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Abstract

A learning algorithm for regression is studied. It is a modified kernel projection

machine [2] in the form of a least square regularization scheme with `1-regularizer

in a data dependent hypothesis space based on empirical features (constructed by

a reproducing kernel and the learning data). The algorithm has three advantages.

First, it does not involve any optimization process. Second, it produces sparse

representations with respect to empirical features under a mild condition, without

assuming sparsity in terms of any basis or system. Third, the output function

converges to the regression function in the reproducing kernel Hilbert space at a

satisfactory rate. Our error analysis does not require any sparsity assumption about

the underlying regression function.
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1 Introduction

We propose a learning algorithm for regression. It is a modification of the kernel projection

machine (KPM) introduced by Blanchard et. al. [2] and analyzed by Zwald [23]. The

main advantage of this algorithm is its strong learning ability while producing sparse

approximations in a very general setting in learning theory, without any hypothesis on

sparse representations.

In the regression setting, an input space X is a compact metric space and the output

space Y = R. Let Z = X × Y and ρ be a Borel probability measure on Z with ρX the

marginal measure on X, and ρ(·|x) the conditional measure at x ∈ X. The regression

function fρ is defined as

fρ(x) =

∫
Y

y dρ(y|x), x ∈ X.

Our learning algorithm produces approximations of fρ in a reproducing kernel Hilbert

space (RKHS). A symmetric continuous function K : X × X → R is called a Mercer

kernel if for any finite subset {xi}li=1 of X, the l × l matrix (K(xi, xj))
l
i,j=1 is positive

semi-definite. For x ∈ X, we denote Kx = K(·, x). The RKHS associated with the

Mercer kernel K is a Hilbert space HK completed by the span of {Kx : x ∈ X} under the

norm ‖ · ‖K induced by the inner product 〈·, ·〉 = 〈·, ·〉K satisfying 〈Kx, Ku〉 = K(x, u).

We define an integral operator LK on HK by

LK(f) =

∫
X

Kxf(x) dρX(x), f ∈ HK .

In this paper, we take a general setting in learning theory satisfying

fρ = LrK(gρ) for some r > 0 and gρ ∈ HK . (1)

Since LK is a compact, self-adjoint positive operator, we can arrange its eigenvalues

{λi} (with multiplicity) as a nonincreasing sequence tending to 0 and take an associated

sequence of eigenfunctions {φi} to be an orthonormal basis of HK . Then the power LrK
of LK can be written by LrK(

∑
i ciφi) =

∑
i ciλ

r
iφi and assumption (1) is equivalent to

fρ =
∑

i diλ
r
iφi where {di} ∈ `2 represents gρ as gρ =

∑
i diφi. The exponent r in (1)

measures the decay of the coefficients {diλri} of fρ with respect to the orthonormal basis

{φi} of HK . It can be regarded as a measurement for the regularity of the regression

function fρ.

The eigenfunctions {φi} can be used to understand feature maps in learning theory.

They can be approximated by empirical features {φx
i } which are eigenfunctions of an
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empirical operator Lx
K associated with a sample x ∈ Xm. Throughout this paper we

assume that z = {(xi, yi)}mi=1 is a sample drawn independently from ρ. We use x to

denote the unlabeled part of the data x = {x1, · · · , xm}. The empirical operator Lx
K on

HK is defined by

Lx
K(f) =

1

m

m∑
i=1

f(xi)Kxi =
1

m

m∑
i=1

〈f,Kxi〉Kxi , f ∈ HK ,

where we have used the reproducing property of the RKHS that asserts 〈f,Kx〉 = f(x)

for any f ∈ HK and x ∈ X. So Lx
K is a normalized sum of m rank-one operators and

it is self-adjoint, positive with rank at most m. Therefore we can write the eigensystem

of Lx
K as {(λx

i , φ
x
i )}i, with eigenvalues λx

i arranged in nonincreasing order and λx
i = 0

when i > m, and the corresponding eigenfunctions {φx
i }∞i=1 to form an orthonormal basis

of HK . The first m eigenfunctions {φx
i }mi=1 can be used as empirical features for learning

by regularization schemes in a data dependent hypothesis space span{φx
i }mi=1. The data

dependence nature is reflected by the empirical features {φx
i }mi=1 obtained from the data

x. This idea was used in [2] to introduce the KPM outputting
∑m

i=1 c
z
γ,iφ

z
i where the

coefficient vector czγ = (czγ,1, · · · , czγ,m) is given with a regularization parameter γ > 0 by

czγ = arg min
c∈Rm

{
1

m

m∑
i=1

V

(
m∑
j=1

cjφ
x
j (xi), yi

)
+ γ‖c‖0

}
.

Here V : R2 → R+ is a loss function and ‖c‖0 is the number of nonzero entries of the

vector c = (c1, · · · , cm) ∈ Rm. The KPM was analyzed in [23] for classification with

V (f, y) = max{1− yf, 0} and for regression with V (f, y) = (f − y)2 in a Gaussian white

noise model.

In this paper we modify the KPM in the least square regression setting by using the

`1-regularizer ‖c‖1 =
∑m

i=1 |ci| instead of the `0-penalty. Our learning algorithm now takes

the form

czγ = arg min
c∈Rm

 1

m

m∑
i=1

((
m∑
j=1

cjφ
x
j

)
(xi)− yi

)2

+ γ‖c‖1

 , (2)

and the output function is

fz
γ =

m∑
i=1

czγ,iφ
x
i . (3)

We use fz
γ to approximate the regression function fρ in HK .

The following Theorem 1, to be proved in Section 3, represents the solution to problem

(2) explicitly, and thus shows computational efficiency of our algorithm.
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Theorem 1. For i ∈ N, denote

Sz
i =


1

mλx
i

∑m
j=1 yjφ

x
i (xj), if λx

i > 0,

0, otherwise.

