An Empirical Feature-based Learning Algorithm

Producing Sparse Approximations ${ }^{\dagger}$

Xin Guo, Ding-Xuan Zhou
Department of Mathematics, City University of Hong Kong
83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
Email: xinguo2@student.cityu.edu.hk, mazhou@cityu.edu.hk

Abstract

A learning algorithm for regression is studied. It is a modified kernel projection machine [2] in the form of a least square regularization scheme with ℓ^{1}-regularizer in a data dependent hypothesis space based on empirical features (constructed by a reproducing kernel and the learning data). The algorithm has three advantages. First, it does not involve any optimization process. Second, it produces sparse representations with respect to empirical features under a mild condition, without assuming sparsity in terms of any basis or system. Third, the output function converges to the regression function in the reproducing kernel Hilbert space at a satisfactory rate. Our error analysis does not require any sparsity assumption about the underlying regression function.

Keywords: learning theory, sparsity, reproducing kernel Hilbert space, ℓ^{1}-regularizer, empirical features

[^0]
1 Introduction

We propose a learning algorithm for regression. It is a modification of the kernel projection machine (KPM) introduced by Blanchard et. al. [2] and analyzed by Zwald [23]. The main advantage of this algorithm is its strong learning ability while producing sparse approximations in a very general setting in learning theory, without any hypothesis on sparse representations.

In the regression setting, an input space X is a compact metric space and the output space $Y=\mathbb{R}$. Let $Z=X \times Y$ and ρ be a Borel probability measure on Z with ρ_{X} the marginal measure on X, and $\rho(\cdot \mid x)$ the conditional measure at $x \in X$. The regression function f_{ρ} is defined as

$$
f_{\rho}(x)=\int_{Y} y \mathrm{~d} \rho(y \mid x), \quad x \in X
$$

Our learning algorithm produces approximations of f_{ρ} in a reproducing kernel Hilbert space (RKHS). A symmetric continuous function $K: X \times X \rightarrow \mathbb{R}$ is called a Mercer kernel if for any finite subset $\left\{x_{i}\right\}_{i=1}^{l}$ of X, the $l \times l$ matrix $\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{l}$ is positive semi-definite. For $x \in X$, we denote $K_{x}=K(\cdot, x)$. The RKHS associated with the Mercer kernel K is a Hilbert space \mathcal{H}_{K} completed by the span of $\left\{K_{x}: x \in X\right\}$ under the norm $\|\cdot\|_{K}$ induced by the inner product $\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{K}$ satisfying $\left\langle K_{x}, K_{u}\right\rangle=K(x, u)$. We define an integral operator L_{K} on \mathcal{H}_{K} by

$$
L_{K}(f)=\int_{X} K_{x} f(x) \mathrm{d} \rho_{X}(x), \quad f \in \mathcal{H}_{K} .
$$

In this paper, we take a general setting in learning theory satisfying

$$
\begin{equation*}
f_{\rho}=L_{K}^{r}\left(g_{\rho}\right) \quad \text { for some } r>0 \text { and } g_{\rho} \in \mathcal{H}_{K} . \tag{1}
\end{equation*}
$$

Since L_{K} is a compact, self-adjoint positive operator, we can arrange its eigenvalues $\left\{\lambda_{i}\right\}$ (with multiplicity) as a nonincreasing sequence tending to 0 and take an associated sequence of eigenfunctions $\left\{\phi_{i}\right\}$ to be an orthonormal basis of \mathcal{H}_{K}. Then the power L_{K}^{r} of L_{K} can be written by $L_{K}^{r}\left(\sum_{i} c_{i} \phi_{i}\right)=\sum_{i} c_{i} \lambda_{i}^{r} \phi_{i}$ and assumption (1) is equivalent to $f_{\rho}=\sum_{i} d_{i} \lambda_{i}^{r} \phi_{i}$ where $\left\{d_{i}\right\} \in \ell^{2}$ represents g_{ρ} as $g_{\rho}=\sum_{i} d_{i} \phi_{i}$. The exponent r in (1) measures the decay of the coefficients $\left\{d_{i} \lambda_{i}^{r}\right\}$ of f_{ρ} with respect to the orthonormal basis $\left\{\phi_{i}\right\}$ of \mathcal{H}_{K}. It can be regarded as a measurement for the regularity of the regression function f_{ρ}.

The eigenfunctions $\left\{\phi_{i}\right\}$ can be used to understand feature maps in learning theory. They can be approximated by empirical features $\left\{\phi_{i}^{\mathrm{x}}\right\}$ which are eigenfunctions of an
empirical operator L_{K}^{x} associated with a sample $\mathbf{x} \in X^{m}$. Throughout this paper we assume that $\mathbf{z}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$ is a sample drawn independently from ρ. We use \mathbf{x} to denote the unlabeled part of the data $\mathbf{x}=\left\{x_{1}, \cdots, x_{m}\right\}$. The empirical operator $L_{K}^{\mathbf{x}}$ on \mathcal{H}_{K} is defined by

$$
L_{K}^{\mathrm{x}}(f)=\frac{1}{m} \sum_{i=1}^{m} f\left(x_{i}\right) K_{x_{i}}=\frac{1}{m} \sum_{i=1}^{m}\left\langle f, K_{x_{i}}\right\rangle K_{x_{i}}, \quad f \in \mathcal{H}_{K},
$$

where we have used the reproducing property of the RKHS that asserts $\left\langle f, K_{x}\right\rangle=f(x)$ for any $f \in \mathcal{H}_{K}$ and $x \in X$. So L_{K}^{\times}is a normalized sum of m rank-one operators and it is self-adjoint, positive with rank at most m. Therefore we can write the eigensystem of $L_{K}^{\mathbf{x}}$ as $\left\{\left(\lambda_{i}^{\mathbf{x}}, \phi_{i}^{\mathbf{x}}\right)\right\}_{i}$, with eigenvalues $\lambda_{i}^{\mathbf{x}}$ arranged in nonincreasing order and $\lambda_{i}^{\mathbf{x}}=0$ when $i>m$, and the corresponding eigenfunctions $\left\{\phi_{i}^{\mathrm{x}}\right\}_{i=1}^{\infty}$ to form an orthonormal basis of \mathcal{H}_{K}. The first m eigenfunctions $\left\{\phi_{i}^{\mathbf{x}}\right\}_{i=1}^{m}$ can be used as empirical features for learning by regularization schemes in a data dependent hypothesis space $\operatorname{span}\left\{\phi_{i}^{\mathbf{x}}\right\}_{i=1}^{m}$. The data dependence nature is reflected by the empirical features $\left\{\phi_{i}^{\mathbf{x}}\right\}_{i=1}^{m}$ obtained from the data \mathbf{x}. This idea was used in [2] to introduce the KPM outputting $\sum_{i=1}^{m} c_{\gamma, i}^{\mathbf{z}} \phi_{i}^{\mathbf{z}}$ where the coefficient vector $c_{\gamma}^{\mathbf{Z}}=\left(c_{\gamma, 1}^{\mathbf{z}}, \cdots, c_{\gamma, m}^{\mathbf{Z}}\right)$ is given with a regularization parameter $\gamma>0$ by

$$
c_{\gamma}^{\mathbf{z}}=\arg \min _{c \in \mathbb{R}^{m}}\left\{\frac{1}{m} \sum_{i=1}^{m} V\left(\sum_{j=1}^{m} c_{j} \phi_{j}^{\mathbf{x}}\left(x_{i}\right), y_{i}\right)+\gamma\|c\|_{0}\right\} .
$$

Here $V: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$is a loss function and $\|c\|_{0}$ is the number of nonzero entries of the vector $c=\left(c_{1}, \cdots, c_{m}\right) \in \mathbb{R}^{m}$. The KPM was analyzed in [23] for classification with $V(f, y)=\max \{1-y f, 0\}$ and for regression with $V(f, y)=(f-y)^{2}$ in a Gaussian white noise model.

In this paper we modify the KPM in the least square regression setting by using the ℓ^{1}-regularizer $\|c\|_{1}=\sum_{i=1}^{m}\left|c_{i}\right|$ instead of the ℓ^{0}-penalty. Our learning algorithm now takes the form

$$
\begin{equation*}
c_{\gamma}^{\mathbf{z}}=\arg \min _{c \in \mathbb{R}^{m}}\left\{\frac{1}{m} \sum_{i=1}^{m}\left(\left(\sum_{j=1}^{m} c_{j} \phi_{j}^{\mathbf{x}}\right)\left(x_{i}\right)-y_{i}\right)^{2}+\gamma\|c\|_{1}\right\}, \tag{2}
\end{equation*}
$$

and the output function is

$$
\begin{equation*}
f_{\gamma}^{\mathbf{z}}=\sum_{i=1}^{m} c_{\gamma, i}^{\mathbf{z}} \phi_{i}^{\mathbf{x}} . \tag{3}
\end{equation*}
$$

We use $f_{\gamma}^{\mathbf{z}}$ to approximate the regression function f_{ρ} in \mathcal{H}_{K}.
The following Theorem 1, to be proved in Section 3, represents the solution to problem (2) explicitly, and thus shows computational efficiency of our algorithm.

