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Abstract— Topic modeling has been an important field 

in natural language processing (NLP) and recently 
witnessed great methodological advances. Yet, the 
development of topic modeling is still, if not increasingly, 
challenged by two critical issues. First, despite intense 
efforts toward nonparametric/post-training methods, the 
search for the optimal number of topics K remains a 
fundamental question in topic modeling and warrants input 
from domain experts. Second, with the development of 
more sophisticated models, topic modeling is now ironically 
been treated as a black box and it becomes increasingly 
difficult to tell how research findings are informed by data, 
model specifications, or inference algorithms. To address 
these issues, we employ five training methods (Latent 
Semantic Analysis, Latent Dirichlet Allocation, Principal 
Component Analysis, Factor Analysis, Non-negative Matrix 
Factorization) to identify discussion topics based on about 
120,000 newspaper articles retrieved from three major 
Canadian newspapers (Globe and Mail, Toronto Star, and 
National Post) since 1977. The optimal topics are then 
assessed using three measures: coherence statistics, held-
out likelihood, and graph-based dimensionality selection. 
Findings from this research not only complement important 
advances in topic modeling and but provide insights into the 
choice of optimal discussion topics in social science 
research.  

Keywords—Topic Modeling, Natural Language 
Processing, Social Science, Optimal Number of Topics 

I. INTRODUCTION 
The past two decades have witnessed an explosion in 

methods, algorithms and tools designed to identify discussion 
topics in automated text analysis. Noteworthy among these 
research efforts, the Latent-Dirichlet-Allocation (LDA) 
approach assumes a Dirichlet prior distribution assigning a 
specific set of topics to each document, based on a fixed number 
(K) of topics. By incorporating both observed and latent 
variables, this Bayesian generative method allows for latent 
processes to capture similarities among sets of observations and 
thus results in a more precise assignment of topics to documents 
(and words to documents) [1]. While this method has been 
further developed to specify the number of optimal discussion 
topics based on a nonparametric Bayesian model [2], in practice 
the ultimate decision on the choice of K still relies on significant 
input from domain experts. In a more recent review of data 
analysis with latent models, Blei highlights a tension between 
orthodox Bayesian thinking and model criticism [3]. While the 
former attempts to integrate all possible sources of uncertainties 
in a more complex mixture or “super” models, the latter tries to 
tell whether the essence of the data has been captured by model 
specification and/or parameter inference. Yet, model criticism is 
becoming increasingly challenging with the adoption and 
proliferation of latent models in that we do not necessarily know 
whether the data, model specification, or inferential algorithms 
plays a more significant part in shaping the (approximate) 
posterior. In response to these issues, this research uses various 
approaches to assess the choice of K via different training 
methods, where model specification and inferential algorithms 
play different roles in shaping research findings. 
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II. FIVE APPROACHES TO TOPIC MODELING 

A. Term Frequency–Inverse Document Frequencies 
To apply topic-modeling methods, we represent a large 

corpus of text using a document-word matrix X, where each 
column corresponds to a document and each row corresponds to 
a word [4]. Since a word’s frequency in a corresponding 
document cannot suggest the word’s relative importance in the 
whole corpus, elements of the document-word matrix are often 
weighted by term frequency–inverse document frequencies (tf-
idf) [5]. One way to calculate the tf-idf weight ,t dw associated 
with a term t and a document d is as follows [6],  

, , logt d t d
t

Nw tf
df

= ×  

where ,t dtf is a term t’s frequency in a document, N is the total 

number of documents, and tdf is the total number of documents 

containing the term t. Clearly, ,t dw increases if a term has a 
higher frequency in a document but such increase is offset by 
the term’s prevalence across all documents in a text corpus. This 
tf-idf weight thus tends to filter out common words or stop-
words which appear to be popular in virtually all documents. 

B. Latent Semantic Analysis 
To guide our assessment of different approaches to topic 

modeling, we next discuss methodological details of the five 
models being adopted in this research. Based on singular value 
decomposition of the document-word matrix, latent semantic 
analysis (LSA) has long been adopted by scholars from different 
disciplines to identify topics and themes contained in text corpus 
[7]. This is achieved by providing a low-rank approximation to 
the previously defined word-document matrix X [8]. To 
understand how LSA works, we have its singular value 
decomposition (SVD) of X as: 

TX U V= Σ , 

where both U and V are orthogonal matrices and Ʃ is a diagonal 
matrix. To further explore these three matrices, we first note that 
the square matrix TXX contains all dot products denoting the 
correlation between any two word vectors across all documents, 
and TX X contains all dot products denoting the correlation 
between any two document vectors. And we have: 

T T TU XX U = ΣΣ and  T T TV X XV = Σ Σ , or 
T T TXX U U= ΣΣ and T T TX X V V= Σ Σ . 