Then the solution to problem (2) is given with i = 1, . . . ,m by

czγ,i =


0, if 2λx

i |Sz
i | ≤ γ,

Sz
i −

γ
2λx
i
, if 2λx

i |Sz
i | > γ and Sz

i >
γ

2λx
i
,

Sz
i + γ

2λx
i
, if 2λx

i |Sz
i | > γ and Sz

i < −
γ

2λx
i
.

(4)

In particular, czγ,i = 0 if λx
i = 0.

Remark 1. Let us show how the eigenpairs {(λx
i , φ

x
i )} can be found explicitly. Let dx ≤

m be the rank of the Gramian matrix K := (K(xi, xj))
m
i,j=1. Denote its eigenvalues as

λ̂x
1 ≥ · · · ≥ λ̂x

dx > λ̂x
dx+1 = · · · λ̂x

m = 0, and associated eigenvectors {µ̂i}mi=1 to form an

orthonormal basis of Rm. We have

λx
i =

λ̂x
i

m
and φx

i =
1√
λ̂x
i

m∑
j=1

(µ̂i)jKxj , for i = 1, · · · , dx, (5)

λx
i = 0, and φx

i |x = 0, for i = dx + 1, . . . ,m.

In fact, for i = 1, · · · , dx, we see that

Lx
K

(
m∑
j=1

(µ̂i)jKxj

)
=

1

m

m∑
l=1

m∑
j=1

(µ̂i)jK(xl, xj)Kxl =
λ̂x
i

m

m∑
l=1

(µ̂i)lKxl

and
∥∥∥∑m

j=1(µ̂i)jKxj

∥∥∥2

K
= µ̂Ti Kµ̂i = λ̂x

i > 0.

For i = dx + 1, · · · ,m, λx
i > 0 would imply φx

i = 1
λx
i
Lx
K(φx

i ) = 1
mλx

i

∑m
j=1 φ

x
i (xj)Kxj

and K(φx
i |x) = mλx

i φ
x
i |x where φx

i |x = (φx
i (xj))

m
j=1 is the vector obtained by restricting

the function φx
i onto the sampling points. It would then yield φx

i |x = 0 and φx
i = 0, a

contradiction. So we must have λx
i = 0. It follows that 〈Lx

K(φx
i ), φx

i 〉 = 0, which means
1
m

∑m
j=1 φ

x
i (xj)φ

x
i (xj) = 0 and φx

i |x = 0. In this case, φx
i is perpendicular to span{Kxi}mi=1

Note that for i = dx + 1, · · · ,m, λx
i = 0 implies czγ,i = 0. So

(∑m
j=1 cjφ

x
j

)
(xi) =(∑dx

j=1 cjφ
x
j

)
(xi) and optimization problem (2) is the same as cxγ,i = 0 for i = dx +

1, · · · ,m, and

(
cxγ,i
)dx
i=1

= arg min
c∈Rdx

 1

m

m∑
i=1

((
dx∑
j=1

cjφ
x
j

)
(xi)− yi

)2

+ γ‖c‖1

 .
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We shall conduct analysis for the error fz
γ − fρ in the HK-metric (stronger than the

L2
ρX

-metric, as shown in [14]) and derive learning rate for algorithm (2). Note that learning

rates with the metric in HK yield those with the metric in Cs(X) when K is C2s with

X ⊂ Rn. See [21].

Let us illustrate our analysis by the following examples when the eigenvalues {λi}
have some special asymptotic behaviors. Throughout the paper we assume that |y| ≤M

almost surely for some constant M > 0. Denote κ = supx∈X
√
K(x, x).

Theorem 2. Assume (1) and for some 1
2r
< α2 ≤ α1 < (1 + r)α2 − 1

2
and 0 < D1, D2,

the eigenvalues {λi} decay polynomially as

D1i
−α1 ≤ λi ≤ D2i

−α2 , ∀ i. (6)

Let 0 < δ < 1. If we choose

γ =

(
21+2rD1+r

2 ‖gρ‖K + CK,ρ

(
log

4

δ

)1+r
)
/
√
m, (7)

then we have with confidence 1− δ that

czγ,i = 0, ∀ m
1

2α2(1+r) + 1 ≤ i ≤ m, (8)

and

‖fz
γ − fρ‖K ≤ C1

(
log

4

δ

)1+r

m
− 2α2r−1−2(α1−α2)

4α2(1+r) , (9)

where CK,ρ = 8κ2‖gρ‖K(λr1 + 24rκ2r) + 16Mκ and C1 is a constant independent of δ or m

(which will be specified in the proof).

Remark 2. Asymptotic behavior (6) for the eigenvalues {λi} of the integral operator is

typical for Sobolev smooth kernels on domains in Euclidean spaces, and the power indices

α1 and α2 depend on the smoothness of the kernel [12]. When the kernel is smooth enough,

α2 can be arbitrarily large and learning rate (9) takes the form mε− r
2(1+r) with an arbitrarily

small ε > 0. When r is large enough, it behaves like mε− 1
2 with an arbitrarily small ε > 0.

Observe from (8) that the number of nonzero coefficients in the representation fz
γ =∑m

i=1 c
z
γ,iφ

x
i is at most m

1
2α2(1+r) which can be much smaller than the sample size m when

α2 and r are large.
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Theorem 3. Assume (1) and for some 1 < β2 ≤ β1 < β1+r
2 and 0 < D1, D2, the

eigenvalues {λi} decay exponentially as

D1β
−i
1 ≤ λi ≤ D2β

−i
2 , ∀ i. (10)

Let 0 < δ < 1 and choose

γ =

(
21+2rD1+r

2 ‖gρ‖K + CK,ρ

(
log

4

δ

)1+r
)
/
√
m,

then we have with confidence 1− δ that

czγ,i = 0, ∀ log(m+ 1)

2(1 + r) log β2

+ 1 ≤ i ≤ m, (11)

and

‖fz
γ − fρ‖K ≤ C2

(
log

4

δ

)1+r√
log(m+ 1) m−

r−( log
β1
β2

/ log β2)
2(1+r) , (12)

where C2 is a constant independent of δ or m (which will be specified in the proof).