Theorem 1. For $i \in \mathbb{N}$, denote

$$
S_{i}^{\mathbf{Z}}= \begin{cases}\frac{1}{m \lambda_{i}^{\times}} \sum_{j=1}^{m} y_{j} \phi_{i}^{\mathbf{x}}\left(x_{j}\right), & \text { if } \lambda_{i}^{\mathbf{x}}>0, \\ 0, & \text { otherwise } .\end{cases}
$$

Then the solution to problem (2) is given with $i=1, \ldots, m$ by

$$
c_{\gamma, i}^{\mathbf{z}}= \begin{cases}0, & \text { if } 2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}\right| \leq \gamma, \tag{4}\\ S_{i}^{\mathbf{z}}-\frac{\gamma}{2 \lambda_{i}^{\mathbf{x}}}, & \text { if } 2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}\right|>\gamma \text { and } S_{i}^{\mathbf{z}}>\frac{\gamma}{2 \lambda_{i}^{\mathbf{x}}}, \\ S_{i}^{\mathbf{z}}+\frac{\gamma}{2 \lambda_{i}^{\mathbf{x}}}, & \text { if } 2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}\right|>\gamma \text { and } S_{i}^{\mathbf{z}}<-\frac{\gamma}{2 \lambda_{i}^{\mathbf{x}}} .\end{cases}
$$

In particular, $c_{\gamma, i}^{\mathbf{Z}}=0$ if $\lambda_{i}^{\mathbf{x}}=0$.
Remark 1. Let us show how the eigenpairs $\left\{\left(\lambda_{i}^{\mathbf{x}}, \phi_{i}^{\mathbf{x}}\right)\right\}$ can be found explicitly. Let $d^{\mathbf{x}} \leq$ m be the rank of the Gramian matrix $\mathbb{K}:=\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{m}$. Denote its eigenvalues as $\widehat{\lambda}_{1}^{\mathrm{x}} \geq \cdots \geq \widehat{\lambda}_{d^{\mathrm{x}}}^{\mathrm{x}}>\widehat{\lambda}_{d^{\mathrm{x}}+1}^{\mathrm{x}}=\cdots \widehat{\lambda}_{m}^{\mathrm{x}}=0$, and associated eigenvectors $\left\{\widehat{\mu}_{i}\right\}_{i=1}^{m}$ to form an orthonormal basis of \mathbb{R}^{m}. We have

$$
\begin{align*}
& \lambda_{i}^{\mathbf{x}}=\frac{\hat{\lambda}_{i}^{\mathrm{x}}}{m} \quad \text { and } \phi_{i}^{\mathbf{x}}=\frac{1}{\sqrt{\hat{\lambda}_{i}^{\mathbf{x}}}} \sum_{j=1}^{m}\left(\widehat{\mu}_{i}\right)_{j} K_{x_{j}}, \quad \text { for } i=1, \cdots, d^{\mathbf{x}}, \tag{5}\\
& \lambda_{i}^{\mathbf{x}}=0, \quad \text { and }\left.\phi_{i}^{\mathbf{x}}\right|_{\mathbf{x}}=0, \quad \text { for } i=d^{\mathbf{x}}+1, \ldots, m .
\end{align*}
$$

In fact, for $i=1, \cdots, d^{\mathrm{x}}$, we see that

$$
L_{K}^{\mathrm{x}}\left(\sum_{j=1}^{m}\left(\widehat{\mu}_{i}\right)_{j} K_{x_{j}}\right)=\frac{1}{m} \sum_{l=1}^{m} \sum_{j=1}^{m}\left(\widehat{\mu}_{i}\right)_{j} K\left(x_{l}, x_{j}\right) K_{x_{l}}=\frac{\widehat{\lambda}_{i}^{\mathbf{x}}}{m} \sum_{l=1}^{m}\left(\widehat{\mu}_{i}\right)_{l} K_{x_{l}}
$$

and $\left\|\sum_{j=1}^{m}\left(\widehat{\mu}_{i}\right)_{j} K_{x_{j}}\right\|_{K}^{2}=\widehat{\mu}_{i}^{T} \mathbb{K} \widehat{\mu}_{i}=\widehat{\lambda}_{i}^{\mathrm{x}}>0$.
For $i=d^{\mathbf{x}}+1, \cdots, m, \lambda_{i}^{\mathbf{x}}>0$ would imply $\phi_{i}^{\mathbf{x}}=\frac{1}{\lambda_{i}^{\mathbf{x}}} L_{K}^{\mathbf{x}}\left(\phi_{i}^{\mathbf{x}}\right)=\frac{1}{m \lambda_{i}^{\mathbf{x}}} \sum_{j=1}^{m} \phi_{i}^{\mathbf{x}}\left(x_{j}\right) K_{x_{j}}$ and $\mathbb{K}\left(\left.\phi_{i}^{\mathbf{x}}\right|_{\mathbf{x}}\right)=\left.m \lambda_{i}^{\mathbf{x}} \phi_{i}^{\mathbf{x}}\right|_{\mathbf{x}}$ where $\left.\phi_{i}^{\mathbf{x}}\right|_{\mathbf{x}}=\left(\phi_{i}^{\mathbf{x}}\left(x_{j}\right)\right)_{j=1}^{m}$ is the vector obtained by restricting the function $\phi_{i}^{\mathbf{x}}$ onto the sampling points. It would then yield $\left.\phi_{i}^{\mathbf{x}}\right|_{\mathbf{x}}=0$ and $\phi_{i}^{\mathbf{x}}=0$, a contradiction. So we must have $\lambda_{i}^{\mathbf{x}}=0$. It follows that $\left\langle L_{K}^{\mathbf{x}}\left(\phi_{i}^{\mathbf{x}}\right), \phi_{i}^{\mathbf{x}}\right\rangle=0$, which means $\frac{1}{m} \sum_{j=1}^{m} \phi_{i}^{\mathbf{x}}\left(x_{j}\right) \phi_{i}^{\mathbf{x}}\left(x_{j}\right)=0$ and $\left.\phi_{i}^{\mathbf{x}}\right|_{\mathbf{x}}=0$. In this case, $\phi_{i}^{\mathbf{x}}$ is perpendicular to $\operatorname{span}\left\{K_{x_{i}}\right\}_{i=1}^{m}$

Note that for $i=d^{\mathbf{x}}+1, \cdots, m, \lambda_{i}^{\mathbf{x}}=0$ implies $c_{\gamma, i}^{\mathbf{z}}=0 . \quad S o\left(\sum_{j=1}^{m} c_{j} \phi_{j}^{\mathbf{x}}\right)\left(x_{i}\right)=$ $\left(\sum_{j=1}^{d^{\mathbf{x}}} c_{j} \phi_{j}^{\mathbf{x}}\right)\left(x_{i}\right)$ and optimization problem (2) is the same as $c_{\gamma, i}^{\mathbf{x}}=0$ for $i=d^{\mathbf{x}}+$ $1, \cdots, m$, and

$$
\left(c_{\gamma, i}^{\mathbf{x}}\right)_{i=1}^{d^{\mathrm{x}}}=\arg \min _{c \in \mathbb{R}^{\mathbb{d}^{\mathrm{x}}}}\left\{\frac{1}{m} \sum_{i=1}^{m}\left(\left(\sum_{j=1}^{d^{\mathbf{x}}} c_{j} \phi_{j}^{\mathbf{x}}\right)\left(x_{i}\right)-y_{i}\right)^{2}+\gamma\|c\|_{1}\right\} .
$$

We shall conduct analysis for the error $f_{\gamma}^{\mathrm{z}}-f_{\rho}$ in the \mathcal{H}_{K}-metric (stronger than the $L_{\rho_{X}}^{2}$-metric, as shown in [14]) and derive learning rate for algorithm (2). Note that learning rates with the metric in \mathcal{H}_{K} yield those with the metric in $C^{s}(X)$ when K is $C^{2 s}$ with $X \subset \mathbb{R}^{n}$. See [21].

Let us illustrate our analysis by the following examples when the eigenvalues $\left\{\lambda_{i}\right\}$ have some special asymptotic behaviors. Throughout the paper we assume that $|y| \leq M$ almost surely for some constant $M>0$. Denote $\kappa=\sup _{x \in X} \sqrt{K(x, x)}$.

Theorem 2. Assume (1) and for some $\frac{1}{2 r}<\alpha_{2} \leq \alpha_{1}<(1+r) \alpha_{2}-\frac{1}{2}$ and $0<D_{1}, D_{2}$, the eigenvalues $\left\{\lambda_{i}\right\}$ decay polynomially as

$$
\begin{equation*}
D_{1} i^{-\alpha_{1}} \leq \lambda_{i} \leq D_{2} i^{-\alpha_{2}}, \quad \forall i \tag{6}
\end{equation*}
$$

Let $0<\delta<1$. If we choose

$$
\begin{equation*}
\gamma=\left(2^{1+2 r} D_{2}^{1+r}\left\|g_{\rho}\right\|_{K}+C_{K, \rho}\left(\log \frac{4}{\delta}\right)^{1+r}\right) / \sqrt{m} \tag{7}
\end{equation*}
$$

then we have with confidence $1-\delta$ that

$$
\begin{equation*}
c_{\gamma, i}^{\mathbf{z}}=0, \quad \forall m^{\frac{1}{2 \alpha_{2}(1+r)}}+1 \leq i \leq m \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{\gamma}^{z}-f_{\rho}\right\|_{K} \leq C_{1}\left(\log \frac{4}{\delta}\right)^{1+r} m^{-\frac{2 \alpha_{2} r-1-2\left(\alpha_{1}-\alpha_{2}\right)}{4 \alpha_{2}(1+r)}} \tag{9}
\end{equation*}
$$

where $C_{K, \rho}=8 \kappa^{2}\left\|g_{\rho}\right\|_{K}\left(\lambda_{1}^{r}+2^{4 r} \kappa^{2 r}\right)+16 M \kappa$ and C_{1} is a constant independent of δ or m (which will be specified in the proof).

Remark 2. Asymptotic behavior (6) for the eigenvalues $\left\{\lambda_{i}\right\}$ of the integral operator is typical for Sobolev smooth kernels on domains in Euclidean spaces, and the power indices α_{1} and α_{2} depend on the smoothness of the kernel [12]. When the kernel is smooth enough, α_{2} can be arbitrarily large and learning rate (9) takes the form $m^{\epsilon-\frac{r}{2(1+r)}}$ with an arbitrarily small $\epsilon>0$. When r is large enough, it behaves like $m^{\epsilon-\frac{1}{2}}$ with an arbitrarily small $\epsilon>0$.

Observe from (8) that the number of nonzero coefficients in the representation $f_{\gamma}^{\mathbf{z}}=$ $\sum_{i=1}^{m} c_{\gamma, i}^{\mathbf{z}} \phi_{i}^{\mathbf{x}}$ is at most $m^{\frac{1}{2 \alpha_{2}(1+r)}}$ which can be much smaller than the sample size m when α_{2} and r are large.

