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simultaneously taking both grouping and right-censoring into account. In this research, we 

propose a new generalized Poisson-multinomial mixture approach to model grouped and right-

censored (GRC) count data. Based on a mixed Poisson-multinomial process for conceptualizing 

grouped and right-censored count data, we prove that the new maximum-likelihood estimator 

(MLE-GRC) is consistent and asymptotically normally distributed for both Poisson and zero-

inflated Poisson models. The use of the MLE-GRC, implemented in an R function, is illustrated 

by both statistical simulation and empirical examples. This research provides a tool for 

epidemiologists to estimate incidence from grouped and right-censored count data and lays a 

foundation for regression analyses of such data structure. 

 

Keywords: Grouped and right-censored count data, Mixed Poisson models, Zero-inflated Poisson 

distribution, Multinomial distribution, MLE-GRC     
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Statistical distributions for analyzing count data are often built upon Poisson distributions 

(Allison and Waterman 2002; Cameron and Trivedi 1998; Greene 1997; Long 1997). One important 

goal of these Poisson family models is to estimate , or the average number of events occurring in 

a fixed interval of time, which is closely related to incidence in epidemiological research. Although 

statistical models are well developed for estimating from typical count data (e.g., once, twice, 3 

times, 4 times, 5 times, 6 times,…), the estimation of becomes very challenging when response 

categories to survey questions consist of grouped counts (e.g., the response category “3-4 times” 

rather than the separate “3 times” and “4 times” categories) and are right censored (e.g., the upper 

end response category “5 or more times”). Recently, Poisson regression models based on maximum 

likelihood estimation (MLE) have been proposed for analyzing right-censored count data (Saffari 

and Adnan 2011; Saffari, Adnan and Greene 2012). In survival analysis of right-censored data, an 

interval-censored approach has been developed (Chen, Sun and Peace 2012; Fay and Shaw 2010; 

Lindsey and Ryan 1998). Statistical models for analyzing grouped Poisson data and their asymptotic 

properties have also been carefully investigated (Dickman et al. 2004; McGinley, Curran and 

Hedeker 2015; Rao and Scott 1999). Nevertheless, scholars remain unclear about the estimation of

  if the count data is both grouped and censored (GRC), because virtually no Poisson-based 

likelihood functions are readily developed for grouped and right-censored count data. 

This paper presents a new multinomial-Poisson approach to model GRC count data, derives 

its asymptotic properties and applies this method to adolescent drinking data. Two members of the 

Poisson family of frequency distributions, the Poisson and Zero-Inflated Poisson (ZIP), are 

discussed in detail. The first step of the method is to introduce a conceptual multinomial model 

consisting of mixed Poisson random variables. Next, we estimate parameters of the underlying 

Poisson distributions using a maximum likelihood method and derive the statistical properties 

(consistency, asymptotical efficiency and asymptotic unbiasedness) of this maximum likelihood 

estimator for grouped and right-censored count data (the MLE-GRC), followed by a discussion on 

goodness of fit. Our analyses are illustrated by empirical applications to data on adolescent drinking. 

The next section commences with a brief description of count-data response categories in sample 

surveys.  

 

WHY GROUPED AND RIGHT-TRUNCATED COUNT DATA? 
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The GRC data structure is often adopted by social scientists exploring behaviors and 

attitudes in areas such as public health, crime and delinquency, mental health and urban studies. As 

examples, respondents in surveys have been asked to list their frequencies of being sick, suicide 

attempts, criminal victimization, substance use, neighborly interactions and residential moves. 

There are two reasons why the GRC data structure is employed. First and foremost, for data 

collection on sensitive topics, such as personal income, number of sex partners, incidents of 

delinquent behaviors and history of drug use, respondents may feel much more comfortable in 

reporting grouped categories instead of exact numbers (Groves et al. 2009). Based on this reasoning, 

two of the major surveys on adolescent behaviors and attitudes in America, the Monitoring the 

Future Study (MTF) and the National Longitudinal Study of Adolescent to Adult Health (Add Health) 

adopted GRC response categories for multiple questions related to juvenile delinquency and drug 

use. Second, a precise enumeration of number of events imposes a cognitive burden on interviewees 

and leads to excessive missing data. For example, although medical sociologists and psychiatrists 

would like to know exactly how many days in the past week individuals experienced a variety of 

depressive symptoms, respondents, especially those with depressive symptoms, often get frustrated 

when required to distinguish between, for example, 2 days and 3 days. Thus, the CES-D scale, a 

standard self-report depression measure, offers four grouped response categories: less than 1 day, 1-

2 days, 3-4 days and 5-7 days (Radloff 1977).  

As discussed above, an alternative approach is to collect right-censored and grouped count 

data. For instance, a following question is adopted by the Monitoring the Future (MTF) to elicit 

frequency of binge drinking:  

“Think back over the LAST TWO WEEKS. How many times have you had five or more drinks 

in a row? (A "drink" is a glass of wine, a bottle of beer, a wine cooler, a shot glass of liquor, a 

mixed drink, etc.)”  

Response categories for this question are none, once, twice, 3 to 5 times, 6 to 9 times, 10 or more 

times. Such GRC response categories demand much less efforts from both interviewers and 

interviewees. Yet, no existing statistical models can be readily applied to analyze this distinct data 

structure unless count data are treated as ordinal measures and then analyzed accordingly using, for 

example, proportional odds models. The following sections address this by developing a maximum 
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likelihood method for analyzing GRC data and investigating the statistical properties of this new 

maximum-likelihood estimator for both the Poisson and zero-inflated Poisson cases. 

 

MAXIMUM LIKELIHOOD ESTIMATION  

FOR GROUPED AND RIGHT-TRUNCATED DATA 

 

The Poisson Case 

 

Statistical models for analyzing count data are often based on the Poisson distribution, 

whose probability mass function for a random event count variable y is given as follows (Long and 

Freese 2006): 

                  ( | ) e , 0,1,2, ,
!

y

f y y
y

  −= =                              (1) 

where λ is both the expected value/mean and the variance of Poisson distribution.  

To define a Poisson-based likelihood function for GRC count data, we first denote by 

1{ } j

G

jI ==G  the division of all nonnegative integers into a grouping and right censored scheme of 

counts. For identically and independently distributed (iid) observations ix  from a Poisson( )  

distribution, let 

                         
1, ,

( )
0,

i j

j i

when x I
x

otherwise



= 


                    (2) 

so that we have a G-dimensional random vector 1( , , )G  for denoting the GRC responses. For 

example,
1 2 3 4 5 6( , , , , ),      summarizes the response of the aforementioned MTF binge-

drinking question ifG is expressed as{{0},{1},{2},{3,4,5},{6,7,8,9},{10,...}} . Note that, for 

any given respondent in a MTF sample, there is only one component of 1( , , )G   that equals 

1 and all other j s are zero. This vector has a multinomial distribution 1(1, , , )G M ,1 where 

the parameter j depends on the  of the underlying Poisson( )  

 
1 The first parameter denotes the number of trials in a multinomial distribution. 
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                       e , 0,) 1,2,
!

(
jy I

y

j y
y

   −



= = , .n             (3) 

If we refer the vector 1( ) ( ( ),..., ( ))GX X X =α by , its probability mass function is 

1 2

1 2( | ) G

Gf
      . 

Now suppose that we have n observations 1{ }i
n

ix = independently drawn from the Poisson(λ) 

distribution. The likelihood function for estimating   is: 

                           
1

( ) ( ( ) | )
n

i

i

L f x  
=

                             (4) 

Based on Lehmann and Casella (1998: 447-449, Theorem 3.7 and Theorem 3.10), we next show 

that the maximum likelihood estimator, the MLE-GRC, is consistent and asymptotically normally 

distributed. Theorems 1 to 3 presented below are adapted from Theorem 3.7 and 3.10 in Lehmann 

and Casella (1998) and we verify every condition of Theorem 3.7 and 3.10 to show consistency and 

asymptotic normality of the MLE-GRC. In order to simplify the proof, we do not verify these 

conditions in exactly the same order as originally presented in Lehmann and Casella (1998). First, 

the consistency and asymptotic distribution are given by the theorems below. 