In other words, TXX and TX X have the same eigenvalues 
expressed by TΣΣ (or, equally by TΣ Σ ), and their 
eigenvectors are contained in U and V, respectively. The 
number of singular values in Ʃ suggests the rank of X, or the 
number of topics in the current research setting, while the 
values of these singular values suggests the relative importance 
of these topics. For a space spanned by singular vectors 
corresponding to these singular values (i.e., topics), the 
coordinates of a word i across all topics are denoted by the ith 

row of U and the coordinates of a document j across all topics 
are denoted by the jth column of VT. The corresponding loadings 
of all words on the kth topic are given by elements in the kth 
columns of U; and the corresponding loadings of all documents 
on the kth topic are given by elements in the kth rows of  VT. 
While topics identified by LSA can be viewed as clusters of 
words and/or documents once they are projected to a “semantic 
space”, we use columns of U to denote topics (and their 
corresponding relations with words). If the values of singular 
values are small or below a certain threshold specified by 
researchers, it is possible to remove these singular values and 
achieve a low-rank approximation [9]. 

C. Principal Component Analysis 
The idea of principal component analysis (PCA) is very similar 
to that of SVD [10]. For the document-word matrix X, PCA 
tries to project the data to orthogonal directions so that 
distinctive features from the data can be retained as much as 
possible. In other words, if the covariance matrix associated 
with X is given by TXX , PCA is looking for a projection 
matrix P such that after the projection the covariance matrix 

TY Y of the resulted new document-word matrix Y=PX has the 
largest variance in these projection directions. Yet, one 
constraint in the search for P is that these projection directions 
suggested by P should be basis vectors and orthogonal to each 
other. Otherwise, the direction associated with the second 
largest variance will be always parallel to or even overlap with 
that associated with the largest variance (and so forth for the 
remaining directions), which provides little information of the 
data. As a consequence, the off-diagonal elements (i.e., 
covariance) of TY Y should be zero and PCA essentially deals 
with an issue of optimization with a constraint. We have: 

=(PX)(PX)T T T TY Y PXX P D= =  
where D should be a diagonal matrix. Related to our discussion 
on SVD, if we rank eigenvectors z1, z2, … zn of TXX and 
form a new matrix ( )1 2 nZ z z z=  and let: 

1

2T T T

n

Z XX Z

λ
λ

λ

 
 
 = Σ Σ = Λ =
 
 
 



  (1). 

D will be a diagonal matrix if we make P=ZT. Therefore, the 
matrix containing all the eigenvectors of TXX provides the 
loadings of all words on any topic and a solution to the 
application of PCA to topic modeling. The optimization issue 
also corresponds to the maximization of T T

i iz XX z when 

=1T
i iz z . If we take the derivative of T T T

i i i iz XX z z zλ− with 

respect to iz , we have ( - I)z 0T
iXX λ = and iz must be an 

eigenvector of TXX . To summarize, the relation between LSA 
and PCA is similar to that between maximum likelihood 
estimation and ordinary least squares estimation in linear 



3 
 

regression settings: they appear to follow different principles 
yet (sometimes) yield the same result. Nevertheless, these two 
methods differ from each other in terms of computing: the 
calculation involving covariance matrices can be demanding 
when observations and eigenvectors associated with PCA are 
large, while numerical methods can be readily applied to the 
calculation of SVD.  

D. Factor Analysis 
While PCA tries to identify major components embedded in 

the data matrix, factor analysis (FA) aims to represent the data 
matrix and its internal relations via latent factors (variables). To 
do so, FA draws on a parametric model and a series of 
assumptions/conditions. More specifically, if words in the 
document-word matrix X are centered on its means in a 
document and we obtain a new document-word matrix X*, we 
try to express the p words using latent factors: 

*
T

n p n k k p n pY X F A ε× × × ×= = +  
where F is a matrix containing all (latent) factors F1, F2,…Fk 
for each of n document, A=(aij)kXp is a loading matrix 
representing the loadings of all words on each of the k factors, 
and ɛ is the Gaussian error term. The FA model satisfies the 
following four assumptions/conditions:  
1. The expectation and covariance (matrix) of F are 0 and In, 
respectively;  
2. The expectation and covariance (matrix) of ɛ are 0 and