Theorem 3. Assume (1) and for some $1<\beta_{2} \leq \beta_{1}<\beta_{2}^{1+r}$ and $0<D_{1}, D_{2}$, the eigenvalues $\left\{\lambda_{i}\right\}$ decay exponentially as

$$
\begin{equation*}
D_{1} \beta_{1}^{-i} \leq \lambda_{i} \leq D_{2} \beta_{2}^{-i}, \quad \forall i . \tag{10}
\end{equation*}
$$

Let $0<\delta<1$ and choose

$$
\gamma=\left(2^{1+2 r} D_{2}^{1+r}\left\|g_{\rho}\right\|_{K}+C_{K, \rho}\left(\log \frac{4}{\delta}\right)^{1+r}\right) / \sqrt{m}
$$

then we have with confidence $1-\delta$ that

$$
\begin{equation*}
c_{\gamma, i}^{\mathbf{z}}=0, \quad \forall \frac{\log (m+1)}{2(1+r) \log \beta_{2}}+1 \leq i \leq m \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{\gamma}^{\mathbf{z}}-f_{\rho}\right\|_{K} \leq C_{2}\left(\log \frac{4}{\delta}\right)^{1+r} \sqrt{\log (m+1)} m^{-\frac{r-\left(\log \frac{\beta_{1}}{\beta 2} / \log \beta_{2}\right)}{2(1+r)}}, \tag{12}
\end{equation*}
$$

where C_{2} is a constant independent of δ or m (which will be specified in the proof).
Remark 3. Asymptotic behavior (10) for the eigenvalues $\left\{\lambda_{i}\right\}$ of the integral operator is typical for analytic kernels on domains in Euclidean spaces [13]. When r is large enough (meaning that f_{ρ} has high regularity), learning rate (12) behaves like $m^{\epsilon-\frac{1}{2}}$ with an arbitrarily small $\epsilon>0$.

Again we observe from (11) that the number of nonzero coefficients in the representation $f_{\gamma}^{\mathbf{Z}}=\sum_{i=1}^{m} c_{\gamma, i}^{\mathbf{z}} \phi_{i}^{\mathbf{x}}$ is at most $\frac{\log (m+1)}{2(1+r) \log \beta_{2}}$ which is much smaller than the sample size m.

Theorems 2 and 3 will be proved in Section 6.

2 General Analysis

Our general analysis for algorithm (2) is the following theorem to be proved in Section 5.
Theorem 4. Assume (1). Let $p \in\{1, \ldots, m\}$ and $0<\delta<1$. Choose γ to satisfy

$$
\begin{equation*}
2^{1+2 r}\left\|g_{\rho}\right\|_{K} \lambda_{p}^{1+r}+C_{K, \rho} \frac{\left(\log \frac{4}{\delta}\right)^{1+r}}{\sqrt{m}} \leq \gamma \tag{13}
\end{equation*}
$$

then with confidence $1-\delta$ we have

$$
\begin{equation*}
\left\|f_{\gamma}^{\mathbf{z}}-f_{\rho}\right\|_{K} \leq\left\|g_{\rho}\right\|_{K} \lambda_{p}^{r}+\frac{\sqrt{2 p} \gamma}{\lambda_{p}}+\frac{C_{3} \log \frac{4}{\delta}}{\lambda_{p} \sqrt{m}}+C_{4} \lambda_{p}^{\min \{r-1,0\}}\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{\max \{2 r, 2\}}\right)^{1 / 2}, \tag{14}
\end{equation*}
$$

where $C_{3}=16 \sqrt{2} M \kappa+2^{3+\max \{2 r, 1\}}\left\|g_{\rho}\right\|_{K} \lambda_{1}^{r} \kappa^{2}$ and $C_{4}=2^{\max \{r, 1\}}\left\|g_{\rho}\right\|_{K}$.
Let us give a concrete example with \mathcal{H}_{K} being the Sobolev space $H^{s}(X)$ of integer index $s>\frac{n}{2}$ and X being the unit ball $X=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ of \mathbb{R}^{n}. When ρ_{X} is the normalized Lebesgue measure on X, a classical result in the theory of function spaces (see e.g. [17]) asserts that condition (6) for the eigenvalues $\left\{\lambda_{i}\right\}$ holds with $\alpha_{1}=\alpha_{2}=\frac{2 s}{n}$. Also, if $f_{\rho} \in H^{(2 r+1) s}(X)$ for some $r>\frac{n}{4 s}$, we know that condition (1) holds true. Then the following learning rate can be derived from Theorem 4, as in the proof of Theorem 2.

Example 1. Let $X=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ and ρ_{X} be the normalized Lebesgue measure on X. If K is the reproducing kernel of the Sobolev space $H^{s}(X)$ of integer index $s>\frac{n}{2}$ and $f_{\rho} \in H^{(2 r+1) s}(X)$ for some $r>\frac{n}{4 s}$, then by taking $\gamma=C_{s, f_{\rho}}\left(\log \frac{4}{\delta}\right)^{1+r} / \sqrt{m}$, we have with confidence $1-\delta$,

$$
\left\|f_{\gamma}^{\mathrm{z}}-f_{\rho}\right\|_{K} \leq C_{1}^{\prime}\left(\log \frac{4}{\delta}\right)^{1+r} m^{-\frac{4 s r-n}{8 s(1+r)}}
$$

where $C_{s, f_{\rho}}$ and C_{1}^{\prime} are constants independent of δ or m.

3 Explicit Formula for the Coefficients

In this section we prove the representer theorem for algorithm (2). The ℓ^{1}-regularizer is important in the process. The proof is an immediate consequence of the classical result on soft-thresholding in the context of orthogonal regressors [19], once the orthogonality of $\left\{\phi_{i}^{\mathbf{x}}\right\}$ on the data is derived (see (15) below). We give the proof here for completeness.

Proof of Theorem 1. Let $i \in \mathbb{N}$. Since $\left(\lambda_{i}^{\mathbf{x}}, \phi_{i}^{\mathbf{x}}\right)$ is an eigenpair of $L_{K}^{\mathbf{x}}$, we have

$$
\lambda_{i}^{\mathrm{x}} \phi_{i}^{\mathrm{x}}=L_{K}^{\mathrm{x}} \phi_{i}^{\mathrm{x}}=\frac{1}{m} \sum_{j=1}^{m} \phi_{i}^{\mathrm{x}}\left(x_{j}\right) K_{x_{j}} .
$$

It follows from the reproducing property $\left\langle K_{x_{j}}, \phi_{l}^{\mathbf{x}}\right\rangle=\phi_{l}^{\mathbf{x}}\left(x_{j}\right)$ that

$$
\begin{equation*}
\delta_{i, l} \lambda_{i}^{\mathbf{x}}=\left\langle\lambda_{i}^{\mathbf{x}} \phi_{i}^{\mathbf{x}}, \phi_{l}^{\mathbf{x}}\right\rangle=\frac{1}{m} \sum_{j=1}^{m} \phi_{i}^{\mathbf{x}}\left(x_{j}\right) \phi_{l}^{\mathbf{x}}\left(x_{j}\right), \quad i, l \in \mathbb{N}, \tag{15}
\end{equation*}
$$

where $\delta_{i, l}=1$ if $i=l$ and $\delta_{i, l}=0$ otherwise. In particular, when $\lambda_{i}^{\mathrm{x}}=0$ (which is the case when $i>m$), we have $\phi_{i}^{\mathbf{x}}\left(x_{j}\right)=0$ for each $j \in\{1, \ldots, m\}$. Consider the minimization problem (2). Note from the definition of $S_{i}^{\mathbf{Z}}$ that $\frac{1}{m} \sum_{j=1}^{m} y_{j} \phi_{i}^{\mathbf{x}}\left(x_{j}\right)=\lambda_{i}^{\mathbf{x}} S_{i}^{\mathbf{Z}}$. Apply (15). The empirical error part takes the form

$$
\begin{aligned}
& \frac{1}{m} \sum_{i=1}^{m}\left(\left(\sum_{j=1}^{m} c_{j} \phi_{j}^{\mathbf{x}}\right)\left(x_{i}\right)-y_{i}\right)^{2} \\
= & \sum_{p, q=1}^{m} c_{p} c_{q} \frac{1}{m} \sum_{i=1}^{m} \phi_{p}^{\mathbf{x}}\left(x_{i}\right) \phi_{q}^{\mathbf{x}}\left(x_{i}\right)-\frac{2}{m} \sum_{i, j=1}^{m} y_{i} c_{j} \phi_{j}^{\mathbf{x}}\left(x_{i}\right)+\frac{1}{m} \sum_{i=1}^{m} y_{i}^{2} \\
= & \sum_{p, q=1}^{m} c_{p} c_{q} \delta_{p, q} \lambda_{p}^{\mathbf{x}}-2 \sum_{i=1}^{m} \lambda_{i}^{\mathbf{x}} S_{i}^{\mathbf{Z}} c_{i}+\frac{1}{m} \sum_{i=1}^{m} y_{i}^{2}=\sum_{i=1}^{m} \lambda_{i}^{\mathbf{x}} c_{i}^{2}-2 \sum_{i=1}^{m} \lambda_{i}^{\mathbf{x}} S_{i}^{\mathbf{Z}} c_{i}+\frac{1}{m} \sum_{i=1}^{m} y_{i}^{2} .
\end{aligned}
$$

Hence we have an equivalent form of (2) as

$$
c_{\gamma}^{\mathbf{Z}}=\arg \min _{c \in \mathbb{R}^{m}} \sum_{i=1}^{m}\left\{\lambda_{i}^{\mathbf{x}}\left(c_{i}-S_{i}^{\mathbf{Z}}\right)^{2}+\gamma\left|c_{i}\right|\right\} .
$$

Thus for $i \in\{1, \ldots, m\}$, when $\lambda_{i}^{\mathbf{x}}=0$, we have $c_{\gamma, i}^{\mathbf{z}}=0$. When $\lambda_{i}^{\mathbf{x}}>0$, the component $c_{\gamma, i}^{\mathrm{z}}$ can be found by solving the following optimization problem

$$
c_{\gamma, i}^{\mathbf{z}}=\arg \min _{c \in \mathbb{R}}\left\{\left(c-S_{i}^{\mathbf{Z}}\right)^{2}+\frac{\gamma}{\lambda_{i}^{\mathbf{x}}}|c|\right\}
$$

which has the solution given by (4). This proves the theorem.
Remark 4. The algorithm can be divided into two parts: computing eigenpairs $\left\{\left(\lambda_{i}^{\mathbf{x}}, \phi_{i}^{\mathbf{x}}\right)\right\}$ and solving the minimization problem (2). So the algorithm can be extended to a semisupervised learning setting: if other than the labeled data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$, we have some extra unlabeled data $\left\{x_{i}\right\}_{i=m+1}^{m^{\prime}}$, then we can enhance the learning of the eigenfunctions in the first step by making full use of all the data $\left\{x_{i}\right\}_{i=1}^{m^{\prime}}$.