Theorem 1. With probability tending to 1 as n→  , the likelihood equation with ( )L   

given in (4) 

d
log ( ) 0

d
L 


=                                (5) 

has a root ˆ
n which converges to the true value 0  in probability. 

Theorem 2. Any consistent sequence ˆ
n  of roots of the likelihood equation (5) satisfies 

0

0

1ˆ( ) 0,
( )

nn
I

 


 
− →  

 
N  in distribution. 

We assume that the number of groups 2G  for all possible grouping schemes so that   is 

estimable. Several conditions of ( | )f    and ( )L   should be investigated to show that MLE-

GRC is a consistent estimator.  

 (A0)  The distributions { ( | ) : 0 }f        are distinct. Namely, if 
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1 2( | ) ( | )f f   =  holds for all possible  , we have 21 =  . Given that 
1

1
G

j

j


=

=  and 

0ja j³ "  , 1 2( | ) ( | )f f   =  implies 1 2( ) ( )j j   =  for 1, ,j G=  . In particular, we 

have 1 11 2( ) ( )   = . Since 2G  and 21 l   , the following conclusion holds: 

2 2

1

1 1

1

0 2

d d
( ) e e 0.

d d ! ( 1)!

l l

y l

y

y l

  
 

 

− −
− −

= =

= = − 
−

                              

Thus, 1 is strictly decreasing on (0, )  , which implies 1 2 = . 

(A1)  The distributions { ( | ) : 0 }f        have the same support. For any

0   and 1, ,j G= , it is easy to show 

( 1| ) ( ) e 0
!

jI

y

j

y

jPr
y

     −



= = =  .                                   

(A2)  The observations 1{ ( )}i

n

ix = are iid draws from ( | )f   . This immediately 

follows the definition that ix is an iid draw from the Poisson( ) distribution. 

(A3)  The parameter space is an open interval. This assumption is also satisfied 

because we maximize ( )L  on an open interval (0, ) , though we do not claim that the optimal 

value of ( )L  is always unique.  

Given that the MLE-GRC satisfies (A0)-(A3), Theorem 1 holds according to Theorem 3.7 

in Lehmann and Casella (1998: 447). Based on Theorem 3.10 in Lehmann and Casella (1998: 449-

450), we show that the MLE-GRC also is asymptotically efficient and unbiased by investigating 

three additional assumptions (A4)-(A6). 

(A4)  For every , the probability mass function ( | )f   is infinitely differentiable 

with respect to , and there exists some function ( )D  such that the third derivative of ( | )f  

satisfies 

3

3

log ( | )
( )

f
D

 





  


 for any  and all 0 0

1 3
[ , ]
2 2

  Î  (see Appendix for 

proof).  

(A5)  The integral ( | )d ( )f      is infinitely differentiable under the integral 
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sign. The proof is trivial because d ( )  pertains to a discrete measure and the integral is just a 

finite sum. 

(A6)  The Fisher information ( ) (0, )I     . With regard to ( | )f    , its Fisher 

information ( )I  is a function of   and also depends on the grouping schemeG (see Appendix for 

proof): 

2
2 2

1 1

( )d
( ) ( ) log ( | ) .

d
j

G G
j j

j jj j

I I f
 

    
  = =

        = = = =             

 E EG         

Given that (A0)-(A6) are satisfied, both the asymptotic efficiency and asymptotic 

unbiasedness of the MLE-GRC are guaranteed by Theorem 2, which follows Theorem 3.10 in 

Lehmann and Casella (1998: 449-450). 

 

The Zero-Inflated Poisson Case 

 

λ is both the mean and variance of the Poisson distribution. However, empirical frequency 

distributions of count data violate this “mean equals variance” assumption if the count data has 

excess zeros relative to a Poisson distribution (Barron 1992; Hall 2000; Lambert 1992; Zorn 1998). 

Instead, researchers often use the zero-inflated Poisson (ZIP) distribution which, for the count 

variable y, has the probability mass function 

1 0

( | , )
0

!

y

p pe when y

f y p
pe when y

y




 

−

−

 − + =


= 




                                    (6) 

where p is the proportion of population exposed to the Poisson distribution and λ is the parameter 

of a corresponding Poisson distribution.  

While the definition of j  remains the same as (2), the G-dimensional random vector 

1( , , )G  defined in the last section now has a multinomial distribution 1(1, , , )G M , where 

1

1( , ) 1 e
!

y

y I

p p p
y

   −



= − +  for 1j = and ( , ) e
!

j

y

i

y I

p p
y

   −



=  for 2, , .j G=                       

                                                                            (7) 
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The probability mass function of  depends on p and , 

1

1( | , ) G

Gf p
    .                                                (8) 

For independent observations 1{ }i
n

ix = , the likelihood function is 

1

( , ) ( ( ) | , ).
i

i

n

L p f x p  
=

                                            (9) 

 

Based on Theorem 5.1 in Lehmann and Casella (1998: 443-444, 462-467), we show that 

the MLE-GRC remains consistent, asymptotically efficient and asymptotically unbiased for the ZIP 

case, whose asymptotic distribution is given by Theorem 3:  

Theorem 3. With probability tending to 1 as n→ , there exist solutions ˆ ˆ( , )n np of the 

likelihood equations 
( , ) ( , )

0
L p L p

p

 



 
= =

 
such that 

(1) 
0

ˆ
n → and 0

ˆ
np p→ in probability as n→ .  

(2) 
0

0

ˆ

ˆ

n

n

p p
n



   
    



 
−
 




 is asymptotically normal with mean zero and variance matrix

1

0 0( , )I p  −
; 

(3)  ˆ
n and ˆ

np are asymptotically efficient in the sense that in distribution, 

1

0 0 0 11

1

0 0 0 22

ˆ( ) (0,[ ( , )] ),

ˆ( ) (0,[ ( , )] ).

n

n

n p p I p

n I p



  

−

−

− →

− →

N

N
 

To prove that the MLE-GRC is a consistent, asymptotically efficient and asymptotically 

unbiased estimator for the zero-inflated Poisson case, we next state and verify a series of 

assumptions similar to those of the previous section based on Theorem 5.1 from Lehmann and 

Casella (1998: 462-463). Now that there are two parameters in the likelihood function, we assume 

that 3G  for all possible grouping schemes so that both p and are estimable. The assumptions 

(B0)-(B2) are virtually the same as assumptions (A0)-(A2). 

(B0)  The distributions { ( | , ) : 0 1,0 }f p p       are distinct. That is, if 

21 21( | , ) ( | , )f p f p   =  holds for all possible  , we have 1 2 =  and 1 2p p=  . To prove 
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this, we note that 3G   and the condition 21 21( | , ) ( | , )f p f p   =  for all   implies

1 1 2 2( , ) ( , )G Gp p   =  and 1 1 1 1 2 2( , ) ( , )G Gp p   − −=  . The two equations are expanded as 

follows. 

1 2

1 1

1 2

1 1

1 2
1 2

1 2
1 2

e e 0,
! !

e e 0.
! !

G G

G G

G G

l lk s

k l s l

k s

k l s l

p p
k s

p p
k s

 

 

 

 

− −

− −
− −

= =

 
− −

= =


− =



 − =



 

 

                                  (E1)                  

Their matrix form is 

1 2

1 1

1 2

1 1

1 2

1

2 1 2

e e
! !

0, where .

e e
! !

G G

G G

G G

l lk s

k l s l

k s

k l s l

k sp
A A

p

k s

 

 

 

 

− −

− −
− −

= =

 
− −

= =

 
 
 = =



 −
 







 




 

 

                          

As we assume 1 20 , 1p p  , the equation above holds if and only ifdet 0A= : 

1 2 1 2

1 1

1 2

1

1 1

1 2 1 2

1

1 2
2 1

0 det e e
! ! ! !