Remark 3. Asymptotic behavior (10) for the eigenvalues {λi} of the integral operator

is typical for analytic kernels on domains in Euclidean spaces [13]. When r is large

enough (meaning that fρ has high regularity), learning rate (12) behaves like mε− 1
2 with

an arbitrarily small ε > 0.

Again we observe from (11) that the number of nonzero coefficients in the representa-

tion fz
γ =

∑m
i=1 c

z
γ,iφ

x
i is at most log(m+1)

2(1+r) log β2
which is much smaller than the sample size

m.

Theorems 2 and 3 will be proved in Section 6.

2 General Analysis

Our general analysis for algorithm (2) is the following theorem to be proved in Section 5.

Theorem 4. Assume (1). Let p ∈ {1, . . . ,m} and 0 < δ < 1. Choose γ to satisfy

21+2r‖gρ‖Kλ1+r
p + CK,ρ

(log 4
δ
)1+r

√
m

≤ γ, (13)
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then with confidence 1− δ we have

‖fz
γ − fρ‖K ≤ ‖gρ‖Kλrp +

√
2pγ

λp
+
C3 log 4

δ

λp
√
m

+ C4λ
min{r−1,0}
p

(
∞∑

i=p+1

λ
max{2r,2}
i

)1/2

, (14)

where C3 = 16
√

2Mκ+ 23+max{2r,1}‖gρ‖Kλr1κ2 and C4 = 2max{r,1}‖gρ‖K.

Let us give a concrete example with HK being the Sobolev space Hs(X) of integer

index s > n
2

and X being the unit ball X = {x ∈ Rn : |x| ≤ 1} of Rn. When ρX is

the normalized Lebesgue measure on X, a classical result in the theory of function spaces

(see e.g. [17]) asserts that condition (6) for the eigenvalues {λi} holds with α1 = α2 = 2s
n

.

Also, if fρ ∈ H(2r+1)s(X) for some r > n
4s

, we know that condition (1) holds true. Then

the following learning rate can be derived from Theorem 4, as in the proof of Theorem 2.

Example 1. Let X = {x ∈ Rn : |x| ≤ 1} and ρX be the normalized Lebesgue measure on

X. If K is the reproducing kernel of the Sobolev space Hs(X) of integer index s > n
2

and

fρ ∈ H(2r+1)s(X) for some r > n
4s

, then by taking γ = Cs,fρ(log 4
δ
)1+r/

√
m, we have with

confidence 1− δ,

‖fz
γ − fρ‖K ≤ C ′1

(
log

4

δ

)1+r

m−
4sr−n
8s(1+r) ,

where Cs,fρ and C ′1 are constants independent of δ or m.

3 Explicit Formula for the Coefficients

In this section we prove the representer theorem for algorithm (2). The `1-regularizer is

important in the process. The proof is an immediate consequence of the classical result

on soft-thresholding in the context of orthogonal regressors [19], once the orthogonality

of {φx
i } on the data is derived (see (15) below). We give the proof here for completeness.

Proof of Theorem 1. Let i ∈ N. Since (λx
i , φ

x
i ) is an eigenpair of Lx

K , we have

λx
i φ

x
i = Lx

Kφ
x
i =

1

m

m∑
j=1

φx
i (xj)Kxj .

It follows from the reproducing property
〈
Kxj , φ

x
l

〉
= φx

l (xj) that

δi,lλ
x
i = 〈λx

i φ
x
i , φ

x
l 〉 =

1

m

m∑
j=1

φx
i (xj)φ

x
l (xj), i, l ∈ N, (15)
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where δi,l = 1 if i = l and δi,l = 0 otherwise. In particular, when λx
i = 0 (which is the case

when i > m), we have φx
i (xj) = 0 for each j ∈ {1, . . . ,m}. Consider the minimization

problem (2). Note from the definition of Sz
i that 1

m

∑m
j=1 yjφ

x
i (xj) = λx

i S
z
i . Apply (15).

The empirical error part takes the form

1

m

m∑
i=1

((
m∑
j=1

cjφ
x
j

)
(xi)− yi

)2

=
m∑

p,q=1

cpcq
1

m

m∑
i=1

φx
p (xi)φ

x
q (xi)−

2

m

m∑
i,j=1

yicjφ
x
j (xi) +

1

m

m∑
i=1

y2
i

=
m∑

p,q=1

cpcqδp,qλ
x
p − 2

m∑
i=1

λx
i S

z
i ci +

1

m

m∑
i=1

y2
i =

m∑
i=1

λx
i c

2
i − 2

m∑
i=1

λx
i S

z
i ci +

1

m

m∑
i=1

y2
i .

Hence we have an equivalent form of (2) as

czγ = arg min
c∈Rm

m∑
i=1

{
λx
i (ci − Sz

i )2 + γ|ci|
}
.

Thus for i ∈ {1, . . . ,m}, when λx
i = 0, we have czγ,i = 0. When λx

i > 0, the component

czγ,i can be found by solving the following optimization problem

czγ,i = arg min
c∈R

{
(c− Sz

i )2 +
γ

λx
i

|c|
}

which has the solution given by (4). This proves the theorem.

Remark 4. The algorithm can be divided into two parts: computing eigenpairs {(λx
i , φ

x
i )}

and solving the minimization problem (2). So the algorithm can be extended to a semi-

supervised learning setting: if other than the labeled data {(xi, yi)}mi=1, we have some extra

unlabeled data {xi}m
′

i=m+1, then we can enhance the learning of the eigenfunctions in the

first step by making full use of all the data {xi}m
′

i=1.

