

The main results in this section are Lemma 2 and Lemma 3, which are for prov-
ing Theorem 1 and Theorem 2 respectively. In the following analysis we suppose
that [y| < M < oo almost surely. M is also used as an upper bound of 1|V f,||c
for saving the notations.

Lemma 2. Let z = {(z;,y;)}" be drawn independently from (Z, p), and 0 <

-1
71 < (W) , forany 6 € (0, %) and any s > 0, we have with confidence

1—26:
Cs(k + 1)2_2T 2

I n < ————log = 4.1
ka+1 fk+1HHK = \/ms(l _ 7_)2 0og 57 ( )

where

34M

C3 = <\/ﬁ + 1> .
kye \ e

Lemma 3. Let z = {(x;,y;)}", be drawn independently from (Z, p). Set 0 <

m < (\/ﬁ/{%p,]g)_l. For any 6 € (0,1/3), we have with confidence at least
1 — 39 the estimation

5
L 91M (2v/Togm + 1) (k+1)227 200 2% 2
||fk+1 - fk—&-l”’}-l?{ < (H\/ﬁ0451/"(1) — 7)2 m201—2a) <10g > ’(4_2)

-1 2 .
where we define the weight parameter s = sim 20t with

R €
s&=min\ 1, , z ,
’ { 3vin 47 2Ant2) | mbaa%hﬂ}

and Cy is a constant depending only on (X, px).

10



Lemma 2 and Lemma 3 will be proved later in this section.

A linear bounded operator L on a Hilbert space H is said to be a Hilbert-
Schmidt operator if for an orthonormal basis {e;};c; of H, one has || L||gs :=
(Xier IILeill3) /2 — 4 0. It can be proved that the Hilbert Schmidt norm || - || s
is independent of the choice of the basis {e;};c7. Any finite rank operator is a
Hilbert-Schmidt operator. For any self-adjoint Hilbert-Schmidt operator L, one
has || L|lus > |[Z]] o

In the Hilbert space H'., we define for any x € X, A, : f — f(z)K,. Then

n
1Az 1y, < D il 1Kol = K (@)1 13, < &M 11

i=1
So ||A.|| < k2. Also, it is obvious that A, is self-adjoint. Since the rank of A, is
no greater than n, it is a Hilbert Schmidt operator. Let eq, - - - , e, € H; be an or-
thonormal set spanning the range of A,. So one has || A, ||}s = >, ||Aei\|§_y;< <

qr* < nk?, and thus || A, ||gs < v/n k2 for any z € X. We have the relations

Lis= /X /X w(z,u)(u—z)(u—2z)T Ay dpx (u) dpx (z)  (4.3)

1 m
Li s = 3 Z w;fj)(xi — ) (w; — x;) T Ay, (4.4)
ij=1

L s and L% _ are both self-adjoint. Also, from (4.3) and (4.4) one can directly
compute

ILislus < /X /X w(z, wlu — 2] Asllus dpx (z) dpx ()
< Vnkkep . (4.5)

Moreover, EL%’S = mT_lLKys, and similarly, IEf:f,s = mT—:lfT;)7s‘
Preparing for proving Lemma 2, we cite the following lemma from [5] with
2

a little refinement, which could be done as noticing that sn%e*?vQ < es% and

02
sn%e_?v < ﬁ for any v € R, during the proof in [5].

Lemma 4. Let z = {(;,y;)}]" be independently drawn from (Z, p), and L
Lk, f;f,s, ﬁ,s be defined as before. For any s > 0 and any 6 € (0,1/2), with
confidence 1 — 20, the following inequalities hold,

34Kk2\/nlog 2
L% —L < — Y =9
|| Ks K75||HS — e\/msn

34 Mk log %
/emshtl *

I f5s = fosllan

IN

11



O]

Lemma 5. Let z = {(z;,y;)}|", be independently drawn from (Z, p) and s > 0,
then

- 2k M
||fz,sHH?( < W, (4.6)
and
2k2
L 4.7)
hold almost surely.
Proof. (4.6) follows directly from the definition. (4.7) holds because
S 1 S 2
I e OL 1 (RO %)
i,7=1
m—1 2 5 =29
< w
for any fe H. O
. k2(1+cpJ2) -1
We see that if we set 0 < v < (%) , then fort = 1,2,---,

|7 L% sllean.) < 1 almost surely.