2 2 2 2
1 2( , , , )n n ndiagσ σ σ σ× =  ; 

3. The covariance between ɛ and F is 0; 
4. 2(Y) TCov AA σ= + and ( , ) k pCov Y F A ×= . 
To verify the last condition, for a centered document-word 
matrix X we have: 

T T

( )( )
+

T T

T T T T

YY FA FA
FAA F A F FA

ε ε

ε ε εε

= + +

= + +
 

Given that ( ) 0E ε = and ( )Cov F I= , we can take the 

expectation of both sides and obtain 2(Y) TCov AA σ= + . 
This conclusion has two implications. First, it is possible to 
calculate the loading matrix A first and then solve the latent 
factors using TF yA= Σ . Second, for the ith row ai in A and a 
word yi across all observations (i.e., documents), we have

2var( ) 'i i i iy a a σ= + and cov( , ) 'i k i ky y a a= . The sum of 

squared loadings of yi on all factors, or 'i ia a (i.e., the common 
variance), denotes the dependence of yi on all factors, or the 
extent to which yi is explained by all factors.  

Factor analysis can be implemented in different ways and 
this study adopts the EM algorithm to conduct factor analysis 
[11, 12]. Yet, in existing literature the link between PCA and 
FA has been particularly noted [7, 13]. Related to Equation (1), 
we have the eigenvalues of TYY as 1 2, , pλ λ λ , their  

corresponding standardized eigenvectors as 1 2, ,y y ypz z z , 

and 
1

p
T

i yi yi
i

YY z zλ
=

′=∑ given that: 
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For the vector 1 1 2 2[ ]y y p ypz z zλ λ λ ，its 

first m entries (where m<p) provides a possible solution to A 
and thus correspond to m latent factors because:  

2

2
1 1 1 2 2 2

ˆ ˆ

ˆ+

T T

y y y y m ym ym

YY AA

z z z z z z

σ

λ λ λ σ

≈ +

′ ′ ′== + + +

. 

Finally, it should be noted that these factors identified are often 
rotated to achieve maximum variance so that these independent 
factors can have better explanatory power. 

E. Non-negative Matrix Factorization 
Non-negative matrix factorization (NMF) decomposes a 

matrix V into two matrices W and H and all elements of the 
three matrices are not negative [14]: 

n m n r r mV W H× × ×=  
where the dimension of r is often much smaller than that of m 
and n. The NMF has a clear advantage over other similar 
algorithms in computing, interpretation and data storage. By 
making all elements in the three matrices non-negative, any 
column vector vi in V can be expressed by a weighted sum of 
all column vectors in W and their corresponding weights are 
given by elements in the ith column of H: 

1 1 2 2i i i r ri iv h w w h w h Wh= + + + = . 
In other words, we can learn how a whole system consists of 
different parts via NMF. The general idea behind NMF is also 
inherently related to how a whole system and its relations with 
different parts are perceived by human beings. 
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The relation between NMF and topic modeling, especially 
probabilistic latent semantic analysis (PLSA), has been noted 
[15]. For the document-word matrix X, we could define 
elements of W as ( ) ( | )ik k i kw P topic P word topic= , 

elements in H as ( | )kj j kh P document topic= and have 
elements xij as: 

( ) ( | ) ( | )ij ik kj k i k j kx w h P topic P word topic P document topic= =∑ ∑  
The idea is similar to that of PLSA, where a probabilistic 
model is used to generate topics, and words/documents are 
further generated based on the topic distribution.   

F. Latent Dirichlet Allocation 
In topic modeling, LDA provides a generative statistical 

model allowing for observed words and documents to be 
explained by latent topics that captures the similarities of 
words/documents [1]. For a text corpus, the generative process 
of LDA can be briefly summarized as follows. First, the 
(optimal) number of topics K needs to be specified. Second, a 
parameter iθ which governs the distribution of K topics in the 
ith document, is drawn from a Dirichlet prior distribution 

( )D a . The hyper-parameter a is a K-dimensional vector with 
its elements (positive real numbers) denoting the relative 
weights of the K topics. Third, a parameter kϕ , which governs 
the distribution of all V words occurring in a topic k, is drawn 
from another Dirichlet prior distribution ( )D β . The hyper-
parameter β is a V-dimensional (sparse) vector with its 
elements denoting the relative weights of the V words. Finally, 
for a word in the jth location of the ith document, its 
corresponding topic ,i jt is drawn from a multinomial 

distribution ( )iM θ and the word is then generated from a 

multinomial distribution ( )
ijtM ϕ . Clearly, the LDA uses 

probabilistic models to govern the generating processes of 
words and topics. 