4 Preliminary Analysis for Sparsity

Theorem 1 tells us that czγ,i = 0 whenever 2λx
i |Sz

i | ≤ γ. We shall choose suitable p = p(m)

with p(m)
m
→ 0 and γ depending on δ such that with confidence 1− δ,

2λx
i |Sz

i | ≤ γ, i = p+ 1, . . . ,m, (16)
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which would yield the desired sparsity: czγ,i = 0 for i = p + 1, . . . ,m. The preliminary

analysis for sparsity is an important tool for our error analysis.

To achieve the required condition (16), we need to estimate λx
i and Sz

i . The eigenvalue

λx
i is easier to deal with, by the following Hoffman-Wielandt inequality (see [7] for the

original inequality for matrices, [8] for the generalization to self-adjoint operators on

Hilbert spaces, [9] for an application to approximation of integral operators, and [1] for

more general discussion).

Lemma 1. We have

∞∑
i=1

(λi − λx
i )2 ≤ ‖LK − Lx

K‖2HS,

where ‖ · ‖HS is the Hilbert-Schmidt norm of HS(HK), the Hilbert space of all Hilbert-

Schmidt operators on HK.

Recall that 〈A1, A2〉HS =
∑

j 〈A1ej, A2ej〉K for A1, A2 ∈ HS(HK), where {ej} is an

orthonormal basis of HK . The space HS(HK) is a subspace of the space of bounded linear

operators on HK with norms satisfying ‖A‖HK→HK ≤ ‖A‖HS.

The quantity ‖LK − Lx
K‖HS has been bounded in the literature [4, 9, 20, 14, 22].

Lemma 2. For 0 < δ < 1, we have with confidence 1− δ,

‖LK − Lx
K‖HS ≤

4κ2 log 2
δ√

m
. (17)

Bounding the coefficients {Sz
i } towards (16) is more involved. We first show that λx

i S
z
i

is close to λx
i 〈fρ, φx

i 〉, by means of the following probability inequality in [15] derived from

[11, 14].

Lemma 3. Let {ξi}mi=1 be a set of independent random variables with values in a Hilbert

space. If ‖ξi‖ ≤ M̃ < ∞ almost surely for each i = 1, · · · ,m, then for 0 < δ < 1, with

confidence 1− δ we have ∥∥∥∥∥ 1

m

m∑
i=1

(ξi − Eξi)

∥∥∥∥∥ ≤ 4M̃ log 2
δ√

m
.

Lemma 4. For 0 < δ < 1, with confidence 1− δ we have(∑
j∈N

(
λx
j

(
Sz
j −

〈
fρ, φ

x
j

〉))2)1/2

≤
8Mκ log 2

δ√
m

. (18)
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Proof. Consider the set of independent random variables {ξi = (yi − fρ(xi))Kxi}mi=1 with

values in the Hilbert space HK . They satisfy ‖ξi‖ = |yi − fρ(xi)|
√
K(xi, xi) ≤ 2Mκ and

Eξi = 0. So by Lemma 3, we know that for any 0 < δ < 1, with confidence 1− δ we have

‖ 1
m

∑m
i=1(yi − fρ(xi))Kxi‖K ≤

8Mκ log 2
δ√

m
.

By the definition of Sz
j and the relation λx

j φ
x
j = Lx

K(φx
j ) = 1

m

∑m
i=1 φ

x
j (xi)Kxi , for each

j ∈ N we have

λx
j

(
Sz
j −

〈
fρ, φ

x
j

〉)
=

1

m

m∑
i=1

(yi − fρ(xi))φx
j (xi) =

〈
1

m

m∑
i=1

(yi − fρ(xi))Kxi , φ
x
j

〉
.

But {φx
j }j∈N is an orthonormal basis of HK , so we have

∑
j∈N

(
λx
j

(
Sz
j −

〈
fρ, φ

x
j

〉))2
=

∥∥∥∥∥ 1

m

m∑
i=1

(yi − fρ(xi))Kxi

∥∥∥∥∥
2

,

and our conclusion follows.

Next we need to estimate λx
i 〈fρ, φx

i 〉. Since {φj} and {φx
i } are orthonormal bases of

HK , we observe that

(LK − Lx
K)φx

i =
∞∑
j=1

〈φx
i , φj〉LKφj − λx

i

∞∑
j=1

〈φx
i , φj〉φj =

∞∑
j=1

〈φx
i , φj〉 (λj − λx

i )φj.

Then the definition of the Hilbert-Schmidt norm tells us that

‖LK − Lx
K‖2HS =

∞∑
i=1

‖(LK − Lx
K)φx

i ‖
2
K =

∞∑
i,j=1

(λj − λx
i )2 (〈φx

i , φj〉)
2 . (19)

We shall use expression (19) a few times in our analysis for both sparsity and error bounds.

Lemma 5. Let I ⊆ N. If fρ = LrK(gρ) for some r > 0 and gρ ∈ HK, then(∑
i∈I

|λx
i 〈fρ, φx

i 〉|
2

)1/2

≤ λr1‖gρ‖K‖LK − Lx
K‖HS + 2r‖gρ‖K

(∑
i∈I

(λx
i )2(1+r)

)1/2

.

Proof. Write gρ =
∑∞

j=1 djφj with {dj} ∈ `2 and ‖{dj}‖`2 = ‖gρ‖K . Then fρ =
∑∞

j=1 λ
r
jdjφj,

and for i ∈ I,

λx
i 〈fρ, φx

i 〉 = λx
i

∞∑
j=1

λrjdj 〈φj, φx
i 〉 = λx

i

∑
j:λj>2λx

i

λrjdj 〈φj, φx
i 〉+ λx

i

∑
j:λj≤2λx

i

λrjdj 〈φj, φx
i 〉 .
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When λj > 2λx
i , we have λx

i ≤ λj − λx
i . Hence by the Schwarz inequality,∣∣∣∣∣∣λx

i

∑
j:λj>2λx

i

λrjdj 〈φj, φx
i 〉

∣∣∣∣∣∣ ≤ λr1‖{dl}‖`2

 ∑
j:λj>2λx

i

(λj − λx
i )2 (〈φj, φx

i 〉)
2

1/2

.

