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Abstract—Topic modeling is a key research area in natural
language processing and has inspired innovative studies in a
wide array of social-science disciplines. Yet, the use of topic
modeling in computational social science has been hampered
by two critical issues. First, social scientists tend to focus on
a few standard ways of topic modeling. Our understanding of
semantic patterns has not been informed by rapid method-
ological advances in topic modeling. Moreover, a systematic
comparison of the performance of different methods in this field
is warranted. Second, the choice of the optimal number of topics
remains a challenging task. A comparison of topic-modeling
techniques has rarely been situated in a social-science context
and the choice appears to be arbitrary for most social scientists.
Based on about 120,000 Canadian newspaper articles since
1977, we review and compare eight traditional, generative, and
neural methods for topic modeling (Latent Semantic Analysis,
Principal Component Analysis, Factor Analysis, Non-negative
Matrix Factorization, Latent Dirichlet Allocation, Neural Au-
toregressive Topic Model, Neural Variational Document Model,
and Hierarchical Dirichlet Process). Three measures (coherence
statistics, held-out likelihood, and graph-based dimensionality
selection) are then used to assess the performance of these
methods. Findings are presented and discussed to guide the
choice of topic-modeling methods, especially in social science
research.

Index Terms—Topic Modeling, Natural Language Process-
ing, Computational Social Science, Optimal Number of Topics

I. Introduction
Topic modeling refers to a group of statistical and

machine-learning methods which are used to extract mean-
ingful topics and explore semantic patterns of digitized
text data. In recent years, the topic-modeling methods
have increasingly been adopted by scholars from different
disciplines who are interested in big data research and

computational social science [1]–[4]. Most noteworthy
among these research efforts is the wide use of statistical
generative models, such as the latent Dirichlet allocation
(LDA), in social science research.

Yet, computational social science has not been well
informed by an explosion in methods and algorithms for
topic modeling in the past two decades [1], [5], [6]. As sug-
gested by DiMaggio [7], most topic-modeling techniques
require various methodological decisions that many social
scientists are unfamiliar with, have not considered, or
lack experience with. Moreover, a systematic comparison
of traditional and novel methods has not been explicitly
conducted to guide the application of topic modeling in
social sciences. In particular, although the choice of the
optimal number of topics (also referred as the choice of K
in the statistics and machine-learning literature) is a crit-
ical decision for researchers to explore semantic patterns
and specify the abstraction of meaningful components in a
text corpus, the choice of K still appears to be a black box
for most social scientists and is subject to their subjective,
if not arbitrary, assessment.

Drawing on 119,480 articles published by three main-
stream Canadian newspapers (The Globe and Mail, The
Toronto Star, and National Post) from January 1st 1977
to June 30th 2019, we review and use eight topic-modeling
methods (Latent Semantic Analysis, Principal Component
Analysis, Factor Analysis, Non-negative Matrix Factoriza-
tion, Latent Dirichlet Allocation, Neural Autoregressive
Topic Model, Neural Variational Document Model, and
Hierarchical Dirichlet Process) to assess the choice of K
in topic modeling. By adopting various data reduction,
statistical generative, and neural variational modeling



techniques, our investigation aims to provide a more
holistic view of the application of topic modeling and
offer practical guidance for the choice of K, especially
for computational social scientists.

II. Preprocessing and Word Representation
We apply the following procedures to the text corpus

before it is processed by topic modeling. Common stop
words in English [8] such as “the”, “a”, and “an” are
removed. Next we apply the RAKE (Rapid Automatic
Keyword Extraction) algorithm [9] to identify key phrases
in the corpus, and then combine words into phrases such
that words like “united” and “kingdom” are combined
into “united kingdom”. After the data-cleaning procedure,
we represent the text corpus using a document-word
matrix X: each column of the matrix corresponds to a
document and each row of the matrix corresponds to a
word [10]. To indicate a word’s relative importance in the
corpus, elements of the matrix are also weighted by the
conventional term frequency-inverse document frequency
(tf-idf) [11]. One way to calculate the tf-idf weight wt,d of
a term (word) t and a document d is as follows [12],

wt,d = tft,d × log
N

dft
,

where tft,d is a term t’s frequency in a document d, N
is the total number of documents, and dft represents the
total number of documents in a text corpus containing the
term t. wt,d increases if a term has a higher frequency in a
document but such increase in the term-frequency weight
is offset by this term’s popularity across all documents in a
corpus. This tf-idf weight thus filters out popular common
words in a text corpus.