III. DATA AND MEASURES 

A. Data 
The text corpus used in the current study was retrieved 

from three major newspapers in Canada with national 
influence: The Globe and Mail, (The) Toronto Star and 
National Post. All newspaper articles published in any of the 
three newspapers from January 1st 1977 to June 30th 2019 are 
retrieved as long as they contain the word “Chinese”. The data 
retrieval process took place from 2017 to 2019. In total, 
52,317, 43,529, and 23,634 articles were retrieved from The 
Globe and Mail, Toronto Star and National Post, respectively. 
Based on lists of stop words and results from preliminary data 
analysis, the research team performed multiple rounds of data 
cleaning and compiling to remove stop words and meaningless 
words for topic modeling (e.g., reporters’ names, street 
address) prior to our analysis.  

B. Measures 
In search of the optimal number of topics K, we compare 

three types of measures to assess results estimated from the 
five topic-modeling methods: held-out likelihood (or 
reconstruction loss/errors when applicable), coherence 
statistics, and graph-based dimensionality selection [16-19]. 
We calculate the held-out likelihood of fitted models using 3-
fold cross validation [20]. Specifically, we split the text corpus 
into three parts, treat one part as a test set and the other two as 
training sets. We then repeat the estimation process for all 
three parts of the text corpus and calculate the average of the 
held-out likelihood. It should be noted, however, the focus of 
the held-out-likelihood approach is the predictive power of a 
specific model instead of the latent structure (e.g., topics) of 
the text corpus at stake. 

Four measures of coherence are adopted in this study: C_v, 
C_npmi, C_uci, U_mass [21]. If a set of statements or terms 
mutually support each other, we say that this set of statements 
is coherent. For a specific topic, these coherence measures 
capture the degree of semantic similarity among words in the 
topic, thus allow scholars to assess whether topic modeling 
results represent actual semantic topics or statistical artifacts. 
We use the average of a coherence measure of each topic as a 
within-topic measure of topic coherence. 

These four measures of coherence can be briefly described 
as follows. C_uci is probably the earliest statistic proposed to 
address topic coherence, which uses a (size-2) sliding window 
and pointwise mutual information to measure the co-
occurrence probability of every word pairs in a topic. It has 
been suggested that C_uci provides an extrinsic measure of 
coherence since it pairs every single word with every other 
word in the topic [21]. C_npmi can be viewed as an enhanced 
version of C_uci because the former uses normalized 
pointwise mutual information (NPMI) instead of pointwise 
mutual information. C_v is proposed most recently and deals 
with indirect similarities between words, that is, some words 
should belong to the same topic but they rarely occur together; 
yet, their adjacent words should look similar. For example, 
suppose there are two statements "McDonald makes chicken 
nuggets" and "KFC serves chicken nuggets", one will 
probably want to put McDonald and KFC together in the same 
topic. The mathematical details of C_v also appears to be 
somewhat complicated. The use of co-occurrence counts in 
the calculation of the NPMI of every top word to every other 
top word results in a set of vectors. For every top word, there 
is a corresponding vector. The indirect similarity is then 
calculated between the vector of every top word and the sum 
of all other top-word vectors. Cosine distance is used as a 
similarity measure. Finally, based on the idea that 
the occurrence of every top word should be supported by 
every preceding top word, U_mass measures the conditional 
probability of weaker words given the presence of their 
corresponding stronger words in a topic. Different from the 
other three measures, U_mass is an intrinsic measure since the 
word list needs to be ordered and a word is compared only to 
its preceding and succeeding words [21]. To avoid the 
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calculation of the logarithm of zero, a pairwise score function 
of the empirical conditional log-likelihood based on 
smoothing counts is used.  

The last measure is based on graph-based dimensionality 
selection. Given the very large dimensions (e.g., numbers of 
eigenvectors) associated with about 120,000 newspaper 
articles, the traditional threshold of dimensionality selection 
(eigenvalue as 1.0) cannot be readily applied to a big-data 
project. We thus relies on an automatic procedure, which 
maximizes a simple profile likelihood function, to search for 
the elbow point in a scree plot [17].   