( )
e ( ).

! !

G G

G G G G

G

G G

l lk s k s

k l s l k l s l

l k
s k s k

k l s l

A
k s k s

k s

   

 

   

 
 

− −

−

− − 
− − − −

= = = =

− 
− − − −

= =

= = −

= −

   

 

                         (E2) 

The last step of (E2) follows Tonelli's Theorem (see e.g., DiBenedetto 2002 for reference). When

1 2 0 −   , we assume 2 1   without loss of generality. However, this will lead to the 

conclusion that 1 2

1

1

1 2
2 1

( )
e ( ) 0

! !

G

G G

l k
s k s k

k l s l k s

   
 

−

− 
− − − −

= =

−   , which contradictsdet 0A= . Therefore, 

we have 1 2 = , which immediately implies 1 2p p= by any of the two equations in (E1).  

(B1)  The distributions ( | , )f p   have common support. Actually, given that 

0   and 0 1p  , the support set of ( | , )f p  covers all the possible  ’s for any

1 j G  . 

1

1 e 0,  if j=1,
!

Pr( 1| , )

e 0,  if j 2.
!

j

y I

y I

y

j y

p p
y

p

p
y







 


−



−




− + 


= = 

  






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(B2)  The observations 1{ ( )}i

n

ix =  are iid draws from ( | , )f p   . Again, this 

condition immediately follows the specification that 1{ }i
n

ix = is an iid draw from the zero-inflated 

Poisson distribution. 

(B3)  The parameter space is open and the density ( | , )f p   admits all third 

derivatives. This assumption is still satisfied as long as we maximize ( , )L p  on an open space

(0,1) (0, )   . Meanwhile, the fact that j  is analytic on p  and   for 1, ,j G=  implies that 

( | , )f p  is infinitely differentiable.    

 (B4)  The first and second logarithmic derivatives of ( | , )f p   satisfy the 

following equations (see Appendix for proof). 

log ( | , ) log ( | , ) 0f p f p
p

   


   
= =      

E E          

2 2

2
log ( | , ) log ( | , ) ,f p f p   

 

     
= −    

      

E E                    (E3) 

2

log ( | ) log ( | , ) log ( | , ) ,f p f p f p
p p

     
 

    
= −   

      
E E       (E4) 

2 2

2
log ( | , ) log ( | , ) .f p f p

p p
   

     
= −    

      

E E                     (E5) 

(B5)  The Fisher information matrix ( , )I p   is finite (all four elements of the matrix 

are finite) and positive definite (see Appendix for proof). The Fisher information matrix is  

11 12

21 22

( , ) ( , )
( , ) ,

( , ) ( , )

I p I p
I p

I p I p

 


 

 
=  
 

 

where 

11( , ) Var[ logI p 



=


( | , )],f p   

12 21( , ) ( , )I p I p = = Cov [ log





( | , ),f p  log

p




( | , )],f p   
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22 ( , ) Var[I p
p




=


log ( | , )].f p   

Or, after some derivation, the Fisher information matrix is 

2

2

1 1

( , ) .

1 1

j j j

j jj j

j j j

j jj j

p
I p

p p

  

   


  

  

    
  

    
=  

    
      

 

 

                                   (E6) 

(B6)  For any 0 (0,1)p   and 0 (0, )    , there exists a neighborhood where the 

absolute values of all the partial derivatives
3

3

log f
p




 ,

2

3

log f
p 



 
 ,

3

2
log f

p 



 
 and

3

3

log f





are uniformly bounded away from . Similar to our proof of (A4) (see Appendix), this 

conclusion follows the fact that ( | , )f p  is positive for all , 0 (0,1)p  and 0 (0, )   , as 

already given in (B1). 

With assumptions (B0)-(B6) satisfied, Theorem 3 holds based on Theorem 5.1 from 

Lehmann and Casella (1998: 462-463). 

 

 

GOODNESS-OF-FIT TEST 

 

While other test statistics (such as the log-likelihood ratio test, AIC and BIC) can also be 

applied to justify model selection (Burnham and Anderson 2004; Raftery 1995; Wong 1994), this 

section applies
2 goodness-of-fit tests to the MLE-GRC. As the 

2 test for the Poisson case is 

straightforward, we only illustrate such tests for the ZIP case. Suppose that ˆˆ( , )n np  is the MLE-

GRC estimator pertaining to the likelihood function in (9), we define the test statistics for the ZIP 

case as 

2

1

1

ˆˆ( ( , )( ))

,
ˆˆ( , )

j i

n

n nG
i

j n n

j

j

n p

Q
n p

x  

 

=

=

−

=


ZIP                                           (10) 
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where j and j are defined by (2) and (7), respectively and n is the sample size. Now we test the 

null hypothesis 0H  that the observed vectors 1

1 1

( , , )( ) ( )i

i

i

n

i

G

n

x x 
= =

   are generated by the 

1( , ( , ), ,M n p  ( , ))G p  distribution for some p and against the alternative hypothesis 1H

that 0H is incorrect. If we want to test the null hypothesis at a 95% level of confidence, the 0H

would be rejected when
2

3

1 (0.95)
G

ZIPQ F
 −

− . Note that the degrees of freedom of the
2 distribution 

is 3G− because the ZIP case has two parameters. 

 

DATA SIMULATION AND EMPIRICAL ANALYSES 

 

To test the validity of the MLE-GRC, we first constructed a series of hypothetical 

Poisson/ZIP distributions, grouped them according to a specific grouping scheme, fitted the GRC 

count data using the MLE-GRC and then compared different MLE-GRC estimators with true 

parameters chosen to generate the Poisson/ZIP distributions. First, we chose grouping schemes 

adopted by the binge drinking question and other alcohol drinking questions, and then constructed 

Poisson/ZIP distributions to test the MLE-GRC using different sample sizes, which are shown in 

Table 1.1 (its grouping scheme I is from the binge drinking question) and Table 1.2 (its grouping 

scheme II is from the other three alcohol drinking questions). The first two columns are the 

numerical values of the parameters we used to define the Poisson/ZIP distributions. As expected, 

the MLE-GRC estimators ˆ
Poisson , ˆ

ZIP  and ˆ
ZIPP  largely converge to their true values as sample 

sizes increase. Given that the null hypothesis of a goodness-of-fit test is that an inferred model fits 

the data well, the test statistics tend to reject false null hypotheses as sample sizes increase. For 

Scheme I, ZIP distributions are constructed when 0.6P =  and   equals to 0.5. The false null 

hypotheses of Poisson distributions are not rejected with a smaller sample size (N=500) but 

successfully rejected with a larger sample size (N=5000).  

The MLE-GRC of either the Poisson case or the ZIP case may provide a relatively poor fit 

to the count data if , the mean of the frequency distribution, is very small. When equals to 0.5, 

both ˆ
Poisson and ˆ

ZIP , especially the latter, can deviate considerably from 0.5. One reason is that 
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the grouping of very rare count events will lead to right-skewed Poisson distribution (e.g., most 

individuals reporting 3-5 times of binge drinking probably refer to 3 times instead of 4 or 5 times). 

For example, the grouping scheme I (“1” and “2” are included in separate groups) adopted by Table 

1.1 appears to be a better choice than the grouping scheme II adopted by Table 1.2 (“1” and “2” are 

combined into one group) when rare events are analyzed. For 0.5 = in Table 1.2, ̂ tends to be 

overestimated due to this grouping effect. For rare count events (e.g., 1  ), Table 1.1 and 1.2 also 

show that test statistics can reject true null hypotheses of ZIP distributions when sample sizes are 

large, or fail to reject false null hypotheses of Poisson distributions when sample sizes are small. 