III. Topic Modeling Methods Investigated
We next briefly review these eight topic-modeling meth-

ods to be investigated in this study.
A. Latent Semantic Analysis

Latent semantic analysis (LSA), which draws on sin-
gular value decomposition and a low-rank approximation
of a document-word matrix, has long been adopted by
researchers from different fields to identify meaningful
themes in a text corpus [13], [14]. To illustrate how LSA
works, we have the singular value decomposition (SVD)
of a document-word matrix X as:

X = UΣV T ,

where both U and V are orthogonal matrices and Σ is
a diagonal matrix. To understand the three matrices,
we note that the square matrix XXT contains all dot
products denoting the correlation between any two word
vectors across all documents, and XTX contains all
dot products denoting the correlation between any two
documents. We have:

UTXXTU = ΣΣT and V TXTXV = ΣTΣ, or
XXT = UΣΣTUT and XTX = V ΣTΣV T .

XXT and XTX have the same non-zero eigenvalues
expressed by ΣΣT (or, equally by ΣTΣ), and their
corresponding eigenvectors are contained in U and V ,
respectively.

The number of positive singular values in Σ corresponds
to the rank of X, or the number of topics in topic
modeling, while the values of singular values indicate the
relative importance of these topics. For a space spanned
by singular vectors associated with these singular values,
the coordinates of a word i across different topics are
denoted by the ith row of U and the coordinates of a
document j across all topics are denoted by the jth column
of V T . The corresponding loadings of all words on the
kth topic are denoted by elements in the kth columns of
U ; and the corresponding loadings of all documents on
the kth topic are denoted by elements in the kth rows
of V T . While topics identified by the LSA method can
be expressed by clusters of words and/or documents once
they are projected to a semantic space, we use columns
of U to denote topics and their corresponding relations
with words. If the values of singular values are below
a specific threshold, researchers can remove these small
singular values to achieve a low-rank approximation of
the document-word matrix X [15].

B. Principal Component Analysis
Principal component analysis (PCA) can be viewed as

an extension of SVD [16]. To identify distinctive features
of its covariance matrix XXT , a document-word matrix
X is projected into orthogonal directions. PCA is looking
for a projection matrix P so that, after the projection, the
covariance matrix Y Y T of the new document-word matrix
Y = PX has the largest variance in these projection
directions. In this process, these projection directions sug-
gested by the projection matrix P correspond to the basis
vectors, which are orthogonal to each other. Otherwise, for
example, the direction of the eigenvector associated with
the second largest eigenvalue (variance) can be parallel
to or even overlap with that associated with the largest
eigenvalue (and so forth for the directions of the remaining
eigenvectors), which cannot suggest distinctive features of
the data. The off-diagonal elements (i.e., covariance) of
Y Y T should consequently be zero. We have:

Y Y T = (PX)(PX)T = PXXTPT = D,

where D should be a diagonal matrix. Now we rank the
normalized eigenvectors z1, z2, · · · , zp of XXT to have a
new orthogonal matrix Z = (z1, z2, · · · , zp), and let:

ZTXXTZ = ΣTΣ = Λ =


λ1

λ2

. . .
λp

 . (1)

Here p is the number of words. D becomes a diagonal
matrix when we make P = ZT . The projection also
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corresponds to the maximization of zTi XXT zi when
zTi zi = 1. If we take the derivative of zTi XXT zi − λzTi zi
with respective to zi, zi must be an eigenvector of XXT

since (XXT − λI)zi = 0. The matrix containing all
the eigenvectors of XXT provides the loadings of all
words on any topic, which brings a PCA approach to
topic modeling. We treat these principal components as
topics, and can obtain words of a topic through loadings
of a principal component. The LSA and PCA models
are similar to each other in that they both extract
“components” from a document-word matrix X. These
components can contain both positive and negative values.
Yet, the interpretation of negative values in a topic-
modeling setting can be difficult.