IV. RESULTS 
The three types of measures based on results from the five 

methods of topic modeling are presented from Figure 1 to 
Figure 12. For the SVD (LSA) method, it is clear that the 
coherence statistics, especially for the C_uci and U_mass 
measures, favor fewer topics (see Figure 1). This opposite 
conclusion holds for the measure of held-out likelihood 
because more topics are associated with smaller errors (see 
Figure 3). Yet, according to the graph-based dimensionality 
selection, the optimal topics number appears to be 577 (see 
Figure 2). 
 

Figure 1 The SVD (LSA) method: Coherence 
 
 
 

Figure 2 The SVD (LSA) method: Dimensionality selection 
Figure 3 The SVD (LSA) method: Held-out error 

 
Findings based on PCA are similar to these based on the 

SVD method. Coherence statistics, especially C_uci and 
U_mass, tend to suggest a smaller number of topics (see 
Figure 4). This pattern stands in contrast with the held-out 
likelihood, where the more the merrier (see Figure 6). The 
optimal number of topics suggested by dimensionality 
detection is 626 (see Figure 5). The coherence statistics for the 
FA method also prefer a smaller number of topics, although 
the value of U_mass slightly increases with a larger number of 
topics after 200 (see Figure 7). Yet, the held-out-likelihood 
measure of the FA model is able to specify the optimal 
number of topics, which appears to be 100 (see Figure 8).  

The coherence statistics for the NMF methods reveal an 
interesting picture (see Figure 9). While the curves of C_npmi 
and C_v are relatively flat, results based on the C_uci and 
U_mass measures do not agree with each other: U_mass 
prefers a smaller number of topics but C_uci suggests that the 
value of K should be somewhere around 150 to 180. In Figure 
10, the held-out error tends to support a larger number of 
optimal topics.  

Finally, for the LDA method, the C_npmi and C_v 
measures do not show a strong preference over a particular 
number of topics (see Figure 11). The C_uci measure suggests 
that the value of K should be between 50 and 80 but the 
U_mass measure still favors a large number of topics. Finally, 
the held-out likelihood measure suggests that the optimal 
number of topics should be 20. 
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Figure 4 The PCA method: Coherence 
 
 
 

Figure 5 The PCA method: Dimensionality selection 
 
 
 

Figure 6 The PCA method: held-out likelihood 
 
 
 

 

Figure 7 The FA method: Coherence 

 

 

Figure 8 The FA method: held-out likelihood 

 

 

Figure 9 The NMF method: Coherence 
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Figure 10 The NMF method: Held-out error 

 

Figure 11 The LDA method: Coherence 

 

Figure 12 The LDA method: Held-out likelihood 

 

V. CONCLUSION 
Based on an application of five approaches to topic 

modeling of about 120,000 newspaper articles in Canada, 

major findings comparing from three measures for the optimal 
number of topics can be summarized in Table 1. It should be 
noted, however, these findings are based on a specific text 
corpus and can vary if other forms of data are used. 

 
Table 1 A summary of optimal number of topics suggested 

by different measures and methods 
 SVD PCA FA NMF LDA 
C_uci Small Small Small 150+ 50-80 
C_v Small* Small* Small* 100- 25* 
C_npmi Small* Small* Small* 100- 25* 
U_mass Small Small Small Small Small 
Held-out 
likelihood (error) 

Large Large 100 Large 20 

Dimensionality 
selection 

577 626 NA NA NA 

Note: *possibly related to the scale of graphs, the 
conclusion suggested by this measure may not be very clear. 

 
As suggested by Table 1, when two approaches of topic 

modeling are methodologically similar to each other (i.e., 
SVD and PCA), these measures tend to report comparable 
results. Yet, the optimal number of topics can vary greatly 
across different approaches and measures. For the same 
method of topic modeling, different assessment measures can 
also suggest different and even opposite conclusions. Among 
these five topic modeling methods being investigated, only 
assessment measures pertaining to LDA modeling tend to 
suggest similar numbers of optimal topics. These interesting 
findings beg a key question in the search of an optimal 
number of topics: why should measures and methods based on 
different methodological philosophies and computing 
algorithms report similar, if not identical, numbers of optimal 
topics? As informed by our research findings, before we ask 
how many optimal topics one should keep in semantic 
analysis, optimal should be first defined in terms of certain 
criterion, such as but not limited to, data reduction, latent 
structure, or predictive power. 
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