These findings have several implications. First, it could be inappropriate to measure very rare count 

events by GRC responses, especially when the sample size is small. Second, if count data for rare 

events were collected using GRC responses, scholars should be cautious in using Poisson models 

and consider other alternative ways (such as logistic regression) for modeling such rare events. Third, 

although the grouping effect tends to exacerbate the differences between hypothetical Poisson/ZIP 

parameters used for simulation and MLE-GRC estimators, such bias can be greatly reduced if 

sample sizes are large or an appropriate grouping scheme is chosen.  

 

[Table 1.1 and Table 1.2 about here] 

 

Table 1 shows that MLE-GRC estimates tend to be close to true parameters. As results 

based on one simulation are subject to stochasticity, we further investigate the performance of MLE-

GRC under different scenarios through repeated simulations.2 All results reported in Table 2 are 

produced based on 1000 simulations. The simulated data were generated by Poisson and ZIP models 

separately and the corresponding models were fitted. Under a specific combination of sample size, 

grouping scheme and ( , )p  , the average of estimates across simulations, their standard deviation 

and the coverage probability of 95% confidence intervals (the percentage that a 95% confidence 

interval contains the true parameter across the 1000 simulations) are reported. Compared to results 

based on the single simulation in Table 1, the average estimate is in general closer to its 

corresponding true parameter. The standard deviations of estimates are very small under different 

 
2 Due to space limits, we only present results when is 0.5, 3 and 10, respectively.  
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scenarios and tend to be even smaller with larger sample sizes, suggesting the consistency of 

estimation. ˆ
ZIP is often associated with a higher standard deviation than that of a corresponding

ˆ
Poisson in a scenario where the true is small but such differences in standard deviations tend to 

diminish or even reverse when the true   is larger. For 0.6p =  in Scheme I ( 100N =  ), the 

standard deviation of ˆ
Poisson (0.062) is smaller than that of ˆ

ZIP (0.186) when 0.5 = ; yet the 

standard deviation of ˆ
Poisson (0.526) is larger than that of ˆ

ZIP (0.475) when 10 = . In Table 2, 

results in bold are scenarios where Poisson and zero-inflated Poisson are nearly unidentifiable 

( 1.0P = ). For these scenarios, ˆ
ZIP is also associated with a higher standard deviation than that 

of a corresponding ˆ
Poisson : when the true is small (e.g., 0.5 = ), the use of ZIP models appears 

to introduce more variance in estimation. Yet, it appears that the choice of ZIP or Poisson models 

does not matter for the estimation of a large : both ways of estimation of data without zero inflation 

( 1.0P = ) yield approximately the same ˆ
Poisson , ˆ

ZIP and their corresponding standard deviations 

when is sufficiently large (e.g., 10 = ). 

ˆ
ZIPP is associated with a larger standard deviation if the sample size or  is small, while 

the standard deviations of ˆ
ZIPP  do not vary systematically with different values of P  .When the 

Poisson model for count data with or without zero inflation is correctly specified, the coverage 

probability deviates little from the 95% confidence level. Yet, we also notice that the coverage 

probability is sensitive to the value of and can deviate substantially from 0.95 if the true parameter

 is small (e.g., 0.5 = ). This finding again suggests that Poisson-based models do not fit rare 

count data well and analysts should consider alternative models.  

 

[Table 2 about here] 

 

As an illustration of this analytic strategy, we analyze alcohol drinking data from a 

nationally representative annual survey of youth in the United States, the Monitoring the Future: A 

Continuing Study of the Lifestyle and Values of Youth (MTF) study (http://monitoringthefuture.org/). 

Every year thousands of students from approximately 130 high schools nationwide participate in 

http://monitoringthefuture.org/
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this survey and respond to a series of questions on values, behaviors, and characteristics of American 

adolescents. The MTF was initiated in 1975 with an annual survey of 12th graders in the United 

States. Instructed by MTF research staff, students participate in this annual survey by completing 

self-administered and machine-readable questionnaires at school. While we have previously 

discussed the binge drinking question, the other three questions are virtually the same except for the 

reference period.  

“On how many occasions have you had alcoholic beverages to drink--more than just a few 

sips . . . 

A: . . . in your lifetime? B: . . . during the last 12 months? C: . . . during the last 30 days?” 

The GRC response categories for the three questions include the following: 0 Occasions, 

1-2 Occasions, 3-5 Occasions 6-9 Occasions, 10-19 Occasions, 20-39 Occasions and 40 or More. 

This research considers MTF survey data from 1996 to 2012. The original counts of all four alcohol 

drinking questions were retrieved from data-description files prepared by the MTF survey team. A 

simple calculation based on Table 3 would show that the prevalence rates of lifetime drinking are 

higher than those of drinking in 12 months, while both are higher than those of drinking in the last 

30 days. Among all four questions, binge drinking is most rare for 12th graders. Table 3 also suggests 

that there was an overall decline in estimated adolescent alcoholic consumption. Figure 1 shows 

these values of  (left y-axis) and P (right y-axis) estimated by an application of the MLE-GRC 

method to grouped and censored counts of drinking. 

We calculated these MLE-GRC estimates by writing an R function (grcmle) with following 

parameters:    

grcmle (count, scheme, method) 

where frequency distributions and the grouping scheme used are given by count and scheme, 

respectively. Scheme consists of an array represents the lowest integer included in each group. 

Method is either “Poisson” or “ZIP”. For example, the of lifetime drinking (the Poisson case) in 

the 2012 wave is estimated by: 

grcmle(counts = c(674, 199, 235, 208, 281, 224, 416), scheme = c(0, 1, 3, 6, 10, 20, 40), method = 

"Poisson"). 

Although this R function is not specifically designed for trend analysis and the estimates in 

Figure 1 are obtained by fitting each year’s data separately, it can be seen that these parameter 
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estimates are consistent with the descriptive patterns revealed in Table 1 and supportive of an 

inference of a decline in adolescent drinking from the late 1990s to recent years (Newes-Adeyi et 

al. 2005; Wallace Jr et al. 2002). Across all four panels in Figure 1, all s estimated in the year 2012 

are lower than their counterparts in the year 1996. Meanwhile,   s estimated using the ZIP 

distribution share the same pattern as their counterparts estimated using the Poisson distribution, 

although levels of the former are higher than those of the latter because, for the ZIP case, drinking 

behaviors as described by the Poisson process can only be attributable to individuals who are not 

non-drinkers. In general, both and P of four types of drinking behaviors decrease from 1996 to 

2012 and all MLE-GRC estimates are significant at the 95% confidence level. As expected, results 

based on different statistics (AIC, BIC and log-likelihood statistics) show that ZIP models fit 

drinking data better than Poisson models do (results available upon request).  

 

[Table 3 and Figure 1 about here] 

 

DISCUSSION AND CONCLUSION 

 

To estimate λ from grouped and right-censored count data, this paper proposes a data 

generating process for conceptualizing GRC count data, derives statistical properties of a maximum 

likelihood estimator, the MLE-GRC, for both Poisson and zero-inflated Poisson cases. Based on 

results from data simulation and empirical analyses, we discuss the application of MLE-GRC in 

(rare) count events and develop an R function. 