It follows from (19) that(∑
i∈I

|λx
i 〈fρ, φx

i 〉|
2

)1/2

≤ λr1‖{dj}‖`2‖LK − Lx
K‖HS + 2r‖{dj}‖`2

(∑
i∈I

(λx
i )2(1+r)

)1/2

.

The proof is completed.

Now we can present our preliminary analysis for sparsity of algorithm (2). The `1-

regularizer plays a key role to produce sparse approximations. The phenomenon that the

`1-regularizer can be used to reproduce sparsity has been observed in LASSO [19] and

compressed sensing [3, 6], usually under the assumption that the approximated function

has a sparse representation with respect to some basis or redundant system. Here we show

that sparsity of fz
γ in representation (3) can be produced under assumption (1) which does

not impose any sparse representation and is a common mild condition in learning theory

(e.g. [4, 14, 10]). The choice of the empirical features {φx
i }mi=1 is important to ensure the

sparsity and convergence rates for the algorithm.

Theorem 5. Under the same condition as in Theorem 4, with confidence 1− δ we have

czγ,i = 0, ∀ i = p+ 1, . . . ,m.

Proof. By Lemmas 2 and 4, we know that for any 0 < δ < 1
2

there exists a subset Zδ of

Zm of measure at least 1− 2δ such that both (17) and (18) hold for each z ∈ Zδ.
Let i ∈ {1, . . . ,m} and z ∈ Zδ. Then from (18), we see that

2λx
i |Sz

i | ≤ 2λx
i |〈fρ, φx

i 〉|+ 2λx
i |Sz

i − 〈fρ, φx
i 〉| ≤ 2λx

i |〈fρ, φx
i 〉|+

16Mκ log 2
δ√

m
.

Applying Lemma 5 to I = {i}, we have

2λx
i |Sz

i | ≤ λr1‖gρ‖K
8κ2 log 2

δ√
m

+ 21+r‖gρ‖K(λx
i )1+r +

16Mκ log 2
δ√

m
. (20)

By Lemma 1, |λx
i −λi| ≤ ‖LK −Lx

K‖HS, so (λx
i )1+r ≤ (λi + ‖LK −Lx

K‖HS)1+r ≤ 2r(λ1+r
i +

‖LK −Lx
K‖1+r

HS ). It follows that for i = 1, · · · ,m, the right-hand side of (20) has an upper

bound

21+2r‖gρ‖Kλ1+r
i + CK,ρ

(
log 2

δ

)1+r

√
m

.

11



Therefore, when

21+2r‖gρ‖Kλ1+r
p + CK,ρ

(
log 2

δ

)1+r

√
m

≤ γ, (21)

we know that

2λx
i |Sz

i | ≤ γ, ∀ i = p+ 1, . . . ,m,

which by Theorem 1 yields czγ,i = 0 for i = p+ 1, . . . ,m. Then the conclusion of Theorem

5 follows by scaling 2δ to δ, for which (21) corresponds to (13).

From Theorem 5 we see immediately that when the eigenvalues {λi} decay polyno-

mially, the sparsity can be explicitly derived by taking p to be dm
1

2α(1+r) e, the smallest

integer greater than or equal to m
1

2α(1+r) .

Corollary 1. Assume (1). If for some D2 > 0 and α > 0, λi ≤ D2i
−α holds for each i,

then when γ ≥ (21+2rD1+r
2 ‖gρ‖K + CK,ρ

(
log 4

δ

)1+r
)/
√
m, we have with confidence 1− δ,

czγ,i = 0, ∀ m
1

2α(1+r) + 1 ≤ i ≤ m.

5 Error Analysis

In this section, we prove our error bounds stated in Theorem 4.

Proof of Theorem 4. We follow the proof of Theorem 5 and know that for any 0 < δ < 1
2

there exists a subset Zδ of Zm of measure at least 1 − 2δ such that both (17) and (18)

hold for each z ∈ Zδ. Moreover, when (21) is satisfied and z ∈ Zδ, we have czγ,i = 0 for

every i ∈ {p + 1, . . . ,m} and those i ∈ {1, . . . , p} with λx
i ≤

λp
2

, which follows directly

from (20). Hence

fz
γ =

∑
i∈S

czγ,iφ
x
i ,

where S is defined by S = {i ∈ {1, . . . , p} : λx
i >

λp
2
}. It follows from the orthogonal

expansion in terms of the orthonormal basis {φx
i } that

‖fz
γ − fρ‖2K =

∑
i∈N\S

(〈fρ, φx
i 〉)2 +

∑
i∈S

(
〈fρ, φx

i 〉 − czγ,i
)2

=: ∆1 + ∆2. (22)

Let z ∈ Zδ in the following proof.

12



We bound the first term ∆1 on the right-hand side of (22) by decomposing it further

into two parts with fρ =
∑∞

j=1 λ
r
jdjφj =

∑∞
j=p+1 λ

r
jdjφj +

∑p
j=1 λ

r
jdjφj. Here we have

written gρ =
∑∞

j=1 djφj with {dj} ∈ `2 and ‖{dj}‖`2 = ‖gρ‖K .

The part with
∑∞

j=p+1 is easy to deal with: since {φx
i } is an orthonormal basis, we

have  ∞∑
i=1

〈
∞∑

j=p+1

λrjdjφj, φ
x
i

〉2
1/2

=

∥∥∥∥∥
∞∑

j=p+1

λrjdjφj

∥∥∥∥∥
K

≤ ‖gρ‖Kλrp+1. (23)

The part with
∑p

j=1 can be estimated by the Schwarz inequality as∑
i∈N\S

〈
p∑
j=1

λrjdjφj, φ
x
i

〉2
1/2

≤

∑
i∈N\S

‖{dl}‖2`2
p∑
j=1

λ2r
j 〈φj, φx

i 〉
2

1/2

.