. -1
Lemma 6. Let s > 0, for f recurrently defined in (1.2) and 0 < 1 < (%) ,

we have
2k My k1T

o Rt kE=9.3.-..
Jesn (1 — 1)’ '

£l <
almost surely.

Proof. Since LY  is positive and || L% ([|exn) < 1 forany ¢ > 1, so [[I —
’yth(,ng(H?() < 1a.s. fort > 1. We have from Lemma 5 that when k > 2,

26M _ 2xMm (k=17 —-7)
Vesntl = Vesnt(1— 1)

k-1
1 fEllg, <D T
=1

almost surely. O

12



Proof of Lemma 2. By definition, we get
Jigr = Jorr = (U= meLis) (fi = fi) + VX,

where x, = (Lk s —L%ys)f;f +f;is - fms. Since flz = fl = 0, we have by simple

iteration:
k k
foon = Ffern=>_v [] 0= wles)xi
j=1  p=j+1

S0,
k
IFEy = Feeallag <> villxilae
j=1

with confidence 1 — 24§. Hence

34r%/nlog % 2k Myt 34 Mk log %

k
—»z -
I frs1 = ferallap < ;71 < ey/ms" Vesnti(1l — 1) Vemsntl

34/nM log 2 34M log 2
< \/ﬁ 085 (k‘ + 1)2—27— + 0% 5 (/{7 + 1)1—7—
ke3/2\/ms(1 — )2 kyems(l — )

34M log 3 27 (V1 Ca(k+1)*7%7 2
5(k+1) ( —i—l) s — 1) logé.

kyvems(l — 1) e 0
O

Let 9(H) denote the class of all the sequence f = (fo, f1,---) of Bochner-
integrable random variables with values in the separable Hilbert space H such that
fo = 0and f is a martingale. Pinelis proved the following result ([11], special case
with D = 1 of Theorem 3.2).

Lemma 7. Let H be a separable Hilbert space, f € M(H) and f be adapted
to a non-decreasing sequence {Fg}jw:o of sub-o-fields of the Borel set B on the

probability space Q. Suppose X > 0 satisfies that EeM4ill < 400 for j =1,2,---,
where d; = f;j — fj—1. Then for all r > 0,

[ee]
Prob{suprj] Zr} < 2expg —Ar + Zej ,
J j=1

where ej = E { M4l — 1 — Ald;||| Fj—1} >0, ae.. O

Lemma 7 directly implies

13

)



Lemma 8. For a finite martingale f = (fo, -+, fm), fo = 0, with the same
settings as Lemma 7, one has

, _ M
Prob{1r<nja<)$n|f]||2r}§2(axp{ Ar + m(e 1 )\A)},

where A > maxi<j<m deHoo- =

One can obtain the following corollary directly by modifying Pinelis’ proof
[11] to Lemma 7 by a few lines. Probability inequalities of the similar type are
also proved in [11].

Corollary 1. For a finite martingale f = (fo, -, fm), fo = 0, with the same
settings as Lemma 7, for any A > 0, one has

Prob(max Il fill >, max. I|ds | <A) §2exp{—/\r+m(e/\A_1_)\A>}'
<< 1<i<

Proof. As was done in [11], we build a positive super-martingale
Go =1, G = cosh(A|| ;) H1+el j=1,---,m

We denote J := min{j : || f;|| > r} if it exists. Since f is a finite martingale, one
has J < m. Thus

Prob 1 >
ro <lr§rljfgn||fyll >

max |[|d;|| < A)
1<i<m

< Prob | G; > cosh(\r) H +¢€;) max |di]] < A
7j=1

IN

Prob | Gy > H ( 1 AA) max [difl <A

< 2B (GJ\maXf;‘fm Hdz‘H <A) (1 n (em 1 /\A))m,

where Chebyshev’s inequality is used in the last step. Since Gy is non-negative,
one has