By grouping and censoring count data, the GRC count data structure has properties of both 

categorical data and count data. If the number of groups is greatly expanded and each group of a 

grouping scheme is allowed to include only a single integer, the likelihood functions introduced in 

this paper would reduce to existing likelihood functions for Poisson and zero-inflated Poisson 

models. Therefore, the statistical models presented here could be regarded as a more general case 

for analyzing count data.3 

 
3 The Poisson-multinomial mixture model method presented here can be viewed as a special case of 
modeling count data that have been coarsened at random, where the coarsening mechanism is the same 
for each observation and determined by researchers, see Heitjan, Daniel F and Donald B Rubin. 1991. 
"Ignorability and Coarse Data." The Annals of Statistics 19(4): 2244-53. This mixture model method can 
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There are explicit likelihood functions available for count data without both grouping and 

right censoring, whose statistical properties have been investigated. In the presence of grouping 

and right censoring, however, additional complexities arise. By proposing a new Poisson-

multinomial approach, this paper demonstrates that MLE-GRC estimators are consistent and have 

asymptotic normal distributions for Poisson and ZIP cases (Theorems 1 to 3). The new R function 

grcmle (count, scheme, method) developed in the present study are thus useful for epidemiologists 

and social scientists to monitor changes of a grouped and right-censored count outcomes. These 

asymptotic properties of the MLE-GRC also lay a foundation for subsequent multivariate 

regression analyses of grouped and right censored data, which can be implemented, for example, 

by an iterative procedure (McCullagh and Nelder 1989: 40-43). Moreover, the MLE-GRC method 

presented here motivates research on the choice of grouping schemes: given prior distributions of

 and P , an optimal grouping scheme should be the one that minimizes the variance (or 

maximizes the Fisher information) of the asymptotic distribution of the MLE-GRC. Drawing upon 

this observation, survey investigators may design optimal grouping schemes for GRC count 

responses.     

 
also be implemented using a weighted EM algorithm, see Ibrahim, Joseph G, Ming-Hui Chen, Stuart R 
Lipsitz and Amy H Herring. 2005. "Missing-Data Methods for Generalized Linear Models: A 
Comparative Review." Journal of the American Statistical Association 100(469): 332-46. We are grateful 
to an anonymous reviewer for highlighting these points. 
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 TABLES AND FIGURES 
Table 1.1 Simulated results for MLE-GRC using hypothetical Poisson and Zero-inflated Poisson distributions: Grouping scheme I* 

    N = 5 0 0     N=1000     N=5000      N=10000   

  P  
ˆ
Poisson  P-Value ˆ

ZIP  ˆ
ZIPP  P-Value ˆ

Poisson  P-Value ˆ
ZIP  ˆ

ZIPP  P-Value ˆ
Poisson  P-Value ˆ

ZIP  ˆ
ZIPP  P-Value ˆ

Poisson  P-Value ˆ
ZIP  ˆ

ZIPP  P-Value 

 0.2 0.140 0.139 0.503 0.278 0.852 0.090 0.000 0.405 0.222 0.670 0.114 0.000 0.503 0.228 0.967 0.103 0.000 0.587 0.176 0.998 

 0.4 0.240 0.061 0.606 0.396 0.558 0.200 0.001 0.472 0.425 0.992 0.221 0.000 0.602 0.369 0.991 0.185 0.000 0.493 0.377 0.994 

0.5 0.6 0.350 0.592 0.465 0.753 0.651 0.285 0.191 0.428 0.666 0.937 0.306 0.001 0.501 0.612 0.959 0.309 0.000 0.510 0.607 0.511 

 0.8 0.554 0.902 0.584 0.950 0.815 0.407 0.074 0.592 0.689 0.984 0.443 0.489 0.513 0.864 0.853 0.392 0.000 0.518 0.758 0.448 

 1.0 0.500 0.531 0.518 0.966 0.387 0.473 0.804 0.477 0.991 0.658 0.496 0.999 0.501 0.990 0.995 0.500 0.476 0.514 0.973 0.411 

 0.2 0.160 0.000 0.835 0.194 1.000 0.221 0.000 1.126 0.201 0.983 0.177 0.000 1.158 0.156 0.599 0.203 0.000 1.071 0.193 0.695 

 0.4 0.426 0.000 1.243 0.351 0.975 0.398 0.000 1.060 0.383 0.707 0.354 0.000 0.952 0.376 0.710 0.395 0.000 0.978 0.409 0.033 

1 0.6 0.505 0.064 0.945 0.540 0.997 0.558 0.000 1.014 0.556 0.234 0.655 0.000 1.126 0.589 0.540 0.574 0.000 0.950 0.609 0.687 

 0.8 0.840 0.265 0.923 0.913 0.209 0.832 0.069 0.970 0.860 0.349 0.809 0.001 0.994 0.818 0.912 0.776 0.000 0.949 0.821 0.766 

 1.0 1.195 0.876 1.195 1.000 0.749 0.975 0.285 0.994 0.981 0.182 1.016 0.962 1.027 0.989 0.916 0.962 0.331 0.969 0.993 0.223 

 0.2 0.472 0.000 4.264 0.132 0.769 0.534 0.000 3.063 0.195 0.432 0.521 0.000 2.962 0.200 0.194 0.528 0.000 2.972 0.200 0.001 

 0.4 1.003 0.000 2.873 0.382 0.967 1.076 0.000 2.986 0.396 0.467 1.026 0.000 3.021 0.373 0.478 1.074 0.000 2.960 0.397 0.199 

3 0.6 1.329 0.000 2.744 0.513 0.496 1.598 0.000 2.949 0.576 0.783 1.653 0.000 2.966 0.591 0.727 1.754 0.000 3.024 0.613 0.554 

 0.8 2.641 0.002 3.042 0.882 0.504 2.438 0.000 3.279 0.769 0.798 2.392 0.000 2.976 0.823 0.668 2.360 0.000 3.067 0.792 0.804 

 1.0 2.909 0.639 2.976 0.980 0.566 3.013 0.598 3.017 0.999 0.431 3.064 0.216 3.064 1.000 0.123 3.004 0.579 3.004 1.000 0.411 

 0.2 0.647 0.000 4.598 0.162 0.131 0.880 0.000 4.914 0.212 0.168 0.877 0.000 5.150 0.199 0.873 0.811 0.000 4.948 0.192 0.523 

 0.4 1.806 0.000 4.896 0.413 0.973 1.714 0.000 4.860 0.395 0.064 1.932 0.000 5.278 0.410 0.711 1.792 0.000 5.045 0.399 0.243 

5 0.6 3.006 0.000 5.369 0.603 0.729 2.734 0.000 4.877 0.603 0.862 2.794 0.000 5.083 0.593 0.787 2.696 0.000 4.937 0.589 0.743 

 0.8 3.961 0.000 4.803 0.847 0.832 3.707 0.000 4.914 0.784 0.684 3.859 0.000 5.008 0.798 0.647 3.867 0.000 4.954 0.807 0.371 

 1.0 5.326 0.909 5.359 0.995 0.931 5.090 0.469 5.101 0.998 0.354 4.972 0.772 4.990 0.997 0.944 4.951 0.169 4.953 1.000 0.095 

 0.2 2.098 0.000 9.219 0.270 0.978 1.921 0.000 9.955 0.234 0.740 1.755 0.000 9.987 0.214 0.894 1.563 0.000 9.918 0.192 0.620 

 0.4 3.915 0.000 10.561 0.440 0.823 3.401 0.000 9.809 0.406 0.629 3.151 0.000 10.124 0.370 0.118 3.452 0.000 10.057 0.405 0.732 

10 0.6 5.432 0.000 9.808 0.620 0.806 5.188 0.000 9.686 0.600 0.134 5.206 0.000 9.830 0.596 0.289 5.303 0.000 9.935 0.602 0.342 

 0.8 7.088 0.000 9.584 0.790 0.452 7.630 0.000 10.177 0.806 0.400 7.414 0.000 9.999 0.796 0.813 7.447 0.000 10.122 0.793 0.832 

 1.0 9.468 0.084 9.468 1.000 0.042 10.255 0.270 10.255 1.000 0.159 10.032 0.865 10.032 1.000 0.734 10.023 0.009 10.023 1.000 0.004 

*Note: 1. the grouping scheme I used for Table 1.1 is [0, 1, 2, 3-5, 6-9, 10+]. 
      2. P-values reported in this table are based on goodness-of-fit tests. A lower p-value (e.g., 0.05) means that a Poisson/ZIP model with selected parameters does not fit the simulated data well.  
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Table 1.2 Simulated results for MLE-GRC using hypothetical Poisson and Zero-inflated Poisson distributions: Grouping scheme II* 
    N=500     N=1000     N=5000      N = 1 0 0 0 0   