4 Preliminary Analysis for Sparsity

Theorem 1 tells us that $c_{\gamma, i}^{\mathbf{Z}}=0$ whenever $2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}\right| \leq \gamma$. We shall choose suitable $p=p(m)$ with $\frac{p(m)}{m} \rightarrow 0$ and γ depending on δ such that with confidence $1-\delta$,

$$
\begin{equation*}
2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}\right| \leq \gamma, \quad i=p+1, \ldots, m \tag{16}
\end{equation*}
$$

which would yield the desired sparsity: $c_{\gamma, i}^{\mathbf{Z}}=0$ for $i=p+1, \ldots, m$. The preliminary analysis for sparsity is an important tool for our error analysis.

To achieve the required condition (16), we need to estimate $\lambda_{i}^{\mathbf{x}}$ and S_{i}^{z}. The eigenvalue λ_{i}^{x} is easier to deal with, by the following Hoffman-Wielandt inequality (see [7] for the original inequality for matrices, [8] for the generalization to self-adjoint operators on Hilbert spaces, [9] for an application to approximation of integral operators, and [1] for more general discussion).

Lemma 1. We have

$$
\sum_{i=1}^{\infty}\left(\lambda_{i}-\lambda_{i}^{\mathrm{x}}\right)^{2} \leq\left\|L_{K}-L_{K}^{\mathrm{x}}\right\|_{\mathrm{HS}}^{2}
$$

where $\|\cdot\|_{\text {HS }}$ is the Hilbert-Schmidt norm of $\operatorname{HS}\left(\mathcal{H}_{K}\right)$, the Hilbert space of all HilbertSchmidt operators on \mathcal{H}_{K}.

Recall that $\left\langle A_{1}, A_{2}\right\rangle_{\mathrm{HS}}=\sum_{j}\left\langle A_{1} e_{j}, A_{2} e_{j}\right\rangle_{K}$ for $A_{1}, A_{2} \in \operatorname{HS}\left(\mathcal{H}_{K}\right)$, where $\left\{e_{j}\right\}$ is an orthonormal basis of \mathcal{H}_{K}. The space $\operatorname{HS}\left(\mathcal{H}_{K}\right)$ is a subspace of the space of bounded linear operators on \mathcal{H}_{K} with norms satisfying $\|A\|_{\mathcal{H}_{K} \rightarrow \mathcal{H}_{K}} \leq\|A\|_{\text {HS }}$.

The quantity $\left\|L_{K}-L_{K}^{\mathrm{x}}\right\|_{\text {HS }}$ has been bounded in the literature [4, 9, 20, 14, 22].
Lemma 2. For $0<\delta<1$, we have with confidence $1-\delta$,

$$
\begin{equation*}
\left\|L_{K}-L_{K}^{\mathbf{x}}\right\|_{\mathrm{HS}} \leq \frac{4 \kappa^{2} \log \frac{2}{\delta}}{\sqrt{m}} \tag{17}
\end{equation*}
$$

Bounding the coefficients $\left\{S_{i}^{\mathbf{z}}\right\}$ towards (16) is more involved. We first show that $\lambda_{i}^{\mathbf{x}} S_{i}^{\mathbf{z}}$ is close to $\lambda_{i}^{\mathbf{x}}\left\langle f_{\rho}, \phi_{i}^{\mathrm{x}}\right\rangle$, by means of the following probability inequality in [15] derived from [11, 14].

Lemma 3. Let $\left\{\xi_{i}\right\}_{i=1}^{m}$ be a set of independent random variables with values in a Hilbert space. If $\left\|\xi_{i}\right\| \leq \widetilde{M}<\infty$ almost surely for each $i=1, \cdots, m$, then for $0<\delta<1$, with confidence $1-\delta$ we have

$$
\left\|\frac{1}{m} \sum_{i=1}^{m}\left(\xi_{i}-\mathbb{E} \xi_{i}\right)\right\| \leq \frac{4 \widetilde{M} \log \frac{2}{\delta}}{\sqrt{m}}
$$

Lemma 4. For $0<\delta<1$, with confidence $1-\delta$ we have

$$
\begin{equation*}
\left(\sum_{j \in \mathbb{N}}\left(\lambda_{j}^{\mathbf{x}}\left(S_{j}^{\mathbf{Z}}-\left\langle f_{\rho}, \phi_{j}^{\mathbf{x}}\right\rangle\right)\right)^{2}\right)^{1 / 2} \leq \frac{8 M \kappa \log \frac{2}{\delta}}{\sqrt{m}} \tag{18}
\end{equation*}
$$

Proof. Consider the set of independent random variables $\left\{\xi_{i}=\left(y_{i}-f_{\rho}\left(x_{i}\right)\right) K_{x_{i}}\right\}_{i=1}^{m}$ with values in the Hilbert space \mathcal{H}_{K}. They satisfy $\left\|\xi_{i}\right\|=\left|y_{i}-f_{\rho}\left(x_{i}\right)\right| \sqrt{K\left(x_{i}, x_{i}\right)} \leq 2 M \kappa$ and $\mathbb{E} \xi_{i}=0$. So by Lemma 3, we know that for any $0<\delta<1$, with confidence $1-\delta$ we have $\left\|\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-f_{\rho}\left(x_{i}\right)\right) K_{x_{i}}\right\|_{K} \leq \frac{8 M \kappa \log \frac{2}{\delta}}{\sqrt{m}}$.

By the definition of $S_{j}^{\mathbf{z}}$ and the relation $\lambda_{j}^{\mathbf{x}} \phi_{j}^{\mathbf{x}}=L_{K}^{\mathbf{x}}\left(\phi_{j}^{\mathbf{x}}\right)=\frac{1}{m} \sum_{i=1}^{m} \phi_{j}^{\mathbf{x}}\left(x_{i}\right) K_{x_{i}}$, for each $j \in \mathbb{N}$ we have

$$
\lambda_{j}^{\mathbf{x}}\left(S_{j}^{\mathbf{Z}}-\left\langle f_{\rho}, \phi_{j}^{\mathbf{x}}\right\rangle\right)=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-f_{\rho}\left(x_{i}\right)\right) \phi_{j}^{\mathbf{x}}\left(x_{i}\right)=\left\langle\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-f_{\rho}\left(x_{i}\right)\right) K_{x_{i}}, \phi_{j}^{\mathbf{x}}\right\rangle .
$$

But $\left\{\phi_{j}^{\mathrm{x}}\right\}_{j \in \mathbb{N}}$ is an orthonormal basis of \mathcal{H}_{K}, so we have

$$
\sum_{j \in \mathbb{N}}\left(\lambda_{j}^{\mathbf{x}}\left(S_{j}^{\mathbf{z}}-\left\langle f_{\rho}, \phi_{j}^{\mathbf{x}}\right\rangle\right)\right)^{2}=\left\|\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-f_{\rho}\left(x_{i}\right)\right) K_{x_{i}}\right\|^{2},
$$

and our conclusion follows.
Next we need to estimate $\lambda_{i}^{\mathbf{x}}\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle$. Since $\left\{\phi_{j}\right\}$ and $\left\{\phi_{i}^{\mathbf{x}}\right\}$ are orthonormal bases of \mathcal{H}_{K}, we observe that

$$
\left(L_{K}-L_{K}^{\mathbf{x}}\right) \phi_{i}^{\mathbf{x}}=\sum_{j=1}^{\infty}\left\langle\phi_{i}^{\mathbf{x}}, \phi_{j}\right\rangle L_{K} \phi_{j}-\lambda_{i}^{\mathbf{x}} \sum_{j=1}^{\infty}\left\langle\phi_{i}^{\mathbf{x}}, \phi_{j}\right\rangle \phi_{j}=\sum_{j=1}^{\infty}\left\langle\phi_{i}^{\mathbf{x}}, \phi_{j}\right\rangle\left(\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right) \phi_{j} .
$$

Then the definition of the Hilbert-Schmidt norm tells us that

$$
\begin{equation*}
\left\|L_{K}-L_{K}^{\mathbf{x}}\right\|_{\mathrm{HS}}^{2}=\sum_{i=1}^{\infty}\left\|\left(L_{K}-L_{K}^{\mathbf{x}}\right) \phi_{i}^{\mathbf{x}}\right\|_{K}^{2}=\sum_{i, j=1}^{\infty}\left(\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right)^{2}\left(\left\langle\phi_{i}^{\mathbf{x}}, \phi_{j}\right\rangle\right)^{2} \tag{19}
\end{equation*}
$$

We shall use expression (19) a few times in our analysis for both sparsity and error bounds.
Lemma 5. Let $I \subseteq \mathbb{N}$. If $f_{\rho}=L_{K}^{r}\left(g_{\rho}\right)$ for some $r>0$ and $g_{\rho} \in \mathcal{H}_{K}$, then

$$
\left(\sum_{i \in I}\left|\lambda_{i}^{\mathbf{x}}\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle\right|^{2}\right)^{1 / 2} \leq \lambda_{1}^{r}\left\|g_{\rho}\right\|_{K}\left\|L_{K}-L_{K}^{\mathbf{x}}\right\|_{\mathrm{HS}}+2^{r}\left\|g_{\rho}\right\|_{K}\left(\sum_{i \in I}\left(\lambda_{i}^{\mathbf{x}}\right)^{2(1+r)}\right)^{1 / 2}
$$