Prob ( max ||d;]| < A) -E <GJ
1<i<m

max ||d;|| < A> <EG; <EGp=1.
1<i<m

14



Also, since forall t > 0, el —1 —t > 0, hence forall p > 0, 1 + p < €P, so we
have

(1 FeM o /\A)m — exp (m log(1 + (X —1 - AA»)
< exp (m(e)‘A -1- )\A)) )

which implies the conclusion. O

In the large dimension, small sample problem, a primary observation is that
the probability of any two sample points be very close should be very small. To
formulate the fact precisely, for x = {z;}/", drawn i.i.d. from px, we give the
following

Lemma 9. For any 6 € (0, 1), with confidence 1 — 6, we have
snl'(n/2)\/"
Eg 2> | ————= .
ﬂ-n/2cpm2

Proof. Since x is i.i.d. drawn, for any ¢ > 0,

Prob(e” <ep) < Y Prob(|lz; — x| < £o) = @) Prob(|z; — 2| < o)

1<i<j<m
m? m?
< 0 [ doxtan) [ dox(e2) < [ dpxta) [ cpden
2 Jx B(z1,e0)NX 2 Jx B(z1,0)
m2c 2/ 26l 72 enm?
= M [ 2 dpx ) = T
2 Jx nI'(n/2) nl'(n/2)
which implies the result. O

Lemma 10. Let n > 23, with confidence 1 — 34 for 6 € (0,1/3), we have

S5vnklc,Jo . 2e
L% s — Lisllus < TplogF

= > 26k McyJ
1f5s = fosllun C4p 2 2001 —26) <2s/log +1 <10g (>19)

where s and Cy are set coherent with Lemma 3.

A

(4.8)

IA

Proof. Consider

0 2 _12/942 1 3 42942
a (Sn+2e / s = @ 2t — ? (] / s (410)

0 2 12752 n+ 2 2 12/5.2
9s <5n+2e o/ > =t <_ 3 8n+5) e (4.1D)




£z : 2 —t2/2s2
we see that when 0 < s < R and t > &,, the function Tz

ing w.r.t. s, and decreasing w.r.t. ¢, so by (4.4) we have

2 m 2 2 2
—1
1 ls < Y S wld g -y < SV 1) exp{— z }

is increas-

m2 & msnt2 252
i,j=1
Since
0<s<
@—i— 2| log(eleyJa)|
we have
2 2
Er M2 n+2 NoTETa
= > 2| 1 e,
(Z-"22) = ("2 logtezg )
2\ 2
> <n—|— > —2log(ey,cpta),
e
hence

2
€ (n+2)e
_2;2 + Tz < log(EZCpJg).
Because logt < £ for any ¢ > 0, we have

2
_Ca + (n+2)log %Z <log(e,cpta),

252
that is,
g2 _ =
Sni2 e 22 <cpdy, as., (4.12)
so,
IL% sllms < w%v/nepds (4.13)
almost surely. Owing to the continuity of L7 . with respect to z1, - - - , Zm, L , is

a Bochner integrable random variable.
We define a sequence f = (fo, f1,--- , fm) With fo = 0 and

m—1
fi:E{ %,S—TLK,S

Zla"'vzi}v Zzlvam

16



Then f is a martingale. We define d; = f; — f;—1 for 1 < j < m. From (4.5) and
(4.13), we see that f;’s are uniformly bounded, so are d;’s, j = 0, 1,--- ,m, thus
EeMdillns « 400 for any 1 <j<mand X > 0.

We have

Now,

~E., L%,

= mQZw i — i) (xj — xi)T(ij—FAwi)

LS e a4+ ) dpx)

i=1,i#j
= Wy — Wy,
and
24/NkK —|x—x
[Walns < \F Z /8n+zeXp{ | Z| }\x—xi\Qp(x)dx
i=1,i#j
2 2
S i \/ECPJQ.