  P  
ˆ
Poisson  P-Value ˆ

ZIP  ˆ
ZIPP  P-Value ˆ

Poisson  P-Value ˆ
ZIP  ˆ

ZIPP  P-Value ˆ
Poisson  P-Value ˆ

ZIP  ˆ
ZIPP  P-Value  P-Value   P-Value 

 0.2 0.051 1.000 0.236 0.233 1.000 0.074 0.000 0.561 0.152 0.992 0.072 0.000 0.521 0.160 0.997 0.082 0.000 0.278 0.320 0.339 

 0.4 0.173 1.000 0.242 0.731 0.997 0.180 0.000 0.699 0.294 1.000 0.219 0.001 0.563 0.427 0.985 0.188 0.000 0.558 0.374 0.841 

0.5 0.6 0.306 0.995 0.355 0.874 0.965 0.269 0.804 0.571 0.506 0.838 0.311 0.950 0.558 0.588 0.409 0.281 0.000 0.559 0.539 0.374 

 0.8 0.375 0.671 0.704 0.574 1.000 0.345 0.999 0.338 0.996 0.990 0.372 1.000 0.576 0.703 0.365 0.390 0.763 0.576 0.716 0.008 

 1.0 0.508 0.999 0.704 0.748 0.993 0.495 0.999 0.576 0.843 0.615 0.523 1.000 0.637 0.840 0.682 0.503 0.021 0.613 0.831 0.022 

 0.2 0.176 0.000 2.141 0.102 0.988 0.172 0.000 0.889 0.228 1.000 0.179 0.000 0.867 0.241 0.999 0.172 0.000 1.100 0.187 0.270 

 0.4 0.462 0.596 0.790 0.627 1.000 0.353 0.000 0.778 0.498 1.000 0.354 0.000 0.920 0.432 0.996 0.345 0.000 0.905 0.441 0.127 

1 0.6 0.693 0.999 0.748 0.936 1.000 0.549 0.000 1.070 0.563 0.508 0.559 0.000 1.084 0.547 0.377 0.550 0.000 1.072 0.547 0.003 

 0.8 0.789 0.805 1.066 0.770 0.999 0.715 0.003 1.080 0.695 0.967 0.719 0.008 0.905 0.836 0.879 0.755 0.000 1.088 0.716 0.000 

 1.0 0.932 0.993 1.055 0.898 0.999 0.999 0.869 0.999 1.000 0.763 0.976 0.187 1.082 0.915 0.766 1.024 1.000 1.055 0.975 0.798 

 0.2 0.719 0.000 3.426 0.248 0.997 0.563 0.000 3.267 0.206 0.461 0.534 0.000 3.077 0.208 0.542 0.498 0.000 2.941 0.202 0.908 

 0.4 1.037 0.000 3.392 0.352 0.990 1.105 0.000 2.891 0.430 0.929 1.064 0.000 2.905 0.415 0.833 1.018 0.000 2.981 0.389 1.000 

3 0.6 1.595 0.000 2.596 0.659 0.211 1.619 0.000 3.187 0.555 0.853 1.529 0.000 2.846 0.584 0.744 1.659 0.000 2.981 0.602 0.994 

 0.8 2.253 0.000 3.078 0.765 0.975 2.347 0.000 3.089 0.790 0.757 2.295 0.000 2.917 0.814 0.997 2.321 0.000 2.991 0.804 0.648 

 1.0 3.083 0.883 3.103 0.995 0.793 2.948 0.955 2.973 0.993 0.954 3.084 0.993 3.084 1.000 0.976 2.974 0.917 2.974 1.000 0.833 

 0.2 1.247 0.000 4.765 0.303 0.760 0.853 0.000 5.009 0.201 0.514 0.833 0.000 5.115 0.193 1.000 0.888 0.000 5.168 0.204 0.886 

 0.4 1.677 0.000 4.975 0.383 0.864 1.977 0.000 4.996 0.443 0.999 1.748 0.000 5.170 0.383 0.599 1.705 0.000 5.032 0.385 0.842 

5 0.6 2.658 0.000 5.591 0.522 0.826 2.752 0.000 4.837 0.613 0.982 2.803 0.000 4.944 0.611 0.468 2.784 0.000 5.025 0.599 0.717 

 0.8 3.900 0.000 4.798 0.837 0.886 3.889 0.000 5.033 0.801 0.953 3.798 0.000 5.015 0.787 0.994 3.865 0.000 5.038 0.796 0.922 

 1.0 4.620 0.501 4.620 1.000 0.361 5.065 0.904 5.088 0.996 0.978 5.045 0.979 5.048 0.999 0.950 5.007 0.225 5.007 1.000 0.139 

 0.2 1.019 0.000 9.557 0.130 0.840 1.555 0.000 10.516 0.182 0.823 1.687 0.000 9.863 0.207 0.840 1.671 0.000 9.883 0.205 0.427 

 0.4 4.085 0.000 10.089 0.470 0.908 2.973 0.000 10.151 0.348 0.963 3.554 0.000 9.894 0.419 0.770 3.455 0.000 9.924 0.407 0.650 

10 0.6 5.753 0.000 9.808 0.650 0.980 5.264 0.000 10.341 0.580 0.590 5.180 0.000 10.182 0.578 0.246 5.381 0.000 9.981 0.606 0.008 

 0.8 7.888 0.000 10.048 0.830 0.590 7.715 0.000 10.136 0.812 0.105 7.580 0.000 10.020 0.807 0.935 7.481 0.000 9.952 0.802 0.825 

 1.0 9.898 0.966 9.898 1.000 0.917 9.968 0.209 9.968 1.000 0.128 10.019 0.997 10.019 1.000 0.988 9.950 0.739 9.950 1.000 0.601 

*Note: 1. the grouping scheme II used for Table 1.2 is [0, 1-2, 3-5, 6-9, 10-19, 20-39, 40+]. 
      2. P-values reported in this table are based on goodness-of-fit tests. A lower p-value (e.g., 0.05) means that a Poisson/ZIP model with selected parameters does not fit the simulated data well.  

Table 2 Results from repeated simulations for MLE-GRC using hypothetical Poisson and Zero-inflated Poisson distributions* 

ˆ
Poisson ˆ

ZIP ˆ
ZIPP
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       N=100         N=500     

Scheme   P  ˆ
Poisson  Std. Dev.  

Coverag
e 

ˆ
ZIP  

Std. 
Dev.  

C o v e r a g
e 

ˆ
ZIPP  

Std.  
Dev. 

Coverage ˆ
Poisson  Std. Dev. Coverage ˆ

ZIP  Std. Dev. Coverage  ˆ
ZIPP  Std. Dev. Coverage 

  0.2 0.100 0.037 0% 0.495 0.338 65% 0.323 0.234 72% 0.100 0.015 0% 0.497 0.142 75% 0.218 0.070 74% 

  0.4 0.197 0.048 0% 0.497 0.232 68% 0.479 0.216 72% 0.200 0.023 0% 0.496 0.100 71% 0.418 0.081 73% 

 0.5 0.6 0.300 0.062 11% 0.511 0.186 70% 0.647 0.202 70% 0.300 0.027 0% 0.500 0.088 67% 0.617 0.102 68% 

  0.8 0.400 0.065 64% 0.519 0.142 79% 0.808 0.166 85% 0.399 0.030 8% 0.501 0.070 70% 0.808 0.102 68% 

  1.0 0.501 0.073 94% 0.549 0.107 87% 0.927 0.109 85% 0.499 0.033 93% 0.522 0.047 84% 0.960 0.057 83% 

  0.2 0.528 0.135 0% 2.996 0.475 96% 0.199 0.042 93% 0.529 0.057 0% 2.997 0.208 94% 0.199 0.018 94% 

  0.4 1.097 0.172 0% 2.990 0.323 95% 0.402 0.053 94% 1.091 0.076 0% 2.990 0.141 94% 0.399 0.022 96% 