Proof. Write $g_{\rho}=\sum_{j=1}^{\infty} d_{j} \phi_{j}$ with $\left\{d_{j}\right\} \in \ell^{2}$ and $\left\|\left\{d_{j}\right\}\right\|_{\ell^{2}}=\left\|g_{\rho}\right\|_{K}$. Then $f_{\rho}=\sum_{j=1}^{\infty} \lambda_{j}^{r} d_{j} \phi_{j}$, and for $i \in I$,

$$
\lambda_{i}^{\mathbf{x}}\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle=\lambda_{i}^{\mathrm{x}} \sum_{j=1}^{\infty} \lambda_{j}^{r} d_{j}\left\langle\phi_{j}, \phi_{i}^{\mathrm{x}}\right\rangle=\lambda_{i}^{\mathrm{x}} \sum_{j: \lambda_{j}>2 \lambda_{i}^{\mathrm{x}}} \lambda_{j}^{r} d_{j}\left\langle\phi_{j}, \phi_{i}^{\mathrm{x}}\right\rangle+\lambda_{i}^{\mathbf{x}} \sum_{j: \lambda_{j} \leq 2 \lambda_{i}^{\mathrm{x}}} \lambda_{j}^{r} d_{j}\left\langle\phi_{j}, \phi_{i}^{\mathrm{x}}\right\rangle .
$$

When $\lambda_{j}>2 \lambda_{i}^{\mathbf{x}}$, we have $\lambda_{i}^{\mathrm{x}} \leq \lambda_{j}-\lambda_{i}^{\mathbf{x}}$. Hence by the Schwarz inequality,

$$
\left|\lambda_{i}^{\mathbf{x}} \sum_{j: \lambda_{j}>2 \lambda_{i}^{\mathbf{x}}} \lambda_{j}^{r} d_{j}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle\right| \leq \lambda_{1}^{r}\left\|\left\{d_{l}\right\}\right\|_{\ell^{2}}\left(\sum_{j: \lambda_{j}>2 \lambda_{i}^{\mathbf{x}}}\left(\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right)^{2}\left(\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle\right)^{2}\right)^{1 / 2} .
$$

It follows from (19) that

$$
\left(\sum_{i \in I}\left|\lambda_{i}^{\mathbf{x}}\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle\right|^{2}\right)^{1 / 2} \leq \lambda_{1}^{r}\left\|\left\{d_{j}\right\}\right\|_{\ell^{2}}\left\|L_{K}-L_{K}^{\mathbf{x}}\right\|_{\mathrm{HS}}+2^{r}\left\|\left\{d_{j}\right\}\right\|_{\ell^{2}}\left(\sum_{i \in I}\left(\lambda_{i}^{\mathbf{x}}\right)^{2(1+r)}\right)^{1 / 2}
$$

The proof is completed.
Now we can present our preliminary analysis for sparsity of algorithm (2). The ℓ^{1} regularizer plays a key role to produce sparse approximations. The phenomenon that the ℓ^{1}-regularizer can be used to reproduce sparsity has been observed in LASSO [19] and compressed sensing [3, 6], usually under the assumption that the approximated function has a sparse representation with respect to some basis or redundant system. Here we show that sparsity of f_{γ}^{z} in representation (3) can be produced under assumption (1) which does not impose any sparse representation and is a common mild condition in learning theory (e.g. $[4,14,10]$). The choice of the empirical features $\left\{\phi_{i}^{\mathbf{x}}\right\}_{i=1}^{m}$ is important to ensure the sparsity and convergence rates for the algorithm.

Theorem 5. Under the same condition as in Theorem 4, with confidence $1-\delta$ we have

$$
c_{\gamma, i}^{\mathbf{z}}=0, \quad \forall i=p+1, \ldots, m .
$$

Proof. By Lemmas 2 and 4, we know that for any $0<\delta<\frac{1}{2}$ there exists a subset Z_{δ} of Z^{m} of measure at least $1-2 \delta$ such that both (17) and (18) hold for each $\mathbf{z} \in Z_{\delta}$.

Let $i \in\{1, \ldots, m\}$ and $\mathbf{z} \in Z_{\delta}$. Then from (18), we see that

$$
2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}\right| \leq 2 \lambda_{i}^{\mathbf{x}}\left|\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle\right|+2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}-\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle\right| \leq 2 \lambda_{i}^{\mathbf{x}}\left|\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle\right|+\frac{16 M \kappa \log \frac{2}{\delta}}{\sqrt{m}}
$$

Applying Lemma 5 to $I=\{i\}$, we have

$$
\begin{equation*}
2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}\right| \leq \lambda_{1}^{r}\left\|g_{\rho}\right\|_{K} \frac{8 \kappa^{2} \log \frac{2}{\delta}}{\sqrt{m}}+2^{1+r}\left\|g_{\rho}\right\|_{K}\left(\lambda_{i}^{\mathbf{x}}\right)^{1+r}+\frac{16 M \kappa \log \frac{2}{\delta}}{\sqrt{m}} . \tag{20}
\end{equation*}
$$

By Lemma 1, $\left|\lambda_{i}^{\mathrm{x}}-\lambda_{i}\right| \leq\left\|L_{K}-L_{K}^{\mathrm{X}}\right\|_{\mathrm{HS}}$, so $\left(\lambda_{i}^{\mathrm{X}}\right)^{1+r} \leq\left(\lambda_{i}+\left\|L_{K}-L_{K}^{\mathrm{x}}\right\|_{\mathrm{HS}}\right)^{1+r} \leq 2^{r}\left(\lambda_{i}^{1+r}+\right.$ $\left.\left\|L_{K}-L_{K}^{\mathrm{x}}\right\|_{\mathrm{HS}}^{1+r}\right)$. It follows that for $i=1, \cdots, m$, the right-hand side of (20) has an upper bound

$$
2^{1+2 r}\left\|g_{\rho}\right\|_{K} \lambda_{i}^{1+r}+C_{K, \rho} \frac{\left(\log \frac{2}{\delta}\right)^{1+r}}{\sqrt{m}}
$$

Therefore, when

$$
\begin{equation*}
2^{1+2 r}\left\|g_{\rho}\right\|_{K} \lambda_{p}^{1+r}+C_{K, \rho} \frac{\left(\log \frac{2}{\delta}\right)^{1+r}}{\sqrt{m}} \leq \gamma \tag{21}
\end{equation*}
$$

we know that

$$
2 \lambda_{i}^{\mathbf{x}}\left|S_{i}^{\mathbf{Z}}\right| \leq \gamma, \quad \forall i=p+1, \ldots, m
$$

which by Theorem 1 yields $c_{\gamma, i}^{\mathbf{Z}}=0$ for $i=p+1, \ldots, m$. Then the conclusion of Theorem 5 follows by scaling 2δ to δ, for which (21) corresponds to (13).

From Theorem 5 we see immediately that when the eigenvalues $\left\{\lambda_{i}\right\}$ decay polynomially, the sparsity can be explicitly derived by taking p to be $\left\lceil m^{\frac{1}{2 \alpha(1+r)}}\right\rceil$, the smallest integer greater than or equal to $m^{\frac{1}{2 \alpha(1+r)}}$.

Corollary 1. Assume (1). If for some $D_{2}>0$ and $\alpha>0, \lambda_{i} \leq D_{2} i^{-\alpha}$ holds for each i, then when $\gamma \geq\left(2^{1+2 r} D_{2}^{1+r}\left\|g_{\rho}\right\|_{K}+C_{K, \rho}\left(\log \frac{4}{\delta}\right)^{1+r}\right) / \sqrt{m}$, we have with confidence $1-\delta$,

$$
c_{\gamma, i}^{\mathbf{Z}}=0, \quad \forall m^{\frac{1}{2 \alpha(1+r)}}+1 \leq i \leq m .
$$

5 Error Analysis

In this section, we prove our error bounds stated in Theorem 4.
Proof of Theorem 4. We follow the proof of Theorem 5 and know that for any $0<\delta<\frac{1}{2}$ there exists a subset Z_{δ} of Z^{m} of measure at least $1-2 \delta$ such that both (17) and (18) hold for each $\mathbf{z} \in Z_{\delta}$. Moreover, when (21) is satisfied and $\mathbf{z} \in Z_{\delta}$, we have $c_{\gamma, i}^{\mathbf{z}}=0$ for every $i \in\{p+1, \ldots, m\}$ and those $i \in\{1, \ldots, p\}$ with $\lambda_{i}^{\mathrm{x}} \leq \frac{\lambda_{p}}{2}$, which follows directly from (20). Hence

$$
f_{\gamma}^{\mathbf{z}}=\sum_{i \in \mathcal{S}} c_{\gamma, i}^{\mathbf{z}} \phi_{i}^{\mathbf{x}},
$$

where \mathcal{S} is defined by $\mathcal{S}=\left\{i \in\{1, \ldots, p\}: \lambda_{i}^{\mathbf{x}}>\frac{\lambda_{p}}{2}\right\}$. It follows from the orthogonal expansion in terms of the orthonormal basis $\left\{\phi_{i}^{\mathrm{x}}\right\}$ that

$$
\begin{equation*}
\left\|f_{\gamma}^{\mathbf{z}}-f_{\rho}\right\|_{K}^{2}=\sum_{i \in \mathbb{N} \backslash \mathcal{S}}\left(\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle\right)^{2}+\sum_{i \in \mathcal{S}}\left(\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle-c_{\gamma, i}^{\mathbf{z}}\right)^{2}=: \Delta_{1}+\Delta_{2} . \tag{22}
\end{equation*}
$$

Let $\mathbf{z} \in Z_{\delta}$ in the following proof.