Following from (4.10), (4.11), and (4.12),
24/nkK
Willes < 20 Zw vor )l — P

TR

A

IA

msnt2 252 m
So,

4y/nk2cyJy

ldjllas < [[Wallas + [Wallas <
m

almost surely.
Using Lemma 8 by taking A = 4\f/f cpJ2/m and X\ = —m < % which

implies e*® — 1 — AA < (AA)? = L, we have for any r; > 0,
1
Prob{ nﬁax HfJ]HS>r1} §2exp{—Am+1}. (4.14)

17



Put § = 2exp {—A% + 1}, we get r; = 4\N\FCPJ2 log , s0, with confidence
1-—9,
m—1 4y/nkPcpJy . 2e
z < < IV PY2 0o 22 ,
H K,s LK7S S 1%22)( ||fJHHS \/m 10g (5 ) (4 15)

which, combined with (4.5), proves (4.8).
We let now f/ :=E { f;ﬁs - mT_lJE;;,s
{f!} also forms a finite martingale with each random variable taking value in 7.

We define d = f; — f;_; for 1 < j < m. Similarly,

zl,---,zi},izl,---,m,andf(’)zo.

= E{f:,s - Ezg-f;,s‘zh T 7Zj}‘

Now

pa EZ]

m2 Zwlﬂ yi)(xj — i) (Ka; + Ka,)

Ly / (2,2 () — 9@ — 23) (Ko + K, dpx (0)
i=1,i#7]
=: Wll — WQ.
Since |y;| < M a.s. fori =1,--- ,m, we have
Wil < fZ%M et

Thanks to

0 t 2 1 t2 t2
_— e 252 = — 1 e 252
ot Sn+2 8n+2 82

t . —t2/252

we see that when s < < t, the function Tz

SO

is decreasing w.r.t. ¢,

/
Wiy, < =,

z
— 2 ex
mgnt2 me,

2
4AM ke, p{ € }§4MncpJ2

where the second inequality follows from (4.12). The next inequality is derived
easily from the fact J; < J as

< 4/<;McpJ2.

1
Whilyn < —4kMeyJys™t
| QIIHK_mK CpJ18 s

18



So we get

< ———= as.,

”d;HH’;( < 4kMepJs ( 1 1> < 8kMecpJa
m ms

Ez S

: . .
where the second inequality comes from s < NCES) < &,.

By definition s§ < 1, on the other hand, by Lemma 9 we have with confidence
1-46,

€2 2 (%)Una (4.16)
which implies
2 1 onl'(n/2
|log e,| < |log Diam(X)| + ﬁlogm+ - 'log <\/7T(70/p)> ' _
Therefore, when (4.16) holds, we have
€z S Cxm=2/ngl/n
W4 llos(Eeh)l (2yiogm +1) (/210 k1)
where
()™
Cx = » ’
022 ¢\ /BfTogep )| + 20 log Diam (X)) + 2 o (2122

which depends only on (X, px). Since 6 € (0,1/3), then 6 < 1/y/e, which

implies
1/2lo
g 5 — 9

so by definition we have with confidence 1 — J,

; m72/n51/n
sg > Cy , 4.17)
3 (2\/logm + 1) \/log%

where

R
Cy = mi 1, —,C
4 mm{ 3v/ntd X}

19



depends also only on (X, px).
Therefore, we have with confidence 1 — 0, ||d}[|3p. < A, where

24k M a 1
A= 2rdMeyJy mii—2a (2\/log +1 Ulogg.

0461/71

We take )\ = \F which implies e NA" 1 - NA' < L. So, for any ro > 0, by

Corollary 1,

1
m

Prob{ max 1 fllen > 7“2}
<5<

U /
< Prob{ max 1 fillagn > 72, 1;1;2;};@”(1]”7_[% §A}—i—5
2
< 642 — 1ep.
< 0+ eXp{ st }

Put § = Qexp{—Af\Q/m + 1}, we have

ry = A’\/mlog% (4.18)

3

24k M o420 2 3

< mm2<£+%a> (2 logm+1> (1og;> . (4.19)
4

thus with confidence 1 — 26,

s — Tfp,s < 11<na<x 1 fillen < 72, (4.20)

Hi
which, combined with (4.19) and the estimation - | fﬁpvsHH?( < 2l proves
(4.9). The proof is thus completed. O