I 3 0.6 1.704 0.020 0% 3.001 0.263 97% 0.602 0.054 94% 1.698 0.088 0% 3.003 0.117 94% 0.599 0.023 96% 

  0.8 2.350 0.204 7% 3.011 0.235 94% 0.803 0.047 94% 2.335 0.092 0% 2.998 0.103 94% 0.801 0.021 94% 

  1.0 2.996 0.184 94% 3.028 0.192 94% 0.991 0.015 99% 2.999 0.081 95% 3.015 0.083 95% 0.995 0.007 98% 

  0.2 1.638 0.348 0% 10.076 0.902 96% 0.200 0.040 93% 1.638 0.158 0% 10.028 0.380 96% 0.200 0.018 95% 

  0.4 3.382 0.466 0% 10.017 0.598 95% 0.398 0.047 96% 3.404 0.203 0% 10.019 0.281 93% 0.401 0.021 96% 

 10 0.6 5.320 0.526 0% 10.002 0.475 97% 0.601 0.048 96% 5.321 0.235 0% 9.995 0.225 94% 0.601 0.022 94% 

  0.8 7.469 0.533 0% 9.989 0.433 94% 0.801 0.040 93% 7.457 0.234 0% 10.008 0.185 95% 0.799 0.018 96% 

  1.0 10.028 0.392 94% 10.029 0.392 94% 1.000 0.001 100% 10.008 0.175 93% 10.009 0.175 93% 1.000 0.000 100% 

  0.2 0.088 0.033 0% 0.442 0.386 24% 0.301 0.139 80% 0.087 0.015 0% 0.500 0.205 58% 0.233 0.097 52% 

  0.4 0.183 0.048 0% 0.485 0.290 44% 0.516 0.218 66% 0.182 0.021 0% 0.502 0.173 52% 0.453 0.179 44% 

 0.5 0.6 0.282 0.058 6% 0.527 0.224 59% 0.640 0.197 77% 0.283 0.025 0% 0.540 0.124 65% 0.593 0.151 48% 

  0.8 0.387 0.068 55% 0.590 0.154 74% 0.712 0.135 79% 0.390 0.030 5% 0.583 0.053 75% 0.707 0.061 51% 

  1.0 0.502 0.079 94% 0.653 0.101 77% 0.795 0.095 49% 0.502 0.033 96% 0.625 0.044 26% 0.820 0.043 1% 

  0.2 0.507 0.131 0% 2.983 0.477 94% 0.204 0.043 93% 0.499 0.056 0% 2.990 0.206 95% 0.200 0.018 95% 

  0.4 1.068 0.175 0% 3.010 0.316 96% 0.403 0.052 94% 1.057 0.080 0% 2.997 0.150 94% 0.400 0.023 94% 

II 3 0.6 1.663 0.197 0% 2.996 0.257 95% 0.601 0.053 95% 1.661 0.091 0% 3.001 0.125 94% 0.599 0.023 95% 

  0.8 2.325 0.214 7% 3.016 0.240 93% 0.800 0.046 94% 2.318 0.093 0% 3.001 0.096 97% 0.801 0.020 94% 

  1.0 2.999 0.189 95% 3.035 0.195 94% 0.990 0.015 99% 2.999 0.083 96% 3.017 0.086 94% 0.995 0.007 97% 

  0.2 1.651 0.363 0% 10.046 0.875 95% 0.200 0.040 92% 1.643 0.166 0% 10.009 0.391 95% 0.200 0.018 95% 

  0.4 3.460 0.469 0% 10.038 0.587 96% 0.405 0.048 95% 3.401 0.218 0% 10.006 0.273 95% 0.399 0.022 95% 

 10 0.6 5.322 0.533 0% 10.014 0.491 96% 0.598 0.048 95% 5.345 0.244 0% 10.003 0.207 97% 0.601 0.022 94% 

  0.8 7.467 0.526 0% 9.989 0.409 95% 0.799 0.040 93% 7.475 0.242 0% 10.003 0.191 94% 0.799 0.018 94% 

  1.0 10.016 0.366 95% 10.017 0.366 95% 1.000 0.001 100% 9.998 0.172 94% 9.999 0.173 94% 1.000 0.000 100% 

* Note: the grouping scheme I and II used for Table 2 are [0, 1, 2, 3-5, 6-9, 10+] and [0, 1-2, 3-5, 6-9, 10-19, 20-39, 40+], respectively. Results are based on 1000 simulations. 

 
 
 

(continued) 



22 
 

Table 2 Results from repeated simulations for MLE-GRC using hypothetical Poisson and Zero-inflated Poisson distributions* 
       N=1000         N=5000     

Scheme   P  
ˆ
Poisson  Std. Dev.  

Coverag
e 

ˆ
ZIP  

Std. 
Dev.  

C o v e r a g
e 

ˆ
ZIPP  

Std.  
Dev. 

Coverage ˆ
Poisson  Std. Dev. Coverage ˆ

ZIP  Std. Dev. Coverage  ˆ
ZIPP  Std. Dev. Coverage 

  0.2 0.100 0.012 0% 0.496 0.110 70% 0.210 0.047 71% 0.100 0.005 0% 0.500 0.047 72% 0.201 0.018 71% 

  0.4 0.199 0.016 0% 0.503 0.071 74% 0.404 0.055 71% 0.199 0.007 0% 0.501 0.034 69% 0.400 0.025 69% 

 0.5 0.6 0.301 0.019 0% 0.500 0.059 69% 0.609 0.066 70% 0.299 0.008 0% 0.499 0.028 68% 0.602 0.031 67% 

  0.8 0.399 0.021 0% 0.500 0.053 69% 0.807 0.076 68% 0.399 0.009 0% 0.499 0.023 58% 0.802 0.034 64% 

  1.0 0.501 0.023 94% 0.518 0.034 81% 0.970 0.044 84% 0.500 0.010 95% 0.508 0.015 81% 0.985 0.021 80% 

  0.2 0.532 0.040 0% 2.992 0.145 95% 0.201 0.013 96% 0.531 0.018 0% 2.999 0.067 95% 0.200 0.006 95% 

  0.4 1.101 0.056 0% 3.009 0.102 95% 0.400 0.016 95% 1.098 0.025 0% 3.000 0.047 95% 0.400 0.007 95% 

I 3 0.6 1.702 0.063 0% 2.999 0.080 96% 0.601 0.016 95% 1.699 0.027 0% 2.999 0.038 95% 0.600 0.007 96% 

  0.8 2.335 0.064 0% 3.001 0.073 94% 0.800 0.015 94% 2.336 0.028 0% 3.002 0.031 95% 0.800 0.006 95% 

  1.0 2.999 0.058 96% 3.009 0.060 95% 0.997 0.005 98% 3.000 0.027 95% 3.004 0.028 93% 0.999 0.002 97% 

  0.2 1.639 0.110 0% 9.987 0.249 97% 0.200 0.013 95% 1.641 0.049 0% 10.005 0.118 95% 0.200 0.005 96% 

  0.4 3.400 0.146 0% 10.009 0.192 96% 0.400 0.015 96% 3.396 0.067 0% 9.997 0.083 96% 0.400 0.007 95% 

 10 0.6 5.306 0.168 0% 9.993 0.155 95% 0.600 0.015 95% 5.313 0.077 0% 9.998 0.069 96% 0.600 0.007 94% 

  0.8 7.468 0.165 0% 10.007 0.137 95% 0.800 0.013 94% 7.458 0.073 0% 10.003 0.059 96% 0.800 0.006 96% 

  1.0 9.996 0.120 95% 9.997 0.120 95% 1.000 0.000 100% 10.002 0.055 92% 10.002 0.055 94% 1.000 0.000 100% 

  0.2 0.087 0.010 0% 0.509 0.164 61% 0.220 0.085 51% 0.088 0.005 0% 0.531 0.085 64% 0.196 0.044 41% 

  0.4 0.182 0.015 0% 0.526 0.130 61% 0.410 0.127 43% 0.182 0.007 0% 0.555 0.049 2% 0.368 0.054 9% 

