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Abstract. Negative binomial regression has been widely applied in various
research settings to account for counts with overdispersion. Yet, when the
gamma scale parameter, ν, is parameterized, there is no direct algorithmic
solution to the Fisher Information matrix of the associated heterogeneous neg-
ative binomial regression, which seriously limits its applications to a wide range
of complex problems. In this research, we propose a numerical method to calcu-
late the Fisher information of heterogeneous negative binomial regression and
accordingly develop a preliminary framework for analyzing incomplete counts
with overdispersion. This method is implemented in R and illustrated using
an empirical example of teenage drug use in America.

1. Introduction. While negative binomial regression models have often been used
to account for count data with overdispersion [1, 13, 14, 22], their applications have
been hindered by two critical issues. First, although it is theoretically desirable
to compute the expected Fisher information to estimate negative binomial models,
empirical/observed Fisher information is nevertheless used in practice for the sake
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of computational and arithmetic simplicity [5, 21, 25]. Moreover, this issue be-
comes more challenging when the gamma scale parameter, ν, is parameterized and
the so-called “heterogeneous negative binomial regression” is at stake [16]. In his
highly cited book on negative binomial regression, Hilbe notes that there is no soft-
ware package available for estimating heterogeneous negative binomial regression
[16]. Second, despite the fact that incomplete rather than exact counts are being
collected in various epidemiological, demographic, and social settings [6, 11, 9, 15],
little serious effort has been made to implement negative binomial regression when
the counts being studied are incomplete and/or overdispersed. By proposing a nu-
merical method to calculate Fisher information and further exploring its application
to incomplete counts, we provide a method/software to estimate (heterogeneous)
negative binomial regression that is broadly applicable in empirical research. We
particularly consider the application of heterogeneous negative binomial regression
to incomplete counts. Our algorithm is implemented in R and results are illustrated
by an empirical analysis of data on drug use among American youth.

2. Negative Binomial Distributions and Parameter Estimation. Let µ, ν ∈
(0,∞) and consider the negative binomial distribution NB(µ, ν) on the set N =
{0, 1, . . .} of non-negative integers. If X ∼ NB(µ, ν), then

ωk = ωk(µ, ν) := Prob(X = k) =
Γ(k + ν)

k!Γ(ν)
πν(1− π)k, k ∈ N,

where π = ν
µ+ν , and Γ(t) =

∫∞
0
e−uut−1du for t > 0 is the Gamma function.

Negative binomial distributions are widely used in the social sciences to model
count data [3]. In particular, it is well known that for X ∼ NB(µ, ν), E[X] = µ

and Var(X) = µ + µ2

ν , and as ν → ∞, NB(µ, ν) converges in law to the Poisson
distribution with mean µ. There are many other forms of definitions for negative
binomial distributions, for example, sometimes people use α = 1

ν to replace the
parameter ν. See [16] for a comprehensive review.

Parameter inference for negative binomial distributions is well documented. For
example, with a sample {Xi}ni=1 drawn independently from NB(µ∗, ν∗), the log-
likelihood function takes the form

ℓn(µ, ν) = n log
νν

Γ(ν)(µ+ ν)ν
+

n∑
i=1

log

[
Γ(Xi + ν)

Xi!

(
µ

ν + µ

)Xi
]
. (1)

ℓn can be maximized through ordinary optimization methods, for example, gradient
ascent or Newton’s method. The Fisher information of NB(µ, ν) is given by the 2-
by-2 matrix

I = I(µ, ν) =
(
Iµµ Iµν
Iνµ Iνν

)
,

where Iµµ = ν
µ(µ+ν) and Iµν = Iνµ = 0, of which we give the detailed derivation

in Appendix for the sake of completeness. In particular, it is well known that Iνν
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does not have a simple form for computation,

Iνν =− EX∼NB(µ,ν)
∂2

∂ν2
logωX

=− E
[
ψ1(X + ν)− ψ1(ν) +

1

ν
− 1

ν + µ
− µ−X

(µ+ ν)2

]
=ψ1(ν)−

µ

ν(µ+ ν)
− E[ψ1(X + ν)],

where ψ1(t) = d2

dt2 log Γ(t) is the trigamma function. Here, the last expectation
E[ψ1(X+ν)] has an infinite series expansion. It is surprising that (at least to the best
of our knowledge) there is no algorithm that readily computes this expectation for
any parameter µ, ν ∈ (0,∞) with a satisfactory time complexity. Instead, scholars
resort to empirical/observed Fisher information to solve this issue [16].