C. Factor Analysis
While LSA and PCA aim to extract major compo-

nents from the data matrix, factor analysis (FA) tries
to represent the data matrix and its internal relations
through latent variables (or factors) based on a parametric
model and a series of assumptions. The idea of FA can
be illustrated as follows. We obtain a new document-word
matrix X∗ by centering each row of X. That is, we center
the weight of each word across the whole corpus of N
documents. We next represent the p words using latent
factors:

YN×p = XT
∗ = FN×kAk×p + εN×p,

where F is a matrix, with the i-th column containing N
observations (assumed independent) of the i-th factor Fi

(which is a real-valued random variable), A is a matrix
representing the coefficients (called loadings) of all the
words on each of the k factors, and ε is a matrix of random
variables modeling the error, which is sometimes referred
to as specific factors. The FA model is defined with the
following assumptions.

1) The factors F1, . . . , Fk are assumed mean-zero, and
the covariance matrix of the vector (F1, . . . , Fk)

T is
assumed to be the k × k identity matrix;

2) Each row of ε is considered to be an independent
replication of the random vector ε⃗, where ε⃗ ∈ Rp,
E[ε⃗] = 0, and Cov(ε⃗) = Ψ = diag{Ψ1, . . . ,Ψp};

3) Cov(ε⃗, (F1, . . . , Fp)
T ) = 0.

Let Y T
i be the i-th row of Y . From these assumptions

we have

Cov(Yi) = Cov
(
AT (F1, . . . , Fk)

T + ε⃗
)

= AT IA+Ψ = ATA+Ψ.

The identity Cov(Yi) = ATA + Ψ has two implications.
First, it is possible for researchers to estimate the loading
matrix A first, and then derive the latent factors. Second,
for any 1 ≤ i ≤ N , we write Yi = (Yi,1, . . . , Yi,p)

T . We
then consider the j-th word to obtain

Var(Yi,j) = (ATA+Ψ)j,j = ∥aj∥2 +Ψj ,

where aj ∈ Rk is the j-th column of A, namely, A =
[a1, . . . , ap]. Also, Cov(Yi,j , Yi,l) = ⟨aj , al⟩ if j ̸= l. The
sum of squared loadings of Yi,j on all the k factors, ∥aj∥2,
denotes the extent to which Yj is explained by all factors
(the dependence of Yi,j on all factors).

We use the EM algorithm to implement factor analysis
[17], [18]. To have better explanatory power, these inde-
pendent factors are often rotated to achieve maximum
variance.

The link between PCA and FA has been noted in
existing literature [13], [19]. In particular, consider the
SVD of the estimated covariance matrix,

1

N − 1
Y TY = UΛUT ,

where U = [U1, . . . , Up] ∈ Rp×p is an orthogonal matrix,
and Λ = diag{λ1, . . . , λp} is a diagonal matrix storing the
ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp. We have

ATA ≈ Cov(Yi) ≈
1

N − 1
Y TY = UΛUT

=
(√

λ1U1, . . . ,
√
λpUp

)
√
λ1U

T
1

...√
λpU

T
p

 .

Therefore, the first k vectors can be used to form an
estimate of A,

Â =


√
λ1U

T
1

...√
λkU

T
k

 .

Alternatively, one may use this matrix as a starting
point for estimation. The resulted factors are considered
as weight vectors for each topic. We specify the top
words in a topic according to the same principle as
previously discussed for LSA and PCA. The words are
sorted according to their factor values and only these with
reasonably high values are retained.

D. Non-negative Matrix Factorization
Non-negative matrix factorization (NMF), or non-

negative matrix approximation, factorizes a matrix V into
two matrices W and H, where all elements of the three
matrices are not negative [20]:

Vn×m ≈ Wn×rHr×m.

The dimension of r is often much smaller than that of
m and n. The advantage of NMF over other factorization
algorithms can be illustrated as follows. By making every
element in these matrices non-negative, any column vector
vi in V is represented by a weighted sum of column vectors
in W , and the corresponding weights of column vectors
are expressed by elements in the i-th column of H:

vi ≈ w1h1i + w2h2i + · · ·+ wrhri = Whi.
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Using this non-negative factorization technique, re-
searchers can study how a whole system consists of differ-
ent parts through these positive weights. The idea behind
NMF is inherently connected to how the relations between
a whole system and its different parts are perceived by
human beings [20].

The relevance of NMF to topic modeling, especially the
probabilistic latent semantic analysis (pLSA), has been
discussed [21]. For a document-word matrix X, we define
elements of W as wik = P (topick)P (wordi|topick), define
elements in H as hkj = P (documentj |topick), and write
elements xij as:

xij =
∑

wikhkj

=
∑

P (topick)P (wordi|topick)P (documentj |topick).