We bound the first term Δ_{1} on the right-hand side of (22) by decomposing it further into two parts with $f_{\rho}=\sum_{j=1}^{\infty} \lambda_{j}^{r} d_{j} \phi_{j}=\sum_{j=p+1}^{\infty} \lambda_{j}^{r} d_{j} \phi_{j}+\sum_{j=1}^{p} \lambda_{j}^{r} d_{j} \phi_{j}$. Here we have written $g_{\rho}=\sum_{j=1}^{\infty} d_{j} \phi_{j}$ with $\left\{d_{j}\right\} \in \ell^{2}$ and $\left\|\left\{d_{j}\right\}\right\|_{\ell^{2}}=\left\|g_{\rho}\right\|_{K}$.

The part with $\sum_{j=p+1}^{\infty}$ is easy to deal with: since $\left\{\phi_{i}^{\mathrm{x}}\right\}$ is an orthonormal basis, we have

$$
\begin{equation*}
\left(\sum_{i=1}^{\infty}\left\langle\sum_{j=p+1}^{\infty} \lambda_{j}^{r} d_{j} \phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2}\right)^{1 / 2}=\left\|\sum_{j=p+1}^{\infty} \lambda_{j}^{r} d_{j} \phi_{j}\right\|_{K} \leq\left\|g_{\rho}\right\|_{K} \lambda_{p+1}^{r} . \tag{23}
\end{equation*}
$$

The part with $\sum_{j=1}^{p}$ can be estimated by the Schwarz inequality as

$$
\left(\sum_{i \in \mathbb{N} \backslash \mathcal{S}}\left\langle\sum_{j=1}^{p} \lambda_{j}^{r} d_{j} \phi_{j}, \phi_{i}^{\times}\right\rangle^{2}\right)^{1 / 2} \leq\left(\sum_{i \in \mathbb{N} \backslash \mathcal{S}}\left\|\left\{d_{l}\right\}\right\|_{\ell^{2}}^{2} \sum_{j=1}^{p} \lambda_{j}^{2 r}\left\langle\phi_{j}, \phi_{i}^{\mathrm{X}}\right\rangle^{2}\right)^{1 / 2} .
$$

We continue to bound $\sum_{i \in \mathbb{N} \backslash \mathcal{S}} \sum_{j=1}^{p} \lambda_{j}^{2 r}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2}$ in two cases.
Case 1: $r \geq 1$. For $i \geq p+1$, we observe that $\lambda_{j}^{2 r} \leq 2^{2 r-1}\left(\lambda_{i}^{2 r}+\left(\lambda_{j}-\lambda_{i}\right)^{2 r}\right)$ and

$$
\left(\lambda_{j}-\lambda_{i}\right)^{2 r} \leq \lambda_{1}^{2 r-2}\left(\lambda_{j}-\lambda_{i}\right)^{2} \leq 2 \lambda_{1}^{2 r-2}\left(\left|\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right|^{2}+\left|\lambda_{i}-\lambda_{i}^{\mathbf{x}}\right|^{2}\right) .
$$

It follows that

$$
\sum_{j=1}^{p} \lambda_{j}^{2 r}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2} \leq 2^{2 r-1} \sum_{j=1}^{p}\left(\lambda_{i}^{2 r}+2 \lambda_{1}^{2 r-2}\left|\lambda_{i}-\lambda_{i}^{\mathbf{x}}\right|^{2}+2 \lambda_{1}^{2 r-2}\left|\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right|^{2}\right)\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2}
$$

which in connection with Lemma 1 and (19) yields

$$
\begin{aligned}
& \sum_{i=p+1}^{\infty} \sum_{j=1}^{p} \lambda_{j}^{2 r}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2} \\
\leq & 2^{2 r-1} \sum_{i=p+1}^{\infty} \lambda_{i}^{2 r}+2^{2 r} \lambda_{1}^{2 r-2}\left(\sum_{i=1}^{\infty}\left|\lambda_{i}-\lambda_{i}^{\mathbf{x}}\right|^{2}+\sum_{i, j=1}^{\infty}\left|\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right|^{2}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2}\right) \\
\leq & 2^{2 r-1} \sum_{i=p+1}^{\infty} \lambda_{i}^{2 r}+2^{1+2 r} \lambda_{1}^{2 r-2}\left\|L_{K}-L_{K}^{\mathbf{x}}\right\|_{\mathrm{HS}}^{2} .
\end{aligned}
$$

For $i \in\{1, \ldots, p\} \backslash \mathcal{S}$ and $j \leq p$, we have $\left|\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right| \geq \frac{\lambda_{j}}{2}$ and hence $\lambda_{j}^{2 r} \leq 4 \lambda_{1}^{2 r-2}\left|\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right|^{2}$. So by (19),

$$
\sum_{i \in\{1, \ldots, p\} \backslash \mathcal{S}} \sum_{j=1}^{p} \lambda_{j}^{2 r}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2} \leq 4 \lambda_{1}^{2 r-2} \sum_{i, j=1}^{\infty}\left|\lambda_{j}-\lambda_{i}^{\mathbf{x}}\right|^{2}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2} \leq 4 \lambda_{1}^{2 r-2}\left\|L_{K}-L_{K}^{\mathbf{x}}\right\|_{\mathrm{HS}}^{2}
$$

Thus in the first case we have

$$
\sum_{i \in \mathbb{N} \backslash \mathcal{S}} \sum_{j=1}^{p} \lambda_{j}^{2 r}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2} \leq 2^{2 r-1} \sum_{i=p+1}^{\infty} \lambda_{i}^{2 r}+4 \lambda_{1}^{2 r-2}\left(2^{2 r-1}+1\right)\left\|L_{K}-L_{K}^{\mathbf{x}}\right\|_{\mathrm{HS}}^{2} .
$$

Case 2: $r<1$. we notice that $\lambda_{j}^{2 r} \leq \lambda_{p}^{2 r-2} \lambda_{j}^{2}$ and obtain from the above estimate

$$
\sum_{i \in \mathbb{N} \backslash \mathcal{S}} \sum_{j=1}^{p} \lambda_{j}^{2 r}\left\langle\phi_{j}, \phi_{i}^{\mathbf{x}}\right\rangle^{2} \leq 2 \lambda_{p}^{2 r-2} \sum_{i=p+1}^{\infty} \lambda_{i}^{2}+12 \lambda_{p}^{2 r-2}\left\|L_{K}-L_{K}^{\mathbf{x}}\right\|_{\mathrm{HS}}^{2}
$$

The bounds for the two cases together with (23) give a bound for Δ_{1} as

$$
\sqrt{\Delta_{1}} \leq \begin{cases}\left\|g_{\rho}\right\|_{K} \lambda_{p+1}^{r}+2^{r}\left\|\left\{d_{j}\right\}\right\|_{\ell^{2}}\left(\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{2 r}\right)^{1 / 2}+2^{1+r} \lambda_{1}^{r-1}\left\|L_{K}-L_{K}^{\mathrm{X}}\right\|_{\mathrm{HS}}\right), & \text { if } r \geq 1 \\ \left\|g_{\rho}\right\|_{K} \lambda_{p+1}^{r}+2\left\|\left\{d_{j}\right\}\right\|_{\ell^{2}} \lambda_{p}^{r-1}\left(\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{2}\right)^{1 / 2}+2\left\|L_{K}-L_{K}^{\mathrm{x}}\right\|_{\mathrm{HS}}\right), & \text { if } r<1\end{cases}
$$

Now we turn to the second term Δ_{2} on the right-hand side of (22). Observe that the case $c_{\gamma, i}^{\mathbf{Z}}=0$ corresponds to $\left|S_{i}^{\mathbf{Z}}\right| \leq \frac{\gamma}{2 \lambda_{i}^{x}}$. So for either $c_{\gamma, i}^{\mathbf{z}}=0$ or $c_{\gamma, i}^{\mathbf{z}}=S_{i}^{\mathbf{z}} \pm \frac{\gamma}{2 \lambda_{i}^{\mathrm{x}}}$, we always have

$$
\left|\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle-c_{\gamma, i}^{\mathbf{z}}\right| \leq \frac{\gamma}{2 \lambda_{i}^{\mathbf{x}}}+\left|S_{i}^{\mathbf{z}}-\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle\right| \leq \frac{1}{2 \lambda_{i}^{\mathbf{x}}}\left(\gamma+2 \lambda_{i}^{\mathbf{x}}\left|\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle-S_{i}^{\mathbf{z}}\right|\right) .
$$

But for each $i \in \mathcal{S}$, there holds $2 \lambda_{i}^{\mathrm{x}} \geq \lambda_{p}$. Hence

$$
\sqrt{\Delta_{2}}=\left(\sum_{i \in \mathcal{S}}\left(\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle-c_{\gamma, i}^{\mathbf{z}}\right)^{2}\right)^{1 / 2} \leq \frac{\sqrt{2 p} \gamma}{\lambda_{p}}+\frac{2 \sqrt{2}}{\lambda_{p}}\left(\sum_{i \in \mathcal{S}}\left(\lambda_{i}^{\mathbf{x}}\left(S_{i}^{\mathbf{Z}}-\left\langle f_{\rho}, \phi_{i}^{\mathbf{x}}\right\rangle\right)\right)^{2}\right)^{1 / 2}
$$

By Lemma 4, this implies

$$
\sqrt{\Delta_{2}} \leq \frac{\sqrt{2 p} \gamma}{\lambda_{p}}+\frac{16 \sqrt{2} M \kappa \log \frac{2}{\delta}}{\lambda_{p} \sqrt{m}}
$$

Putting the bounds for Δ_{1} and Δ_{2} into (22), we know that for $\mathbf{z} \in Z_{\delta},\left\|f_{\gamma}^{\mathbf{z}}-f_{\rho}\right\|_{K}$ is bounded by
$\left\|g_{\rho}\right\|_{K} \lambda_{p}^{r}+\frac{\sqrt{2 p} \gamma}{\lambda_{p}}+\frac{16 \sqrt{2} M \kappa \log \frac{2}{\delta}}{\lambda_{p} \sqrt{m}}+ \begin{cases}2^{r}\left\|g_{\rho}\right\|_{K}\left(\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{2 r}\right)^{1 / 2}+\frac{2^{3+r} \lambda_{1}^{r-1} \kappa^{2} \log \frac{2}{\delta}}{\sqrt{m}}\right), & \text { if } r \geq 1, \\ 2\left\|g_{\rho}\right\|_{K} \lambda_{p}^{r-1}\left(\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{2}\right)^{1 / 2}+\frac{8 \kappa^{2} \log \frac{2}{\delta}}{\sqrt{m}}\right), & \text { if } r<1 .\end{cases}$
Then the conclusion of Theorem 4 follows by scaling 2δ to δ.