Corollary 2. when (4.20) holds,

3
26/$McpJ2 2e\ 2

Proof. Direct computing verifies the result. O

Lemma 11. For f,% recurrently defined in (1.2) and k > 2, we have

k—1

k—1
fk _Zﬁn H I_7p ?{,8) _;z757 (421)

=1 p=I+1

20



where we denote H];;,i (1 — Wl 5) := 1 for saving the notations. Moreover,

when (4.9) holds true, setting 0 < 1 < (\/fm%pJg)_l, we have

7 26M 2¢
L Py —
17l < PN TR (2 logm + 1) (log 5)

3
2

( k— 1)1—7-
1—7
Proof. (4.21) could be verified directly by computing. From (4.13), we have 1 —

Wl L% slle@n) = 0. Since L is positive, |1 — v, L% ([le3z) < 1. So when
(4.9) holds true, for any k£ > 2,

k-1
12 < Yl fz e
=1

3
26M 2e\ 2 (k—1)=7
— (2! 1) log —| ————.
r/nCyd/n (2viogm +1) <°g 5> -7
Proof of Lemma 3. By definition, we get
Fls = Fern = (1= wLi,o) (FE — f) + X,

where x, = (Lk s —L%’s)f,f +JF;,S — f_l;),s- Since fiz = fi = 0, we have by simple
iteration:

k k
feon=Fern =D v | TI O =vlxs) | x5
J=1 q=j+1
Since Lk s € £(H;) is positive,
Lk slley) = sup (LK,sG5 G)pn

geHT N gllay, =1

= s [ e (0= 2)750)” dox( dpx(e) < e

FEHT N lp =1

thus 1 — g/ Lk sl enp) = 0,s0forany ¢ > 1, |1 —v4 Lk s|[¢(2p) < 1. We have

k
1t = Frallage < D vilxs g
Jj=1

21



Since (4.8), (4.9) and Lemma 11 imply

IXillmg < [L%s — Lislleam) | f7 1y + 1 fos — Foosllmy
5
2

5yv/nkteyds 2e 26M(j — 1)1
P (og — 2¢/1 1
0g 5 K/ Cad /(1 — ( ogm + )

<
- vm 7)
3
266Mcpdy 209 2e 2
—i—wm?(“ 2a) (2 logm + 1) (log (5> ,
for j =1,2,---, we have with confidence 1 — 39,
L 65M (k + 1)2727 (2y/Togm +1) [, 2\ ?
I fis1 — Tesallmn < ; 5 log —
ky/mnCy61/m(1 — 1) o

26M (2/Togm + 1) (k + 1)1=" m—e( 2e>3
+ m201-2a) ( Jog = ,
r/nC20L/m(1 — 1) 5

which implies the result. O

5. Approximation Error

We put here the approximation error estimation first.

Theorem 4. For the global iteration and the step size v, = 1t~ with 0 < 1 <
(/{26,,.]2)_1 and 0 < 1 < 1, ifk > 1, one has

||L;(1pr||p(1 —T)
ews®y (1 — 27 1) (k + 1)1-7

6C k+1
+Csy1 k%832 + 25 gga log L,
ew 1

Hﬁc—&-l - pr”p <

with w, s, and C'5 set in (3.3), (5.5), and (5.6) respectively.

In the analysis of this section, we assume that the regression function f, has
the following regularity

1/2

" 2
M, := ess sup Z <a(9fp(a:)> < 400 (5.1

l'il P aajiu
2€X \ 1<y, ip<n

with v = 2, 3. We assume for the density function p(z),

" 1/2
319(:v)>2
M, := esssup |Vp(z)| = ess su - < 400. 5.2
b ze§| p(z)| sup (§1< Ori (5.2)

22



We define

P(r) = px({z € X : dist(z,0X) <r}), (5.3)
then Vr < 0,%(r) = 0, and Vr > Diam(X)/2, ¥(r) = 1, where Diam(X) :=
Sup, yex | — Y. 1(r) is an increasing function and so it is differentiable a.e.. We
assume that v is absolutely continuous with its derivative (1) bounded:

[0/ (r)] < My < +00 (5.4)
for a.e. » € R. For the weight parameter s, we require during this section that
0<s§min{1,R} (5.5
3vn+4
with R set as were in Theorem 3. Denote

{(x) r=/Xw(x,U)(fp(U)—fp(x))(u—ﬂf)dpx(U%

then L Kg? = ﬁw, and we have

Lemma 12. With regularity assumptions (5.1), (5.2) and (5.4) being satisfied, one

has
IS =TV f,ll, < C552,
where
I'((n+3)/2 ntl
Cs ((rm/z))/)Mzcﬂ >/ (n+ 3)m" My
1 1 1
+6MSCPJ4 + §M2MpJ4 + 6M3MpJ5. (5.6)

Proof. For any x € X, we write r(x) := dist(z, 0X), then
C@) = To(@)V p(a)

<

/ w(@, u)(fp(u) = fol@) = Vfo(2)" (u—2))(u—z) dpx (u)
B(z,r(z))

—|—/ w(w,u)%|u—x|3p(u) du
X\B(a.r(@)) 2

= Il+-[27

23



where the inequality holds because

Fo(w) = fo(@) = Vp()" (u— ) = %(u — x) Hess fy (2 + 0 () (u — 2)) (u — @),

with 0 < 0(u) < 1.
Doing one step further the expansion:

fow) = fo(x) = Vfp(a)" (u—2)

- %(u — :n)THessfp($)(U —x)

" 33 f (x4 Oy(u)(u—x ; iN(0 ] '
1 S O fol@ + 0o(u)(u = 2)) (i iy i (b — Y,

+6 4 0xt0xI Oz
i,5,k=1

and

p(u) = p() + Vp(x + pa(w)(u — 2))" (u - ),

where 0, (u), 12 (1) € (0,1), we have

/ w(z,w)
B(z,r(x))

1 1
—i—/ w(z,u)|u — z| (|u—x|3M3p(x) + ilu—xlgMQMp
B(z,r(z))

L < ((u— x) T Hess f, () (u — z)) (u—z)p(x) du

N |

6

1
—l—glu — x|4M3Mp> du.
By a change of variable v = “_*, we see that

1 1
L <0 —i—/ 32e*|v‘2/2\vl4 (Mgp(&:) + Mo M, + 8|U\M3Mp) dv
B(0,r(x)/s) 6 2 6
3

1 1
< 82 <6M3cp + 2M2Mp> Ji+ %M?,ij5,

since s < 1, we have
5 (1 1 1
HIl||p <s 6M30pj4 + §M2Mplj4 + 6M3MPJ5 . (57)

On the other hand,

Mzscp/ e*|”|2/2\v\3dv.
2 R\ B(0,r(x)/5)

24

I <




We have

M. 2 2
L2 < (2) [anx@ ([ o /2B
2 X R\ B(0,(z)/5)
2 Diam(X)/2 = oo 2
= @ / 1#’(7‘) dr 2\/777 / tn+26—t2/2 dt
2 0 F(n/2) r/s

7\ 2 Diam(X)/2s +00 2
< <M23‘3p V”) Mw/s/ d¢ (/ t”+26—t2/2dt) ,
I'(n/2) 0 ¢

where { = r/s, and we emphasize that the notation ¢ is different from the one in
the proof on Theorem 3. Also, u,x,y,r, and 6 are temporarily employed in the
following inequalities as integral variables only.

Diam(X)/2s +o00 2
/ g d¢ < / gnt2e=t/2 dt)
0 13

+oo +oo +oo 5 o
/ df/ / xn+2yn+2e—(x +y*)/2 dz dy
0 3 3
+o0 +o00 /2 )
/ df/ dr/ P22 +1=%/2 02 g 6in" 2 9 49
0 ¢ 0

+00 +o00 2\ nt+2 2
_ ontlp n—|—3’n+3 / d§/ re o2
2 2 ) o e \2 2

Where B(p, q) := 2 fow/ % $in?P~1 0 cos24~1 0 40 is the Buler-Beta function for any
p,q > 0,and B(p,q) = T'(p)T'(q)/T(p + q). So by putting u = (r? — £2)/2,