The idea described here is in line with that of pLSA,
where a probabilistic model is used to generate topics,
and words/documents are then generated based on the
distribution of topics.

E. Latent Dirichlet Allocation
Based on a generative statistical model, LDA uses

latent factors to capture semantic similarities of words and
documents [22]. The procedure of LDA can be summarized
as follows. To begin with, researchers need to specify
the optimal number of topics K. Let p be the total
number of words we study. A specific document w is
modeled as a sequence of words w = (w1, . . . , wℓ) of
length ℓ ∼ Poisson(ξ), where ξ is pre-specified. For
this document w, a K-dimensional probability vector θ
with its non-negative coordinates summed to one is used
to model the topic mixture. To generate θ, one uses
θ ∼ Dirichlet(α) with α ∈ RK

+ left for estimation. For each
1 ≤ n ≤ ℓ, a random topic zn ∈ {1, . . . ,K} is assigned
to the n’th word with zn ∼ Multinomial(θ). Eventually,
the n’th word wn ∈ {1, . . . , p} is drawn randomly from
Multinomial(βzn). Here β = [β1, . . . , βK ] is a p×K matrix
to be estimated, of which the i’th column is a probability
vector characterizing the distribution of the p words in
the topic i. In [23], the likelihood

L(α, β|θ, z,w) = p(θ|α)
ℓ∏

n=1

[p(zn|θ)p(wn|βzn)]

is multiplied through all the documents, and maximized
with the technique of variational inference, for the esti-
mation of α and β.

F. A Neural Autoregressive Topic Model: DocNade
As informed by the Replicated Softmax [24] and the

Neural Autoregressive Distribution Estimator (Nade) [25],
the DocNade uses a neural autoregressive model to process
multinomial word distributions and learn meaningful word
representations from unlabelled texts [26]. The Replicated
Softmax can be viewed as a generalization of the restricted
Boltzmann machine (RBM), which deals with binary

observed and hidden (latent) variables. The Replicated
Softmax can handle multinomial observed variables, with
shared connections among each multinomial observation
and latent variables.

One disadvantage of the RBM is that the calculation
of conditional probabilities is intractable and needs to be
approximated by mean-field inference. Drawing upon the
fact that a D-dimensional distribution can be denoted as a
product of conditional distributions (the probability chain
rule), the Nade assumes that the output in every step is
a linear combination of the previous values and passes
the inputs through a feed-forwarding neural network.
The product of these previous conditional probabilities
constitute a joint distribution over observations and can
be readily maximized via the gradient of the negative log-
likelihood [25].

By combining the Replicated Softmax and the Nade,
the DocNade adopts a tree of binary logistic regressions
to model conditional probabilities at each step [26]. More
specifically, each root-to-leaf path in the probabilistic tree
represents a word [27]. Moreover, each transition in the
tree is controlled by a set of binary regressors and the
occurrence of a specific word is determined by a prod-
uct of transition probabilities of a particular tree path.
Compared with the Replicated Softmax, the introduction
of tree nodes has greatly reduced the computational
complexity of the DocNade: its training complexity scales
logarithmically, rather than linearly, with the vocabulary
size [26]. Finally, it should be noted that the DocNade
aims to provide a holistic view of semantic patterns in a
document because it uses permutations of words in the
whole document regardless of their order of appearance.

G. A Neural Variational Document Model

The Neural Variational Document Model (NVDM)
provides a neural variational framework for topic modeling
[28], [29]. Probability generative models including the LDA
often rely on an analytical approximation (e.g., variational
Bayes) for the distributions over latent variables. Yet, a
high dimensional integration in Bayesian inference often
becomes intractable when generative models are complex.
Instead, the neural variational inference framework as a
deep-learning method uses inference networks such as mul-
tilayer perceptrons (MLP) to model posterior probabilities
of latent semantics [28]. In other words, the posterior
probabilities are “learned” when the connection weights
of perceptrons are updated via minimizing performance
errors. As an unsupervised generative model, NVDM ex-
tracts a semantic latent variable for each document via an
MLP encoder, which compresses text representations into
hidden vectors, and uses a softmax decoder to generate
the words. Similar to LDA, it deals with the bag-of-words
representation.