6 Achieving Both Sparsity and Learning Rates

We are in a position to derive both sparsity and learning rates in two special situations, based on our general analysis.

Proof of Theorem 2. We take $p=\left\lceil m^{1 /\left(2 \alpha_{2}(1+r)\right)}\right\rceil$ to give $m^{1 /\left(2 \alpha_{2}(1+r)\right)} \leq p \leq 2 m^{1 /\left(2 \alpha_{2}(1+r)\right)}$, so $\lambda_{p}^{1+r} \leq D_{2}^{1+r} / \sqrt{m}$. Thus the choice of γ in (7) implies condition (13) of Theorem 5. This verifies (8) as well as the condition of Theorem 4. We bound the first three terms of the right-hand side of (14) in Theorem 4 as follows. First,

$$
\begin{aligned}
& \left\|g_{\rho}\right\|_{K} \lambda_{p}^{r}+\frac{\sqrt{2 p} \gamma}{\lambda_{p}}+\frac{C_{3}}{\lambda_{p} \sqrt{m}} \log \frac{4}{\delta} \\
\leq & \left\|g_{\rho}\right\|_{K} D_{2}^{r} m^{-\frac{\alpha_{2} r}{2 \alpha_{2}(1+r)}}+2 D_{1}^{-1} 2^{\alpha_{1}} \gamma m^{\left(\frac{1}{2}+\alpha_{1}\right) \frac{1}{2 \alpha_{2}(1+r)}}+C_{3} D_{1}^{-1} 2^{\alpha_{1}}\left(\log \frac{4}{\delta}\right) m^{-\frac{1}{2}+\frac{\alpha_{1}}{2 \alpha_{2}(1+r)}} \\
\leq & \widetilde{C}_{1}\left(\log \frac{4}{\delta}\right)^{1+r} m^{-\frac{2 \alpha_{2} r-1-\left(\alpha_{1}-\alpha_{2}\right)}{4 \alpha_{2}(1+r)}}
\end{aligned}
$$

where $\widetilde{C}_{1}=\left\|g_{\rho}\right\|_{K} D_{2}^{r}+2^{1+\alpha_{1}} D_{1}^{-1}\left(2^{1+r}\left\|g_{\rho}\right\|_{K} D_{2}^{1+r}+C_{K, \rho}\right)+C_{3} D_{1}^{-1} 2^{\alpha_{1}}$.
When $r \geq 1$, since $2 r \alpha_{2}>1$,

$$
\sum_{i=p+1}^{\infty} \lambda_{i}^{\max \{2 r, 2\}} \leq D_{2}^{2 r} \int_{p}^{\infty} x^{-2 r \alpha_{2}} \mathrm{~d} x=\frac{D_{2}^{2 r} p^{1-2 r \alpha_{2}}}{2 r \alpha_{2}-1}
$$

So the last term of the right-hand side of (14) can be bounded as

$$
C_{4} \lambda_{p}^{\min \{r-1,0\}}\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{\max \{2 r, 2\}}\right)^{1 / 2} \leq \frac{C_{4} D_{2}^{r}}{\sqrt{2 r \alpha_{2}-1}} m^{\frac{1-2 r \alpha_{2}}{4 \alpha_{2}(1+r)}}
$$

Similarly, when $0<r<1$, since $\alpha_{2}>\frac{1}{2}+(1-r) \alpha_{1}$, we have

$$
\begin{aligned}
C_{4} \lambda_{p}^{\min \{r-1,0\}}\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{\max \{2 r, 2\}}\right)^{1 / 2} & \leq \frac{C_{4} D_{1}^{r-1} p^{-\alpha_{1}(r-1)} D_{2} p^{\left(1-2 \alpha_{2}\right) / 2}}{\sqrt{2 \alpha_{2}-1}} \\
& \leq \frac{C_{4} D_{1}^{r-1} D_{2}}{\sqrt{2 \alpha_{2}-1}} m^{\frac{1+2(1-r) \alpha_{1}-2 \alpha_{2}}{4 \alpha_{2}(1+r)}}
\end{aligned}
$$

Now we use Theorem 4 to obtain

$$
\left\|f_{\rho}-f_{\gamma}^{\mathbf{z}}\right\|_{K} \leq C_{1}\left(\log \frac{4}{\delta}\right)^{1+r} m^{-\frac{2 \alpha_{2} r-1-2\left(\alpha_{1}-\alpha_{2}\right)}{4 \alpha_{2}(1+r)}}
$$

with confidence $1-\delta$, where

$$
C_{1}=\widetilde{C}_{1}+ \begin{cases}\frac{C_{4} D_{2}^{r}}{\sqrt{2 \alpha_{2}-1}}, & \text { when } \quad r \geq 1 \\ \frac{C_{4} D_{1}^{r-1} D_{2}}{\sqrt{2 \alpha_{2}-1}}, & \text { when } \quad 0<r<1\end{cases}
$$

The proof of Theorem 2 is complete.
Proof of Theorem 3. Choosing $p=\left\lceil\frac{\log (m+1)}{2(1+r) \log \beta_{2}}\right\rceil$, we have

$$
\frac{\log (m+1)}{2(1+r) \log \beta_{2}} \leq p \leq 1+\frac{\log (m+1)}{2(1+r) \log \beta_{2}} .
$$

It follows that

$$
m^{\frac{1}{2(1+r)}} \leq \beta_{2}^{p} \leq \beta_{1}^{p} \leq \beta_{1}(2 m)^{\frac{\log \beta_{1}}{2(1+r) \log \beta_{2}}}
$$

The assumption $\lambda_{p} \leq D_{2} \beta_{2}^{-p}$ in (10) tells us that

$$
\lambda_{p}^{1+r} \leq \frac{D_{2}^{1+r}}{\sqrt{m}}
$$

Then

$$
2^{1+2 r}\left\|g_{\rho}\right\|_{K} \lambda_{p}^{1+r}+C_{K, \rho} \frac{\left(\log \frac{4}{\delta}\right)^{1+r}}{\sqrt{m}} \leq 2^{1+2 r}\left\|g_{\rho}\right\|_{K} \frac{D_{2}^{1+r}}{\sqrt{m}}+C_{K, \rho} \frac{\left(\log \frac{4}{\delta}\right)^{1+r}}{\sqrt{m}}=\gamma
$$

So condition (13) in Theorem 5 holds, and thus we know that with confidence $1-\delta$, $c_{\gamma, i}^{\mathbf{z}}=0$ for $p+1 \leq i \leq m$. This verifies the desired conclusion (11) for sparsity.

Now we turn to the error analysis. By Theorem 4, bound (14) holds with confidence $1-\delta$. We estimate the first three terms of the right-hand side of (14) as

$$
\begin{align*}
& \left\|g_{\rho}\right\|_{K} \lambda_{p}^{r}+\frac{\sqrt{2 p} \gamma}{\lambda_{p}}+C_{3} \frac{\log \frac{4}{\delta}}{\lambda_{p} \sqrt{m}} \\
\leq & \left\|g_{\rho}\right\|_{K} D_{2}^{r} m^{-\frac{r}{2(1+r)}}+\widetilde{C}_{2}\left(\log \frac{4}{\delta}\right)^{1+r} \sqrt{\log (m+1)} m^{-\frac{r-\left(\log \frac{\beta_{1}}{\beta_{2}} / \log \beta_{2}\right)}{2(1+r)}} \\
+ & C_{3} D_{1}^{-1}\left(\log \frac{4}{\delta}\right) \beta_{1} 2^{\frac{\log \beta_{1}}{2(1+r) \log \beta_{2}}} m^{-\frac{r-\left(\log \frac{\beta_{1}}{\beta_{2}} / \log \beta_{2}\right)}{2(1+r)}}, \tag{24}
\end{align*}
$$

where $\widetilde{C}_{2}=\left(\frac{2}{\log 2}+\frac{1}{(1+r) \log \beta_{2}}\right)^{1 / 2}\left(2^{1+2 r}\left\|g_{\rho}\right\|_{K} D_{2}^{1+r}+C_{K, \rho}\right) D_{1}^{-1} \beta_{1} 2^{\frac{\log \beta_{1}}{2(1+r) \log \beta_{2}}}$.
When $r \geq 1$, the last term in the right-hand side of (14) can be bounded as

$$
\begin{equation*}
C_{4}\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{2 r}\right)^{1 / 2} \leq C_{4} D_{2}^{r}\left(\sum_{i=p+1}^{\infty} \beta_{2}^{-2 r i}\right)^{1 / 2}=\frac{C_{4} D_{2}^{r} \beta_{2}^{-p r}}{\sqrt{\beta_{2}^{2 r}-1}} \leq \frac{C_{4} D_{2}^{r}}{\sqrt{\beta_{2}^{2 r}-1}} m^{-\frac{r}{2(1+r)}} \tag{25}
\end{equation*}
$$

Similarly, when $0<r<1$, we have

$$
C_{4} \lambda_{p}^{r-1}\left(\sum_{i=p+1}^{\infty} \lambda_{i}^{2}\right)^{1 / 2} \leq C_{4} D_{1}^{r-1} \beta_{1}^{1-r}(2 m)^{\frac{(1-r) \log \beta_{1}}{2(1+r) \log \beta_{2}}} \frac{D_{2} m^{-\frac{1}{2(1+r)}}}{\sqrt{\beta_{2}^{2}-1}} .
$$

Putting this estimate in the case $0<r<1$ and (25) in the case $r>1$ and (24) into bound (14) tells us that with confidence $1-\delta$, the desired bound (12) for the error holds true with the constant C_{2} given by

$$
\begin{aligned}
C_{2} & =\frac{1}{\sqrt{\log 2}}\left(\left\|g_{\rho}\right\|_{K} D_{2}^{r}+C_{3} D_{1}^{-1} \beta_{1} 2^{\frac{\log \beta_{1}}{2(1+r) \log \beta_{2}}}\right)+\widetilde{C}_{2} \\
& +\frac{1}{\sqrt{\log 2}} \begin{cases}\frac{C_{4} D_{2}^{r}}{\sqrt{\beta_{2}^{2 r}-1}}, & \text { when } r \geq 1, \\
\frac{C_{4} D_{1}^{r-1} \beta_{1}^{1-r} D_{2}}{\sqrt{\beta_{2}^{2}-1}} 2^{\frac{(1-r) \log \beta_{1}}{(1+r) \log \beta_{2}}}, & \text { when } 0<r<1 .\end{cases}
\end{aligned}
$$

The proof of Theorem 3 is complete.