+00 —+o00 2\ nt2 2
e (5) era(y)
0 ¢ 2 2

+00 +00 £2 n+2 2 n+2 (n +2)! foo .
e +2)! —£2/2 42
= /0 d§/0 <u + 5 > e 2 du = ; Tt /0 e £ dg

N

IN

IN

0
n+2 n+2
N . 1 1
= Z(”T S yei-v/2p <z+) <(n+2)!) —=<(n+3).
— il2 2 o V2

Then we obtain

seo /7 2 " 2, !
Il < (M) py s L ?&fi)g() o)
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hence

1all, < 5%/2Macy/m 2+ D/2p <”;3> Vv 1 (2).

which, combined with (5.7), implies our result since s < 1.
We also need the following technical lemma.

Lemma 13. Forany 0 <7 < landq > 2,

q

Z (i—1)" Z]T §610g(11j1

=2

Proof. Denote the left hand side of (5.8) by @, then

qg—1 - q—1 P
i iTT(1—1)
< 3 —— <3
Q= 3 g =S8 e i
—T

. 1-71
Let t; = (q}r—l) fori = 1,---,q. Forany i > 1, (i + 1)!~7
—T

(5.8)

_ ,L'].—T —

(1—7)(i+6;)" 7, where 0 < 6; < 1. Slnce( +1> > 1foranyi=1,---,q,

we have

(I—7)(i+6;)" 7 - 1—-7)i+1)""
(¢g+Dt7 = (¢g+ D

liv1 —ti =

then

1 (tiya —t:)(1—71)"' (i +1)7

q+1~ (¢+1)7 ’
which implies
q—
1“‘ H—l tz—l—l
< <6
R
1—71
< /( ) ~ 6log (g+1)
0 1 - (g+ D7 =gl
1
< 6lo ( (g+1) >_61 e+t
(1-7)(g+1) -



The proof is thus completed. O

The following Lemma, also employed in [14], follows directly from the spec-
tral decomposition, and the fact that z []Z, (1 — ayz) < (e > %, a;)~! for any
0 <z <minj<;<; a% We thus omit the proof.

Lemma 14. Letr L € £(H) be positive for some Hilbert space H. Suppose we
have non-negative numbers a1, - - - , oy, s.t. ||L|| - maxi<;<q ; < 1. Then

H (ﬁ(l —aiL)> L|| < (ezq:aZ)_ )

Since L, T’y are positive on (L,Q)X)", sois TY/2 L T2, As was proved in

(3.4), |Ts||, < ¢pJa. On the other hand, for any g in (LI%X)”,

O]

2
|Ldl2 = A@mwyAaMMaw@ﬂm

s/£A@ﬂmme%mw=#mﬁ

So,

Li||, < k% We see that if 7 < (mchJz)fl,

1/2 1/2
ITY/2L T/ lergggq% <1, (5.9)

for any ¢ > 1. Base on the facts, we give the proof of Theorem 4.

Proof of Theorem 4. From the definition of iteration, one has
fier = Vo= U=l fi = Vo +mfos, k=12,

Since ﬁ = 0, direct computing shows

k
ﬁc+1 - vfp = - H(l - ’YiLK,s)pr

=1
k k .
+ Z Vi H (1 - ’YpLK,S)(fp,s - LK,szp)

i=1  p=i+l
=: —H1+H2.
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So,

H =Ty

N

k 1 1 1 1 _1
(H(l — T2 LKrg)) P2LxTET, 2 (LY f,).

i=1

By (5.9) and Theorem 3, we get

[1H1llp <

1 1 1 ILE'V follp(1 = 7)
. <
o o VIS e, (G D - )
HL}_{lvprp(l —7)
~ ews®y (1 — 27 ) (k+ 1)I-7

On the other hand,
_1 k=1 k 1 1 1 11
Hy = T2 7| J] @Q=7ql2LgT?) | TZLETETL2(( - T,V f,)
= q=1+1

""Yk(f;,s - LK,svfp) .