 0.5 0.6 0.283 0.019 0% 0.553 0.091 69% 0.567 0.117 36% 0.282 0.008 0% 0.566 0.015 0% 0.537 0.025 1% 

  0.8 0.388 0.022 0% 0.581 0.026 17% 0.701 0.032 12% 0.388 0.010 0% 0.575 0.007 0% 0.710 0.013 0% 

  1.0 0.501 0.024 95% 0.623 0.036 0% 0.822 0.033 0% 0.500 0.010 95% 0.618 0.017 0% 0.829 0.015 0% 

  0.2 0.502 0.041 0% 2.999 0.152 94% 0.200 0.013 95% 0.502 0.019 0% 3.001 0.066 95% 0.200 0.006 95% 

  0.4 1.058 0.057 0% 3.001 0.105 94% 0.400 0.017 95% 1.058 0.024 0% 3.000 0.046 95% 0.400 0.007 96% 

II 3 0.6 1.667 0.064 0% 3.002 0.086 95% 0.601 0.017 94% 1.663 0.029 0% 3.000 0.039 95% 0.600 0.007 94% 

  0.8 2.312 0.064 0% 2.999 0.075 94% 0.800 0.015 94% 2.315 0.030 0% 3.001 0.032 95% 0.800 0.007 94% 

  1.0 3.001 0.059 95% 3.012 0.061 94% 0.997 0.005 97% 3.000 0.026 95% 3.005 0.028 94% 0.999 0.002 97% 

  0.2 1.649 0.112 0% 10.005 0.262 95% 0.200 0.013 95% 1.645 0.050 0% 10.003 0.116 96% 0.200 0.006 96% 

  0.4 3.410 0.149 0% 10.016 0.180 97% 0.400 0.015 97% 3.410 0.066 0% 10.003 0.083 95% 0.400 0.007 96% 

 10 0.6 5.333 0.175 0% 10.001 0.150 95% 0.600 0.016 94% 5.336 0.074 0% 9.999 0.066 96% 0.600 0.007 95% 

  0.8 7.482 0.170 0% 9.994 0.128 96% 0.800 0.013 94% 7.487 0.075 0% 10.000 0.059 95% 0.800 0.006 96% 

  1.0 10.006 0.117 95% 10.007 0.117 95% 1.000 0.000 100% 10.001 0.053 94% 10.001 0.053 94% 1.000 0.000 100% 

*Note: the grouping scheme I and II used for Table 2 are [0, 1, 2, 3-5, 6-9, 10+] and [0, 1-2, 3-5, 6-9, 10-19, 20-39, 40+], respectively. Results are based on 1000 simulations.
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Table 3 Frequency distributions of adolescent alcoholic drinking, MTF, 1996-2012 

 Lifetime Drinking  Drinking in 12 months 

Year 0 1-2 3-5 6-9 10-19 20-39 40+  0 1-2 3-5 6-9 10-19 20-39 40+ 

2012 674 199 235 208 281 224 416  795 335 322 225 231 160 163 

2011 675 191 271 211 294 211 422  825 384 297 237 237 136 151 

2010 671 193 265 216 281 244 460  784 397 321 231 250 137 199 

2009 582 191 239 223 270 245 446  701 385 292 222 262 158 171 

2008 634 160 251 210 292 222 470  759 380 288 218 241 165 187 

2007 676 195 227 204 306 229 531  808 354 277 243 271 157 239 

2006 626 169 233 226 304 242 497  756 349 302 249 262 178 196 

2005 610 197 272 243 244 246 544  745 390 308 237 265 197 212 

2004 571 187 245 210 307 254 583  690 363 314 246 295 214 218 

2003 535 187 232 260 295 257 595  687 373 322 282 256 171 261 

2002 465 151 228 214 267 211 564  592 318 311 214 239 171 240 

2001 447 145 188 185 298 287 514  574 298 269 263 272 179 217 

2000 412 157 246 196 283 248 538  533 303 318 236 277 190 209 

1999 420 178 215 192 311 261 632  558 364 265 247 256 238 274 

1998 442 168 295 233 295 307 724  588 396 327 256 331 213 350 

1997 492 171 247 233 340 310 694  638 367 338 261 325 262 285 

1996 515 155 226 206 282 314 625  642 350 298 254 297 219 250 

 Drinking in 30 days  Binge drinking 

Year 0 1-2 3-5 6-9 10-19 20-39 40+  0 1 2 3-5 6-9 10+  

2012 1264 462 254 123 76 28 24  1665 197 150 142 29 19  

2011 1346 432 234 122 74 22 34  1730 190 134 124 32 28  

2010 1323 457 254 132 86 25 38  1716 220 158 129 35 27  

2009 1224 438 257 138 85 24 24  1586 222 145 147 34 32  

2008 1262 454 240 137 78 26 41  1630 215 160 135 44 24  

2007 1293 451 275 144 107 37 45  1688 217 164 149 55 39  

2006 1244 469 262 154 100 35 27  1661 211 160 145 45 32  

2005 1257 459 304 157 104 33 32  1674 243 178 165 37 33  

2004 1201 466 296 193 103 31 40  1635 253 171 170 61 26  

2003 1193 504 247 196 123 41 37  1636 234 180 202 42 22  

2002 1062 446 223 151 136 30 39  1456 200 161 166 47 25  

2001 1036 430 239 173 114 40 27  1438 209 158 144 62 37  

2000 1022 437 288 169 94 31 30  1425 202 186 150 40 36  

1999 1041 425 285 214 147 40 53  1460 213 176 217 63 54  

1998 1162 453 347 220 155 58 63  1634 228 224 228 61 57  

1997 1153 527 324 207 170 46 47  1664 253 198 238 62 53  

1996 1134 436 321 193 142 34 53  1572 236 191 202 55 47  
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Figure 1 Adolescent alcoholic drinking estimated by MLE-GRC, MTF, 1996-2012 

 
Note: the shaded area is the 95% confidence region. 

 
 

APPENDIX 
 

The proof of (A4) 

To prove (A4), it is easy to see that ( | )f   is infinitely differentiable: again, there is one and only 

one component of 1( , , )G   that equals 1 so ( | ) ( )jf    = if 1j = . ( )j  is already defined in 

equation (3) and is infinitely differentiable with continuous derivatives for any order.  

To investigate the third derivative of ( | )f    , we now introduce a function ( )D    with its 
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expectation
0
[ ( )]D E < ¥ to bound the third derivative of ( | )f   : 
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( )D   is now independent of and jD < ¥ for any j . This proves
0
[ ( )]D E < ¥ . 

 

The proof of (A6) 

The proof of (A6) is trivial because 0j  for any j . We also have 
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The proof of (B4) 

To prove (B4), we first demonstrate that  
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Next, we have 
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This proves equation (E3). Equations (E4) and (E5) are proved similarly. 

 

The proof of (B5) 

To prove (B5), all the four elements in the matrix (E6) are finite because 0j  for all j . For each

j and any constants 1c and 2c , one has 
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which implies that ( , )I p  is positive semi-definite. Moreover, the proof in Appendix shows that ( , )I p 

is strictly positive definite. To prove that ( , )I p  is strictly positive definite, we need only to show that 
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Now consider  



27 
 

1

1

1

1

1 1 1

11 2

1
1

1 1

12

1 1

( 1)! ( 1)! ( 1)!
det e det

! !

( 1)! ( 1)!
e det , de

! !

G G G

G

G G

G G

G G

l l l

G G GG G

lk k
G G

k l k l

l l

G G

k k

k l k l

l l l

k k

l l
note that

k k





  

 

   

 

 

−

−

−

−

− − −

−− −

−
−

= =

− −

−−

 

= − = −

 
− 

  − − −    = =    
  
 

 
 

− − =
 
  
 

 

 

t det .
a b a b a

c d c d c

+

+

   
=   

   
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Then we have 0   since a b . 
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