7 Further Remarks and Discussion

We have proposed a modified KPM (2) for regression with ℓ^{1}-regularizer. Analysis for the error in the \mathcal{H}_{K}-metric has been conducted by means of a priori condition (1) concerning the regularity of the regression with respect to the kernel K and the marginal distribution ρ_{X}. Our learning rates have been given in terms of special choices of the regularization parameter $\gamma>0$ which depends on a priori condition (1). Condition (1) is a standard assumption for least square regularized regression with an infinitely dimensional \mathcal{H}_{K} in the literature of learning theory $[4,14,16,18]$ and almost all theoretical error bounds are based on similar a priori conditions. To the best of our knowledge, the only theoretical error analysis for a learning algorithm with a regularization parameter determined directly by the data was given recently in [5], where a cross-validation approach was rigorously proved.

It is a common practice to choose the regularization parameter by a cross-validation method, which often leads to satisfactory simulation. Here we present an example to show how to choose the regularization parameter γ for algorithm (2). Rigorous theoretical analysis for such a process will be considered in our further study.

Example 2. We generate the regression function f_{ρ} on \mathbb{R}^{10} as

$$
\begin{equation*}
f_{\rho}(x)=\sum_{i=1}^{3} A_{i} \exp \left(-\frac{\left|x-P_{i}\right|^{2}}{2 v_{i}^{2}}\right), \tag{26}
\end{equation*}
$$

where the parameters are prescribed in Table 1. The data set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i}^{m}$ is drawn indepen-

i	coefficient A_{i}	variation v_{i}^{2}	center P_{i}
1	2.0	0.62^{2}	$(0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
2	-3.5	0.64^{2}	$(0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6)$
3	0.7	0.65^{2}	$\frac{1}{9}(0.9,1.7,2.5,3.3,4.1,4.9,5.7,6.5,7.3,8.1)$

Table 1: Parameters
dently with x_{i} 's uniformly distributed on $[0,1]^{10}, y_{i}=f_{\rho}\left(x_{i}\right)+\epsilon_{i}$, and ϵ_{i} 's being Gaussian noise with $\mu=0, \sigma^{2}=0.5^{2}$ and truncated onto $[-1.5,1.5]$. The Mercer kernel K is the Gaussian with variance 0.60^{2}. Table 2 shows the result of the simulation. For comparison, in the last three columns we list the error performance of the least squares regularized regression (LSR) algorithm

$$
f_{\mathrm{LSR}, \gamma_{1}}^{\mathbf{z}}=\arg \min _{f \in \mathcal{H}_{K}}\left\{\frac{1}{m} \sum_{i=1}^{m}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\gamma_{1}\|f\|_{K}^{2}\right\} .
$$

The notations γ^{*} and γ_{1}^{*} in the second and sixth columns denote the optimal γ and γ_{1}

m	γ^{*}	$\left\\|c_{\gamma^{*}}^{\mathbf{z}}\right\\|_{0}$	Error1	Error2	γ_{1}^{*}	LSRError1	LSRError2
300	$6.261 \mathrm{e}-3$	16	$9.708 \mathrm{e}-2$	$1.244 \mathrm{e}-1$	$6.769 \mathrm{e}-3$	0.3936	0.4951
600	$6.769 \mathrm{e}-3$	13	$8.472 \mathrm{e}-2$	$1.077 \mathrm{e}-1$	$5.790 \mathrm{e}-3$	0.3986	0.5042
1200	$3.625 \mathrm{e}-3$	16	$6.569 \mathrm{e}-2$	$9.000 \mathrm{e}-2$	$4.582 \mathrm{e}-3$	0.5229	0.6534
1800	$2.270 \mathrm{e}-3$	25	$5.054 \mathrm{e}-2$	$6.467 \mathrm{e}-2$	$3.101 \mathrm{e}-3$	0.5500	0.6945
2400	$2.099 \mathrm{e}-3$	20	$4.289 \mathrm{e}-2$	$6.249 \mathrm{e}-2$	$2.653 \mathrm{e}-3$	0.5246	0.6764

Table 2: Learning Error
respectively, which are selected from a geometric sequence $\left\{10^{-4}, \cdots, 10^{-2}\right\}$ of length 60 by 5 -fold cross validation. The learning error is estimated empirically by independently drawing another unlabelled sample set $\left\{\xi_{j}\right\}$ uniformly on $[0,1]^{10}$ of size 12,000 and with $f^{\mathbf{z}}=f_{\gamma^{*}}^{\mathbf{z}}$ or $f_{\mathrm{LSR}, \gamma_{1}^{*}}^{\mathbf{z}}$ computing

$$
\text { Error } 1=\frac{1}{12,000} \sum_{j=1}^{12,000}\left|f_{\rho}\left(\xi_{j}\right)-f^{\mathbf{z}}\left(\xi_{j}\right)\right|,
$$

$$
\text { Error } 2=\left(\frac{1}{12,000} \sum_{j=1}^{12,000}\left(f_{\rho}\left(\xi_{j}\right)-f^{\mathbf{z}}\left(\xi_{j}\right)\right)^{2}\right)^{1 / 2}
$$

We have observed sparsity for the coefficients in the representation (3) of the output function in our algorithm. This sparsity is different from that for the representation in terms of $\left\{K_{x_{i}}\right\}_{i=1}^{m}$. It would be interesting to extend our study to a semisupervised learning setting as indicated in Remark 4. Another extension is to take empirical features in different ways by means of efficient numerical methods for the Gramian matrix \mathbb{K}. Exploring sparsity in such extended settings would be of much value for applications.

References

[1] R. Bhatia, L. Elsner, The Hoffman-Wielandt inequality in infinite dimensions, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 483-494.
[2] G. Blanchard, P. Massart, R. Vert, L. Zwald, Kernel projection machine: a new tool for pattern recognition, Proc. NIPS (2004), 1649-1656.
[3] E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE. Trans. Inform. Theory 52 (2006), 489-509.
[4] A. Caponnetto, E. De Vito, Optimal rates for the regularized least-squares algorithm, Found. Comput. Math. 7 (2007), 331-368.
[5] A. Caponnetto, Y. Yao, Cross-validation based adaptation for regularization operators in learning theory, Anal. Appl. 8 (2010), 161-183.
[6] D.L. Donoho, Compressed sensing, IEEE. Trans. Inform. Theory 52 (2006), 12891306.
[7] A.J. Hoffman, H.W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37-39.
[8] T. Kato, Variation of discrete spectra, Commun. Math. Phys. 111 (1987), 501-504.
[9] V. Koltchinskii, E. Giné, Random matrix approximation of spectra of integral operators, Bernoulli 6 (2000), 113-167.
[10] L. Lo Gerfo, L. Rosasco, F. Odone, E. De Vito, A. Verri, Spectral algorithms for supervised learning, Neural Comput. 20 (2008), 1873-1897.
[11] I. Pinelis, Optimum bounds for the distributions of martingales in Banach spaces, Ann. Probab. 22 (1994), 1679-1706.
[12] J.B. Reade, Eigenvalues of positive definite kernels II, SIAM J. Math. Anal. 15 (1984), 137-142.
[13] J.B. Reade, Eigenvalues of analytic kernels, SIAM J. Math. Anal. 15 (1984), 133-136.
[14] S. Smale, D.X. Zhou, Learning theory estimates via integral operators and their approximations, Constr. Approx. 26 (2007), 153-172.
[15] S. Smale, D.X. Zhou, Geometry on probability spaces, Constr. Approx. 30 (2009), 311-323.
[16] S. Smale and D.X. Zhou, Online learning with Markov sampling, Anal. Appl. 7 (2009), 87-113.
[17] I. Steinwart, D. Hush, C. Scovel, Optimal rates for regularized least-squares regression, in Proceedings of the 22nd Annual Conference on Learning Theory (S. Dasgupta and A. Klivans eds.), 2009, pp. 79-93.
[18] H.W. Sun, Q. Wu, Least square regression with indefinite kernels and coefficient regularization, Appl. Comput. Harmon. Anal. 30 (2011), 96-109.
[19] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Statist. Soc. B 58 (1996), 267-288.
[20] U. von Luxburg, M. Belkin, O. Bousquet, Consistency of spectral clustering, Ann. Stat. 36 (2008), 555-586.
[21] D.X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory 49 (2003), 1743-1752.
[22] L. Zwald, G. Blanchard, On the convergence of eigenspaces in kernel principal component analysis, In Advances in Neural Information Processing Systems 18 (Y. Weiss, B. Schölkopf, and J. Platt, eds.), pages 1649-1656. MIT Press, Cambridge, MA, 2006.
[23] L. Zwald, Performances statistiques d'algorithmes d'apprentissage: Kernel Projection Machine et analyse en composantes principales à noyau, PhD thesis, Université ParisSud 11, 2005.

[^0]: \dagger The work described in this paper was partially supported by a grant from the Research Grants Council of Hong Kong [Project No. CityU 103508]. Corresponding author: Ding-Xuan Zhou.