Let (µ̂n, ν̂n) be the maximum likelihood estimator (MLE) derived from (1) with
a sample {Xi}ni=1 drawn independently from NB(µ∗, ν∗). It is well understood (for
example, see the textbook [23] for a detailed treatment) that as the sample size
n→ ∞,

√
n

(
µ̂n − µ∗

ν̂n − ν∗

)
Law−→ N(0, [I(µ∗, ν∗)]−1), (2)

where I(µ∗, ν∗) is the Fisher information of NB(µ∗, ν∗). The asymptotic distribution
(2) is used to build the confidence intervals when the sample size n is large. In
practice, due to the computational issue, Iνν is usually replaced by the empirical
Fisher information (EF)

IEFνν :=

n∑
i=1

(
∂

∂ν
logωXi

)2

.

It has been reported (see, e.g., [21, 5]) that even with a large sample, EF may not
be a good approximation of the Fisher information, and the theoretical assumption
to guarantee the convergence IEFνν → Iνν may usually be violated in real applications.
When Iνν is small, the error Iνν − IEFνν can be magnified in the inverse matrix I−1.

In this paper, we use a numerical method to estimate Iνν . Since we already have
mature algorithms for computing ψ1(ν) and ωk(µ, ν) (for example, trigamma(ν)
and dnbinom(x = k, size = ν, mu =µ) in R, respectively), we focus on estimating
the expectation of ψ1(X + ν). Noting that on (0,∞), ψ1 is positive and decreasing,
we have the following estimate:

0 < fmL (µ, ν) < E [ψ1(X + ν)] =

∞∑
k=0

ψ1(k + ν)ωk < fmL (µ, ν) + fmD (µ, ν),

where for m ∈ N,

fmL (µ, ν) =

m∑
k=0

ψ1(k + ν)ωk, and

fmD (µ, ν) = ψ1(m+ 1 + ν)

∞∑
k=m+1

ωk.

It is easy to see that as m→ ∞, fmL ↑ E [ψ1(X + ν)] and fmL + fmD ↓ E [ψ1(X + ν)].
The computation of fmL takes m evaluations of ψ1 and ωk each, and m multiplica-
tions. The computation of fmD is of time complexity O(1) since the sum

∑∞
m+1 ωk
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is usually implemented (for example, by pnbinom in R). We propose the following
approximation

E [ψ1(X + ν)] ≈ fmL (µ, ν) +
1

2
fmD (µ, ν), (3)

of which the error is bounded by 1
2f

m
D (µ, ν). The relative error is estimated by∣∣E [ψ1(X + ν)]− (fmL (µ, ν) + 1

2f
m
D (µ, ν))

∣∣
E [ψ1(X + ν)]

≤ fmD (µ, ν)

2fmL (µ, ν)
.

To show the convergence speed of the approximation in (3), we provide a simulation
to find an integer m which is sufficiently large to make sure that the relative error
is smaller than 10−3,

fmD (µ, ν)

2fmL (µ, ν)
≤ 10−3.

For different µ and ν, an estimate of m is plotted in Figure 1. We also assess the
m needed to guarantee the relative error 10−7, and present the results in Figure
2. Here, we choose µ, ν ∈ {10l/2 : l = −12,−11, · · · , 12}. For each pair (µ, ν), the
evaluation of fmL with m = 107 is further timed on a laptop computer with 3.40GHz
CPU and 32GB RAM. The mean computation time is 2.79 seconds with maximum
3.58 seconds. We see that the method we proposed achieves satisfactory precision
within an acceptable time period for a wide scope of µ and ν.

For other parameterization of the negative binomial distributions, we consider
the one-to-one differentiable change of variables α = α(µ, ν) and β = β(µ, ν). Write
the Jacobian matrix

J =

(
∂µ
∂α

∂µ
∂β

∂ν
∂α

∂ν
∂β

)
.

Then, the Fisher information matrix with respect to (α, β) is I(α, β) = JT I(µ, ν)J.
We give the following two examples.

Example 1. Consider α = ν and β = µ/ν, so µ = αβ. The probability mass
function is

Prob(X = k) =
Γ(α+ k)

k!Γ(α)

βk

(1 + β)α+k
.