We continue to bound
∑

i∈N\S
∑p

j=1 λ
2r
j 〈φj, φx

i 〉
2 in two cases.

Case 1: r ≥ 1. For i ≥ p+ 1, we observe that λ2r
j ≤ 22r−1(λ2r

i + (λj − λi)2r) and

(λj − λi)2r ≤ λ2r−2
1 (λj − λi)2 ≤ 2λ2r−2

1

(
|λj − λx

i |2 + |λi − λx
i |2
)
.

It follows that

p∑
j=1

λ2r
j 〈φj, φx

i 〉
2 ≤ 22r−1

p∑
j=1

(
λ2r
i + 2λ2r−2

1 |λi − λx
i |2 + 2λ2r−2

1 |λj − λx
i |2
)
〈φj, φx

i 〉
2 ,

which in connection with Lemma 1 and (19) yields

∞∑
i=p+1

p∑
j=1

λ2r
j 〈φj, φx

i 〉
2

≤ 22r−1

∞∑
i=p+1

λ2r
i + 22rλ2r−2

1

(
∞∑
i=1

|λi − λx
i |2 +

∞∑
i,j=1

|λj − λx
i |2 〈φj, φx

i 〉
2

)

≤ 22r−1

∞∑
i=p+1

λ2r
i + 21+2rλ2r−2

1 ‖LK − Lx
K‖2HS.

For i ∈ {1, . . . , p} \S and j ≤ p, we have |λj−λx
i | ≥

λj
2

and hence λ2r
j ≤ 4λ2r−2

1 |λj−λx
i |2.

So by (19),

∑
i∈{1,...,p}\S

p∑
j=1

λ2r
j 〈φj, φx

i 〉
2 ≤ 4λ2r−2

1

∞∑
i,j=1

|λj − λx
i |2 〈φj, φx

i 〉
2 ≤ 4λ2r−2

1 ‖LK − Lx
K‖2HS.

13



Thus in the first case we have∑
i∈N\S

p∑
j=1

λ2r
j 〈φj, φx

i 〉
2 ≤ 22r−1

∞∑
i=p+1

λ2r
i + 4λ2r−2

1 (22r−1 + 1)‖LK − Lx
K‖2HS.

Case 2: r < 1. we notice that λ2r
j ≤ λ2r−2

p λ2
j and obtain from the above estimate

∑
i∈N\S

p∑
j=1

λ2r
j 〈φj, φx

i 〉
2 ≤ 2λ2r−2

p

∞∑
i=p+1

λ2
i + 12λ2r−2

p ‖LK − Lx
K‖2HS.

The bounds for the two cases together with (23) give a bound for ∆1 as

√
∆1 ≤

 ‖gρ‖Kλ
r
p+1 + 2r‖{dj}‖`2

(
(
∑∞

i=p+1 λ
2r
i )1/2 + 21+rλr−1

1 ‖LK − Lx
K‖HS

)
, if r ≥ 1,

‖gρ‖Kλrp+1 + 2‖{dj}‖`2λr−1
p

(
(
∑∞

i=p+1 λ
2
i )

1/2 + 2‖LK − Lx
K‖HS

)
, if r < 1.

Now we turn to the second term ∆2 on the right-hand side of (22). Observe that the

case czγ,i = 0 corresponds to |Sz
i | ≤

γ
2λx
i
. So for either czγ,i = 0 or czγ,i = Sz

i ±
γ

2λx
i
, we always

have

| 〈fρ, φx
i 〉 − czγ,i| ≤

γ

2λx
i

+ |Sz
i − 〈fρ, φx

i 〉 | ≤
1

2λx
i

(γ + 2λx
i | 〈fρ, φx

i 〉 − Sz
i |) .

But for each i ∈ S, there holds 2λx
i ≥ λp. Hence

√
∆2 =

(∑
i∈S

(
〈fρ, φx

i 〉 − czγ,i
)2)1/2

≤
√

2pγ

λp
+

2
√

2

λp

(∑
i∈S

(λx
i (Sz

i − 〈fρ, φx
i 〉))

2

)1/2

.

By Lemma 4, this implies

√
∆2 ≤

√
2pγ

λp
+

16
√

2Mκ log 2
δ

λp
√
m

.

Putting the bounds for ∆1 and ∆2 into (22), we know that for z ∈ Zδ, ‖fz
γ − fρ‖K is

bounded by

‖gρ‖Kλrp+
√

2pγ

λp
+

16
√

2Mκ log 2
δ

λp
√
m

+

 2r‖gρ‖K
(

(
∑∞

i=p+1 λ
2r
i )1/2 +

23+rλr−1
1 κ2 log 2

δ√
m

)
, if r ≥ 1,

2‖gρ‖Kλr−1
p

(
(
∑∞

i=p+1 λ
2
i )

1/2 +
8κ2 log 2

δ√
m

)
, if r < 1.

Then the conclusion of Theorem 4 follows by scaling 2δ to δ.
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6 Achieving Both Sparsity and Learning Rates

We are in a position to derive both sparsity and learning rates in two special situations,

based on our general analysis.

Proof of Theorem 2. We take p = dm1/(2α2(1+r))e to give m1/(2α2(1+r)) ≤ p ≤ 2m1/(2α2(1+r)),

so λ1+r
p ≤ D1+r

2 /
√
m. Thus the choice of γ in (7) implies condition (13) of Theorem 5.