So we have by Lemma 12 and Lemma 13

-1
k-1 k

1 - . _
||H2||p § v T € Z ] T 0553/2 +’71]€ 7—/620583/2
S j=it1
6C5 : k+1 .
< EBdaiog iy Conty 82,
ew 1—71
which finishes the proof. O

6. Proofs of the Main Results

4a—22—8n

Proof of Theorem 1. m > (1 — 1) 2»+3  implies

1/(1—1)
>1

i

((1 - T)m(”+%)/(4n+1172a))

and thus k* > 1, So we have

1/(-7) 1/(-7)

((1 — T)m(n+%)/(4”+11*20‘)> <k*+1<2 ((1 _ T)m(n+%)/(4n+1172a)> :
that is

m(n8)/(n+11-20) (k*l‘f' n-T < 9=y (n5)/(4nt11-20)
-7

28



Then, we have by Lemma 2, Theorem 4, and inequality (3.2), with confidence at

least 1 — 24 for any ¢ € (0,1/2), that
I fiet1 = Viollp < 6l feeir — frsallmg + 1 fees1 — Voo
2, ILE'V follp(L = 7)(L + cp1)w?
ewSaJrn(l _ 2771)(145* + 1)177'

Car(k* +1)2727 1
sy/m(1 —7)2 4
n+3 .
+ Css™> + 6053%_0‘ log
1+cpto ew

k*+1
1—71

)

SO
. 22—27’03,1 3 )
12y =V, < m(—3+a)/(An+11-20) log y
50

_ ntd
LKV follp(1 + cp i) (—2+a)/(an+11-20) , C5Sp
+ a+n 1 m 2 +
ewsg (1 —2771) 1 —cpda
6C5 2-a (_3 a nt11—92a logm
A =)

logm 2
< (—3+a)/(Ant11-20) (1 108 1, 2
= Cimi e Tii-n) %y

mf(n+%)/(4n+1172a)

3
C583+2 6C5 3a
1+ cpd. + %

pJ2 ew

where

. 22727y i |’L;(1pr|’p’i2(1 + ¢pJ2) n
n+a(1 _ 2771)

Ch =
S0 ews,

The proof of Theorem 1 is completed by replacing § by 6/2.

2a—11

Proof of Theorem 2. m > (1 —7) 3/2 implies

3/2 1/(1_7—)
(1 —7)mii—2a >1,

and thus k* > 1. So we have
2 >1/(1T)

e \ 1/(1=7)
/ *
(1 —7)mii-2a <k *4+1<2((1—7)mii—2a

which is equivalent to

3/2 * 1-7 3/2
m1112a < u < 21_Tm117/2o¢'
=Tior -

(6.1)

29



By Theorem 4 and (4.17), for any 6 € (0, 1/3), we have with confidence 1 — 9,
[ fres1 = Vol
3L Vol = ix ( (100 L
2 (24/1 1) log ~
ewy (1 — 27*1)6’0‘50‘/”m ogm + &5
*3/2 605 a’% 2(3 E*+1

_{_0571,{ mii—2an _|_ m*;(% )1og
ew 1-—

o3
2

then

3ILEV ol
ewy (1 —271)C¢

mG-a) (i +2) (2 logm 1) 5 (log ;) , (6.2)

> 6C!
| frx41 — Vol < ( + Csy1k% + w5>
%

1—71

where we used

k*+1
1-7 — 1—71

2
1
l—i-Llong <1+2 1ogm> .

3/2
log <10g ol=7 4 10gm11—2a>

<
- 16(1 —7) -7
By Lemma 3 and (3.2), we have with confidence 1 — 34,

| fieir = freet1llp < K1 — frrsallay

¢ SO CVIRT ) et it (1 20)
> \/ﬁc4dl/n 0

5
B6M (3 a)(;et2) <2 lOgm+1> i+ (10s%) " 03)

V/nCy 1—7

Since (4.17) and (4.2) hold simultaneously with confidence 1 — 34, the proof is
completed by combining (6.2) and (6.3) together, and replacing 6 by §/3. The
constant Cy is defined as

364M 3| L'Vl 6Cs5.
= Csy i)
C2 VnCy  ewy (1 —27-1)CY¢ + G’ + ew
This proves Theorem 2. O
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