We have

J =

(
β α
1 0

)
, and I(α, β) =

(
ψ1(α)− E[ψ1(X + α)] 1

1+β
1

1+β
α

β(1+β)

)
.

This model was used in [8].

Example 2. Set α = ν and β = µ
µ+ν . We have µ = αβ

1−β . The probability mass
function is

Prob(X = k) =
Γ(α+ k)

k!Γ(α)
(1− β)αβk.
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Figure 1. The time complexity m for achieving relative error 10−3.

The Jacobian matrix, and the Fisher information matrix are respectively,

J =

( β
1−β

α
(1−β)2

1 0

)
, and

I(α, β) =

(
ψ1(α)− E[ψ1(X + α)] 1

1−β
1

1−β
α

β(1−β)2

)
.

3. Parameter Estimation with Grouped and Right-censored (GRC) Data.
In the real applications of parameter inference, observed data are often grouped and
right-censored. For example, let X ∼ NB(µ, ν), and assume that a questionnaire is
designed to record X only by the following five groups: 0, 1-3, 4-6, 7, 8+. Then, the
data available to the parameter inference algorithm is only the index of the group
X belongs to for each observation. Although by this process of grouping and right-
censoring, some information is lost, one obtains some benefit of privacy protection
and the relief of interviewee fatigue. Therefore, grouping and right-censoring is a
widely adopted practice in data-driven social science research.

Mathematically, we formulate the grouping and right-censoring process as fol-
lows. Let 0 < N < ∞ be the number of groups. We use a sequence 0 = l1 <
l2 < · · · < lN+1 = ∞ of integers and infinity, to define the boundaries of different
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Figure 2. The time complexity m for achieving relative error 10−7.

groups. In particular, for 1 ≤ k ≤ N , the k’th group is defined by

Groupk = {j ∈ N : lk ≤ j < lk+1}.

Write G = {Groupk : 1 ≤ k ≤ N} for the grouping scheme.
Let {Xi}ni=1 ∼ NB(µ∗, ν∗) be a sequence of independent random variables. Define

the observed data {XG
i }ni=1 by the group indexes. For 1 ≤ k ≤ N ,

XG
i = k if and only if lk ≤ Xi < lk+1.

The probability of the k’th group is the sum of the values of the probability mass
function on the group. Therefore, the log-likelihood function takes the form

ℓGn(µ, ν) =

n∑
i=1

log θG(XG
i , µ, ν) =

N∑
k=1

nk log θ
G
k , (4)

where for 1 ≤ k ≤ N ,

θGk = θG(k, µ, ν) =

lk+1−1∑
j=lk

ωj ,
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is the likelihood of the k’th group, and nk is the number of the sample points in
{XG

i }ni=1 that equals k.
It is easy to see that for X ∼ NB(µ, ν), its group index XG has a multinomial

distribution MG(µ, ν) = M(θGk : 1 ≤ k ≤ N) with one trial, on the set {1, . . . , N},
and

Prob(XG = k) = θG(k, µ, ν) for 1 ≤ k ≤ N.

The large sample distribution of the MLE derived from (4) could thus be charac-
terized by the Fisher information matrix IG(µ, ν) of MG(µ, ν). Here,

IG =

(
IGµµ IGµν
IGνµ IGνν

)
, (5)

with

IGµµ =

N∑
k=1

1

θGk

(
∂

∂µ
θGk

)2

, IGµν = IGνµ =

N∑
k=1

1

θGk

∂θGk
∂µ

∂θGk
∂ν

, and

IGνν =

N∑
k=1

1

θGk

(
∂

∂ν
θGk

)2

.

Intuitively, a finer grouping scheme provides more information for parameter
inference. Mathematically, we say that a grouping scheme G is finer than another
grouping scheme G′, if each group in G is entirely included in only one group in
G′. In other words, G is obtained by cutting one or more groups of G′, into smaller
groups. We write G ≽ G′ when G is finer than or equal to G′.

For a family of distributions parameterized by a single parameter, the Fisher
information matrices have size 1×1, and they can thus be compared as non-negative
real numbers. For a general Fisher information matrix of size r× r with r ≥ 1, one
may use the Loewner partial order (see, e.g., [17, Section 7.7]). Let A and B be
symmetric matrices of size r× r. We write A ≽ B if A−B is positive semi-definite.

The following theorem verifies the above intuition that a finer grouping scheme
never leads to less Fisher information.