The NVDM can be explained as follows [28]. For a latent
variable h and a document-word vector x, we have the
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posterior distribution of the latent variable h as:

p(h|x) = p(h, x)

p(x)

where p(x) =
∫
p(h, x)dh. The idea of variational inference

is to update the inference-network parameters ϕ so that an
MLP encoder qϕ(h|x) is close to the posterior distribution
pθ(h|x), where θ parameterizes the generative distribu-
tions p(h|x) [28]. The optimality can be achieved by
minimizing their KL divergence, where the KL divergence
characterises the difference between the cross entropy of
the distribution q relative to the distribution p, and the
entropy of p.

KL(qϕ(h|x)||pθ(h|x)) =Eqϕ(h|x)[log qϕ(h|x)]
− Eqϕ(h|x)[log pθ(h|x)].

It should be noted, however, the NVDM as an unsuper-
vised method directly draws h from a prior p(h) rather
than the conditional distribution pθ(h|x).

KL(qϕ(h|x)||p(h)) =Eqϕ(h|x)[log qϕ(h|x)]
− Eqϕ(h|x)[log p(h)].

The Evidence Lower Bound (ELBO) can be defined as
follows.

L(θ, ϕ, x) = log p(x)− KL(qϕ(h|x)||p(h)).

The decoder pθ(x|h) is a softmax function shared across
documents. Clearly, to maximize the lower bound, one
needs to have maximized likelihood and minimized KL di-
vergence. To utilize information provided by the encoder,
a weight is often added to the KL divergence term [29].

H. Hierarchical Dirichlet Process
Different from LDA, the Hierarchical Dirichlet Process

(HDP) algorithm adopts Dirichlet processes for topic
modeling and allows the optimal number of topics to
change as the size of a text corpus increases. Intuitively,
one may expect a finer resolution of topics when a larger
corpus is at stake. Although researchers do not need to
specify the optimal number of topics as a hyper-parameter
in HDP, an integer (often set as 150) is still needed
to determine the right truncation of K. This integer
represents an upper bound for the maximum number of
topics. In HDP, each document is modeled by a probability
distribution G concentrated on a countable set, where G
is independently sampled from a Dirichlet process. Each
word x is modeled as a random draw from a distribution
F (ϕ) parameterized by a factor ϕ, which is randomly
drawn from G. Due to the enhanced hierarchical structure
of HDP, HDP is more complex and requires a higher
computational cost than LDA for parameter estimation.
In this research, the truncation number of topics for HDP
is set as 1000.

IV. Data And Measures
A. Data

The text corpus was obtained from three mainstream
newspapers in Canada: The Globe and Mail, The Toronto
Star and National Post. All articles containing the word
“Chinese” were retrieved and the reference period is from
January 1st 1977 to June 30th 2019. There are 52,317,
43,529, and 23,634 articles retrieved from The Globe and
Mail, The Toronto Star and National Post, respectively.
Based on results from preliminary topic-modeling anal-
ysis using LSA and LDA, the research team performed
multiple rounds of data compiling to remove stop words
and meaningless words (e.g., journalists’ names, physical
address) prior to the analysis.

B. Measures
We use three (types of) measures to assess results

from the eight topic-modeling methods pertaining to their
choices of K: held-out likelihood (or reconstruction loss
when applicable), coherence statistics, and graph-based
dimensionality selection [30]–[33].

Fitting Error Measure: A 3-fold cross validation is
used to calculate the held-out likelihood of fitted models
[34]: the text corpus was divided into three parts, with
one part as a testing set and the other two as training
sets. For a topic-modeling method, we repeat the same
estimation procedure for all three parts of the text corpus
and then use the average of the held-out likelihood
(or reconstruction loss) based on the three rounds of
estimation as an indicator of model performance. The
focus of the held-out-likelihood approach is the predictive
power of a specific method (i.e., the fitness of data) instead
of the coherence of the latent variables (topics) being
investigated. The testing loss is used as a measure of
fitness for the two neural models (DocNade and NVDM)
[35]. A higher value of the held-out likelihood (or a lower
value of the reconstruction/training loss) indicates better
performance.