This verifies (8) as well as the condition of Theorem 4. We bound the first three terms of

the right-hand side of (14) in Theorem 4 as follows. First,

‖gρ‖Kλrp +

√
2pγ

λp
+

C3

λp
√
m

log
4

δ

≤ ‖gρ‖KDr
2m
− α2r

2α2(1+r) + 2D−1
1 2α1γm( 1

2
+α1) 1

2α2(1+r) + C3D
−1
1 2α1

(
log

4

δ

)
m
− 1

2
+

α1
2α2(1+r)

≤ C̃1

(
log

4

δ

)1+r

m
− 2α2r−1−(α1−α2)

4α2(1+r) ,

where C̃1 = ‖gρ‖KDr
2 + 21+α1D−1

1 (21+r‖gρ‖KD1+r
2 + CK,ρ) + C3D

−1
1 2α1 .

When r ≥ 1, since 2rα2 > 1,

∞∑
i=p+1

λ
max{2r,2}
i ≤ D2r

2

∫ ∞
p

x−2rα2 dx =
D2r

2 p
1−2rα2

2rα2 − 1
.

So the last term of the right-hand side of (14) can be bounded as

C4λ
min{r−1,0}
p

(
∞∑

i=p+1

λ
max{2r,2}
i

)1/2

≤ C4D
r
2√

2rα2 − 1
m

1−2rα2
4α2(1+r) .

Similarly, when 0 < r < 1, since α2 >
1
2

+ (1− r)α1, we have

C4λ
min{r−1,0}
p

(
∞∑

i=p+1

λ
max{2r,2}
i

)1/2

≤ C4D
r−1
1 p−α1(r−1)D2p

(1−2α2)/2

√
2α2 − 1

≤ C4D
r−1
1 D2√

2α2 − 1
m

1+2(1−r)α1−2α2
4α2(1+r) .

Now we use Theorem 4 to obtain

‖fρ − fz
γ‖K ≤ C1

(
log

4

δ

)1+r

m
− 2α2r−1−2(α1−α2)

4α2(1+r)
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with confidence 1− δ, where

C1 = C̃1 +


C4Dr2√
2rα2−1

, when r ≥ 1,

C4D
r−1
1 D2√

2α2−1
, when 0 < r < 1.

The proof of Theorem 2 is complete.

Proof of Theorem 3. Choosing p = d log(m+1)
2(1+r) log β2

e, we have

log(m+ 1)

2(1 + r) log β2

≤ p ≤ 1 +
log(m+ 1)

2(1 + r) log β2

.

It follows that

m
1

2(1+r) ≤ βp2 ≤ βp1 ≤ β1(2m)
log β1

2(1+r) log β2 .

The assumption λp ≤ D2β
−p
2 in (10) tells us that

λ1+r
p ≤ D1+r

2√
m
.

Then

21+2r‖gρ‖Kλ1+r
p + CK,ρ

(
log 4

δ

)1+r

√
m

≤ 21+2r‖gρ‖K
D1+r

2√
m

+ CK,ρ

(
log 4

δ

)1+r

√
m

= γ.

So condition (13) in Theorem 5 holds, and thus we know that with confidence 1 − δ,

czγ,i = 0 for p+ 1 ≤ i ≤ m. This verifies the desired conclusion (11) for sparsity.

Now we turn to the error analysis. By Theorem 4, bound (14) holds with confidence

1− δ. We estimate the first three terms of the right-hand side of (14) as

‖gρ‖Kλrp +

√
2pγ

λp
+ C3

log 4
δ

λp
√
m

≤ ‖gρ‖KDr
2m
− r

2(1+r) + C̃2

(
log

4

δ

)1+r√
log(m+ 1)m−

r−( log
β1
β2

/ log β2)
2(1+r)

+ C3D
−1
1

(
log

4

δ

)
β12

log β1
2(1+r) log β2m−

r−( log
β1
β2

/ log β2)
2(1+r) , (24)

where C̃2 =
(

2
log 2

+ 1
(1+r) log β2

)1/2

(21+2r‖gρ‖KD1+r
2 + CK,ρ)D

−1
1 β12

log β1
2(1+r) log β2 .

When r ≥ 1, the last term in the right-hand side of (14) can be bounded as

C4

(
∞∑

i=p+1

λ2r
i

)1/2

≤ C4D
r
2

(
∞∑

i=p+1

β−2ri
2

)1/2

=
C4D

r
2β
−pr
2√

β2r
2 − 1

≤ C4D
r
2√

β2r
2 − 1

m−
r

2(1+r) . (25)

16



Similarly, when 0 < r < 1, we have

C4λ
r−1
p

(
∞∑

i=p+1

λ2
i

)1/2

≤ C4D
r−1
1 β1−r

1 (2m)
(1−r) log β1
2(1+r) log β2

D2m
− 1

2(1+r)√
β2

2 − 1
.

Putting this estimate in the case 0 < r < 1 and (25) in the case r > 1 and (24) into

bound (14) tells us that with confidence 1− δ, the desired bound (12) for the error holds

true with the constant C2 given by

C2 =
1√

log 2

(
‖gρ‖KDr

2 + C3D
−1
1 β12

log β1
2(1+r) log β2

)
+ C̃2

+
1√

log 2


C4Dr2√
β2r
2 −1

, when r ≥ 1,

C4D
r−1
1 β1−r

1 D2√
β2
2−1

2
(1−r) log β1
2(1+r) log β2 , when 0 < r < 1.

The proof of Theorem 3 is complete.

7 Further Remarks and Discussion

We have proposed a modified KPM (2) for regression with `1-regularizer. Analysis for the

error in the HK-metric has been conducted by means of a priori condition (1) concerning

the regularity of the regression with respect to the kernel K and the marginal distribution

ρX . Our learning rates have been given in terms of special choices of the regularization

parameter γ > 0 which depends on a priori condition (1). Condition (1) is a standard

assumption for least square regularized regression with an infinitely dimensional HK in

the literature of learning theory [4, 14, 16, 18] and almost all theoretical error bounds are

based on similar a priori conditions. To the best of our knowledge, the only theoretical

error analysis for a learning algorithm with a regularization parameter determined directly

by the data was given recently in [5], where a cross-validation approach was rigorously

proved.