Theorem 3.1. Let G and G′ be two grouping schemes of N. Let IG and IG′ be
the associated Fisher information we defined in (5), respectively. If G ≽ G′, then
IG(µ, ν) ≽ IG′

(µ, ν) for any µ, ν ∈ (0,∞).

Theorem 3.1 is formulated for GRC data from negative binomial distributions.
Similar theorems for the GRC data from Poisson and zero-inflated Poisson distribu-
tions are obtained in [10]. Nevertheless, we find that these theorems can easily be
extended to a more general setting. We now formulate the setting, give the general
theorem and its proof, and then prove Theorem 3.1 as a corollary.

Let S be a measurable space, on which we define a family of probability distri-
butions {ρ(x|µ = (µ1, . . . , µr))|µ ∈ Υ} parameterized on an open set Υ ⊂ Rr. We
group several technical assumptions into the following definition.

Definition 3.2 (feasible partition). A finite family G = {Si : 1 ≤ i ≤ N,Si ⊂ S}
of subsets of S is referred to as a feasible partition of S if the following conditions
are all satisfied.

1. Si’s form a partition of S. That is, Si ∩ Sj = ∅ when i ̸= j, and ∪N
i=1Si = S.

2. For each 1 ≤ i ≤ N , Si is measurable, and
∫
Si
dρ(x|µ) > 0 for any µ ∈ Υ.



8 XIN GUO, QIANG FU, YUE WANG, AND KENNETH C. LAND

3. For any 1 ≤ i ≤ N , the integral
∫
Si
dρ(x|µ) is a continuously differentiable

function of µ on Υ.

The existence of feasible partitions, while not necessarily trivial, is assumed.
The notion of a feasible partition is a generalization of the grouping scheme we

study in this paper. For two feasible partitions G and G′, we say G is finer than G′

and write G ≽ G′, if each set in G is entirely contained in only one set of G′.
For a feasible partition G = {Si : 1 ≤ i ≤ N} of S, write MG = M(θGi (µ) :

1 ≤ i ≤ N) the multinomial distribution on {1, . . . , N} with one trial, where θGi =∫
Si
dρ(x|µ). Let IG(µ) ∈ Rr×r be the Fisher information of MG . For another

feasible partition G′, define IG′
(µ) in the same way above by substituting G with

G′.

Theorem 3.3. Let G ≽ G′ be two feasible partitions of S. We have

IG(µ) ≽ IG
′
(µ), for any µ ∈ Υ. (6)

Furthermore,

rank(IG(µ)− IG
′
(µ)) ≤ |G| − |G′|. (7)

The following theorem gives some insights on the structure of IG(µ)− IG′
(µ).

Theorem 3.4. Let G ≽ G′ be two feasible partitions of S, such that |G| = |G′|+ 1,
and the union of the sets A and B in G forms a set A∪B in G′. Let wA = wA(µ) =∫
A
dρ(x|µ) denote the probability of the set A under the distribution ρ(·|µ), as a

function of µ. For any function f(µ) of µ, denote ∇f the gradient, which is a
vector-valued function of µ. One has

IG − IG
′
=

(wB)3

wA(wA + wB)

(
∇wA

wB

)(
∇wA

wB

)T

. (8)

Therefore, IG = IG′ only at the stationary points of wA/wB, i.e., the points where
∇(wA/wB) = 0.

Proof. For 1 ≤ i ≤ r, define wA
i = ∂wA/∂µi the partial derivative of wA with

respect to the i’th coordinate µi of µ, and define wB
i in the same way. For 1 ≤

i, j ≤ r, the (i, j) entry of IG − IG′ is[
IG − IG

′
]
i,j

=
wA

i w
A
j

wA
+
wB

i w
B
j

wB
−

(wA
i + wB

i )(wA
j + wB

j )

wA + wB

=
(wB)2wA

i w
A
j + (wA)2wB

i w
B
j − wAwB(wA

i w
B
j + wB

i w
A
j )

wAwB(wA + wB)

=
(wBwA

i − wAwB
i )(wBwA

j − wAwB
j )

wAwB(wA + wB)

=
(wB)3

wA(wA + wB)

(
∂

∂µi

wA

wB

)(
∂

∂µj

wA

wB

)
.

The proof is completed.

Proof of Theorem 3.3. The relation (6) is a direct corollary of Theorem 3.4 by
observing that the matrix in the right-hand side of (8) is positive semi-definite.
For proving (7), suppose Ak ∈ G for 1 ≤ k ≤ t and ∪t

k=1Ak ∈ G′. Write
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uk =
∫
Ak
dρ(x|µ). We apply Theorem 3.4 t − 1 times to obtain that the split-

ting of ∪t
k=1Ak ∈ G′ to {Ak : 1 ≤ k ≤ t} contributes the following terms to the

information matrix difference IG − IG′ ,
t−1∑
k=1

(uk+1)
3

uk1u
k+1
1

(
∇ uk1
uk+1

)(
∇ uk1
uk+1

)T

,

where ul1 := u1 + u2 + · · ·+ ul for 1 ≤ l ≤ t. The proof is thus completed.

Proof of Theorem 3.1. We need only to verify that any grouping scheme we de-
scribed for N in this paper is feasible in the sense of Definition 3.2. We check the
three items in Definition 3.2 one by one. First, any grouping scheme is a partition
and satisfies Item 1. Second, for any µ, ν ∈ (0,∞), any subset of N is measurable
with respect to NB(µ, ν), and any integer k ∈ N carries positive probability, so Item
2 is satisfied. Item 3 follows from the fact that for any k ∈ N, the probability mass
function of NB(µ, ν) is analytic with respect to both µ and ν.

Remark 1. Here we require that both partitions G and G′ are finite: |G|, |G′| <∞.
This requirement can be relaxed to that one or both of the partitions are countable.
Nevertheless, considering only finite partitions is sufficient for the study of GRC
data, and helps us to save the treatment of the countable partition as a limit of
finite partitions.

In summary, Theorem 3.1 shows that a finer grouping scheme can never leads
to less Fisher information. Theorems 3.3 and 3.4 further demonstrate how Fisher
information increases as a grouping scheme is divided finer. In particular, when one
group A∪B in a grouping scheme is divided into two, A and B, the Fisher informa-
tion matrix increases by a rank-one matrix of which the corresponding eigenvector
parallels the gradient of wA/wB . These theorems lend support to search for the op-
timal grouping scheme in two aspects. First, with the constraint that the maximum
possible number of groups is N , the optimizer can only exist among these grouping
schemes with N groups. Second, in the process of search, a grouping scheme con-
taining k > N groups yet showing a suboptimal score could be used to assess/purge
all grouping schemes coarser than this specific scheme. While the first aspect has
been adopted in this research, the second one remains an interesting topic for future
research.

4. Data, Variables and Results. As an empirical illustration of the estimation
methods developed in the previous section, we use data from the Monitoring the
Future (MTF) project, which is a nationally representative survey administered by
The Institute for Social Research in The University of Michigan [19, 12]. Since
the year 1975, the MTF project annually investigates a variety of behaviors and
attitudes related to social norms, violence victimization, juvenile delinquency and
drug use among American youth. Only 12th graders were included in the initial
waves of the survey with 8th/10th graders added to the survey since the year 1991.
The dataset being analyzed here is retrieved from the 2012 wave of the survey and
students from all three (8th, 10th and 12th) grades are included. All observations
containing missing values are listwise deleted and the total sample size for analysis
is 8,874.

The outcome variable of the heterogeneous negative binomial regression analysis
is respondents’ lifetime marijuana use. Adolescents participating in the survey were
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asked how many occasions they used marijuana in their lifetime and the response
categories were “0 occasion”, “1-2 times”, “3-5 times”, “6-9 times”, “10-19 times”,
“20-39 times”, and “40 and above times”. Independent variables of this regression
analysis consist of five demographic variables: 10th graders and 12th graders are two
dummy variables (8th graders as reference) denoting the age/grade of corresponding
respondents; Male is coded as 1 if a respondent is male and 0 otherwise; African
American is another variable denoting the racial/ethnic group of a respondent and
it is coded as 1 if a respondent is Black; finally, Metropolitan area is coded as 1 if a
respondent grew up in a metropolitan area in the United States and coded as 0 if
s/he was from a small town or other rural areas. All these five covariates are used to
model µ and ν, respectively, via a log-link function [16]. We wrote a package in R,
GRCData, to implement the heterogeneous negative binomial regression analysis.