It is a common practice to choose the regularization parameter by a cross-validation

method, which often leads to satisfactory simulation. Here we present an example to

show how to choose the regularization parameter γ for algorithm (2). Rigorous theoretical

analysis for such a process will be considered in our further study.

Example 2. We generate the regression function fρ on R10 as

fρ(x) =
3∑
i=1

Ai exp

(
−|x− Pi|

2

2v2
i

)
, (26)
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where the parameters are prescribed in Table 1. The data set {(xi, yi)}mi is drawn indepen-

i coefficient Ai variation v2
i center Pi

1 2.0 0.622 (0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

2 −3.5 0.642 (0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6)

3 0.7 0.652 1
9
(0.9, 1.7, 2.5, 3.3, 4.1, 4.9, 5.7, 6.5, 7.3, 8.1)

Table 1: Parameters

dently with xi’s uniformly distributed on [0, 1]10, yi = fρ(xi) + εi, and εi’s being Gaussian

noise with µ = 0, σ2 = 0.52 and truncated onto [−1.5, 1.5]. The Mercer kernel K is the

Gaussian with variance 0.602. Table 2 shows the result of the simulation. For compari-

son, in the last three columns we list the error performance of the least squares regularized

regression (LSR) algorithm

fz
LSR,γ1

= arg min
f∈HK

{
1

m

m∑
i=1

(f(xi)− yi)2 + γ1‖f‖2K

}
.

The notations γ∗ and γ∗1 in the second and sixth columns denote the optimal γ and γ1

m γ∗ ‖czγ∗‖0 Error1 Error2 γ∗1 LSRError1 LSRError2

300 6.261e-3 16 9.708e-2 1.244e-1 6.769e-3 0.3936 0.4951

600 6.769e-3 13 8.472e-2 1.077e-1 5.790e-3 0.3986 0.5042

1200 3.625e-3 16 6.569e-2 9.000e-2 4.582e-3 0.5229 0.6534

1800 2.270e-3 25 5.054e-2 6.467e-2 3.101e-3 0.5500 0.6945

2400 2.099e-3 20 4.289e-2 6.249e-2 2.653e-3 0.5246 0.6764

Table 2: Learning Error

respectively, which are selected from a geometric sequence {10−4, · · · , 10−2} of length 60

by 5-fold cross validation. The learning error is estimated empirically by independently

drawing another unlabelled sample set {ξj} uniformly on [0, 1]10 of size 12, 000 and with

fz = fz
γ∗ or fz

LSR,γ∗1
computing

Error1 =
1

12, 000

12,000∑
j=1

|fρ(ξj)− fz(ξj)| ,

18



Error2 =

(
1

12, 000

12,000∑
j=1

(fρ(ξj)− fz(ξj))
2

)1/2

.

We have observed sparsity for the coefficients in the representation (3) of the output

function in our algorithm. This sparsity is different from that for the representation

in terms of {Kxi}mi=1. It would be interesting to extend our study to a semisupervised

learning setting as indicated in Remark 4. Another extension is to take empirical features

in different ways by means of efficient numerical methods for the Gramian matrix K.

Exploring sparsity in such extended settings would be of much value for applications.
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[9] V. Koltchinskii, E. Giné, Random matrix approximation of spectra of integral oper-

ators, Bernoulli 6 (2000), 113-167.

19



[10] L. Lo Gerfo, L. Rosasco, F. Odone, E. De Vito, A. Verri, Spectral algorithms for

supervised learning, Neural Comput. 20 (2008), 1873-1897.

[11] I. Pinelis, Optimum bounds for the distributions of martingales in Banach spaces,

Ann. Probab. 22 (1994), 1679-1706.

[12] J.B. Reade, Eigenvalues of positive definite kernels II, SIAM J. Math. Anal. 15 (1984),

137-142.

[13] J.B. Reade, Eigenvalues of analytic kernels, SIAM J. Math. Anal. 15 (1984), 133-136.

[14] S. Smale, D.X. Zhou, Learning theory estimates via integral operators and their

approximations, Constr. Approx. 26 (2007), 153-172.

[15] S. Smale, D.X. Zhou, Geometry on probability spaces, Constr. Approx. 30 (2009),

311-323.

[16] S. Smale and D.X. Zhou, Online learning with Markov sampling, Anal. Appl. 7

(2009), 87-113.

[17] I. Steinwart, D. Hush, C. Scovel, Optimal rates for regularized least-squares regres-

sion, in Proceedings of the 22nd Annual Conference on Learning Theory (S. Dasgupta

and A. Klivans eds.), 2009, pp. 79-93.

[18] H.W. Sun, Q. Wu, Least square regression with indefinite kernels and coefficient

regularization, Appl. Comput. Harmon. Anal. 30 (2011), 96-109.

[19] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Statist. Soc. B

58 (1996), 267-288.

[20] U. von Luxburg, M. Belkin, O. Bousquet, Consistency of spectral clustering, Ann.

Stat. 36 (2008), 555-586.

[21] D.X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans.

Inform. Theory 49 (2003), 1743-1752.

[22] L. Zwald, G. Blanchard, On the convergence of eigenspaces in kernel principal com-

ponent analysis, In Advances in Neural Information Processing Systems 18 (Y. Weiss,

B. Schölkopf, and J. Platt, eds.), pages 1649-1656. MIT Press, Cambridge, MA, 2006.

20



[23] L. Zwald, Performances statistiques d’algorithmes d’apprentissage: Kernel Projection

Machine et analyse en composantes principales à noyau, PhD thesis, Université Paris-
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