Results of our empirical analysis are shown in Table 1. As compared to students
from the 8th grade, both 10th and 12th graders are significantly and positively asso-
ciated with µ, or the frequency of marijuana use. This strong positive association
between age and marijuana use among adolescents in America is consistent with
existing literature [18]. Also, male students show significantly higher frequencies of
marijuana use as compared to their female counterparts. Living in metropolitan
areas is not significantly associated with the frequency of marijuana use. One in-
teresting finding is that African Americans are less likely to use marijuana. While
fundamental causes for the racial disparity in marijuana use warrant more in-depth
investigation, several conclusions from existing studies may help us understand why
African American adolescents exhibit lower levels of marijuana use [7, 24, 20]. First,
a racial crossover probably exists such that black students reported more marijuana
use than did white students in lower grades (e.g., grade 9), but a reversed pattern
is observed in higher school grades [7]. Second, the earlier years of the MTF data
African American students showed lower use of any illicit drug (including mari-
juana) than did Whites and Hispanics, but the gap has narrowed in recent years
[18]. Third, mixed findings pertaining to racial disparities in marijuana use have
also been reported, which suggests that marijuana use might be more affected by
socio-economic status or class rather than by race/ethnicity [24, 7]. Next, we study
the variance of marijuana use. Again, due to the definition of ν, a positive associa-
tion with ν suggests a smaller variance in marijuana use for a specific demographic
group. As suggested by the second panel in Table 1, 10th graders, 12th graders, and
African Americans are all positively associated with ν and thus have lower variances
of marijuana use. The associations between ν and the other two covariates (sex and
living in metropolitan areas) are not significant. Various measures of goodness of
fit including the Akaike information criterion, the Bayesian Information criterion,
and the McFadden’s R2, are also reported for readers’ information [2, 4].

5. Conclusions. In this research, we develop a new numerical method to calcu-
late the (expected) Fisher information associated with the (heterogeneous) negative
binomial regression, and the application of this method to a special case of count
data, namely, grouped and right censored counts. Based on a new package de-
veloped in R, the application is further illustrated using an empirical example of
drug use among American youth. It should be noted that the numerical method
introduced here could serve as a general tool for the estimation of (heterogeneous)
negative binomial regression models in empirical analyses.
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Coefficient Standard 
error

Z value 95% confidence
interval

Covariates for estimating µ
Intercept 0.677 *** 0.183 3.696 [0.318, 1.036]
10th graders 1.551 *** 0.153 10.145 [1.251, 1.850]
12th graders 2.002 *** 0.168 11.927 [1.673, 2.331]
Male 1.268 *** 0.125 10.143 [1.023, 1.513]
African American -0.796 *** 0.149 -5.361 [-1.087, -0.505]
Metropolitan areas 0.148 0.150 0.983 [-0.147, 0.442]

Covariates for estimating ν
Intercept -3.627 *** 0.082 -44.331 [-3.787, -3.466]
10th graders 0.972 *** 0.068 14.374 [0.839, 1.104]
12th graders 1.332 *** 0.074 18.018 [1.188, 1.477]
Male -0.006 0.051 -0.107 [-0.106, 0.095]
African American 0.268 *** 0.077 3.480 [0.117, 0.418]
Metropolitan areas 0.117 . 0.063 1.844 [-0.007, 0.240]

Goodness of fit
AIC 18400 BIC 18480
McFadden’s R2 0.04828 McFadden’s adjusted R2 0.04703

Note:  *** p<0.001 ** p<0.01 * p<0.05 . P<0.1
Table 1. Heterogeneous negative-binomial regression analysis of
lifetime marijuana use among American youth (Number of obser-
vations=8,874). Data source: the 2012 wave of the Monitoring the
Future study.

Appendix. Here we give the detailed computation of Iµµ, Iµν , and Iνµ of NB(µ, ν)
for completeness. First,

∂2

∂µ2
logωk =

∂2

∂µ2

[
log

Γ(k + ν)νν

k!Γ(ν)
+ k logµ− (ν + k) log(µ+ ν)

]
=− k

µ2
+

ν + k

(µ+ ν)2
.

So,

Iµµ = −E
∂2

∂µ2
logωX =

1

µ
− 1

µ+ ν
=

ν

µ(µ+ ν)
.

Meanwhile,
∂2

∂ν∂µ
logωk =

∂

∂ν

[
k

µ
− ν + k

µ+ ν

]
=

k − µ

(µ+ ν)2
,

so Iµν = Iνµ = −E ∂2

∂ν∂µ logωX = 0.
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