Coherence Statistics: We employ four measures of
coherence in this study: Cv, Cnpmi, Cuci, and Umass [36].
The use of coherence measures follows the idea that a
set of semantic expressions or terms is coherent if these
expressions or terms agree with one another. For one
specific topic, a coherence measure captures the degree
of semantic similarities among words in this topic. The
average of coherence statistics of each topic is used as
a within-topic measure of coherence, which allows us to
assess whether results from topic modeling represent ac-
tual semantic patterns or correspond to a methodological
artifact. Despite their methodological connections, these
coherence measures should be considered as independent
to each other and we cannot directly compare values based
on different coherence measures. For all four coherence
measures, a higher value suggests that, on average, topics
identified by a method are more coherent.
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To facilitate our discussion on different coherence mea-
sures, we first recall the definition of the pointwise mutual
information function [37]:

PMI(x, y) = log

(
P (x, y) + ϵ

P (x)P (y)

)
,

where ϵ is a smoothing constant and is often set to 1. Next,
we briefly describe these four coherence measures. Cuci,
which was among the earliest statistics of topic coherence,
uses a sliding window and pointwise mutual information
to model the co-occurrence probability of every word pairs
in a topic. Because Cuci needs to pair every single word
with every other word in a topic, it can be argued that
this measure provides an extrinsic rather than intrinsic
evaluation of coherence [32]. We use a hypothetical topic
of three words {a, b, c} to illustrate the calculation of
Cuci. The co-occurrence probability of any pair of words
in this topic is calculated based on sliding windows: if
the text is “a has b”, the documents obtained from a
size-2 sliding window are “a has”,“has b”. In this case,
P (a) = 1

2 (appeared once in the two documents obtained),
P (a, b) = 0 (no co-occurrence of “a” and “b”), and we have
Cuci as:

Cuci =
1

3
[PMI(a, b) + PMI(a, c) + PMI(b, c)] .

Cnpmi can be treated as an extension of Cuci given that
the former uses normalized pointwise mutual information
(NPMI) instead of pointwise mutual information [38].
NPMI is defined as:

NPMI(x, y) =
log P (x,y)+ϵ

P (x)P (y)

− log(P (x, y) + ϵ)
,

where ϵ is a smoothing constant and the function is usually
further weighted by raised to the power γ > 0.

Cv is a coherence measure proposed in more recent
years to deal with indirect similarities between words [36],
which means that some words should belong to the same
topic yet they rarely occur together. Instead, researchers
can learn indirect similarities through similar adjacent
words. For example, if there are two sentences “McDon-
ald makes chicken nuggets” and “KFC serves chicken
nuggets”, researchers will learn the indirect similarity
between “McDonald” and “KFC” and put them together
in the same topic. The mathematical details of Cv are
somewhat complicated. Through the calculation of NPMI,
a set of vectors are generated from the co-occurrence
counts between every top word and every other top word.
As a result, there is a corresponding vector for every top
word in a topic. The indirect similarity is then calculated
between the vector of every top word and the centroid
of vectors of all other top words, where cosine distance is
used as a measure of similarity.

Based on the principle that the occurrence of every top
word should be informed by every preceding top word, the

last coherence measure Umass draws on the conditional
probability of weaker words given the presence of their
corresponding stronger words in a topic. Different from
the other three measures, Umass appears to be an intrinsic
measure since the word list needs to be ranked and one
word is only compared to its preceding and succeeding
words [32], [33]. To avoid the logarithm of zero, Umass

uses a pairwise score function of the empirical conditional
log-likelihood based on smoothing counts.

Dimensionality Selection: Graph-based dimensionality
selection is also used to guide our choices of K. Methods
like SVD (LSA) and PCA have a natural indicator of
importance: the eigenvalue. Although scree plots have
been used to select principal components, the traditional
threshold of dimensionality selection, namely, the eigen-
value as 1.0, is not applicable to the high-dimensional
data in this study. We thus use an automatic procedure
to search for the elbow point in a scree plot via a simple
profile likelihood method [31].

V. Results
We use three measures to assess the choices of K

across the eight topic-modeling methods and results are
presented from Figure 1 to Figure 17. For a specific
topic-modeling method, we first assess whether different
measures (likelihood/loss, coherence, dimensionality selec-
tion) tend to suggest similar choices of K. If multiple
optimal solutions (e.g., a bimodal pattern) are suggested,
we prefer a small optimal number of topics for the sake
of simplicity in interpretation. In Figure 1, all the four
coherence statistics favour fewer topics (see results for
the SVD (LSA) method). But an opposite conclusion
is suggested by both dimension selection and held-out
likelihood/loss. The optimal number of topics appears to
be fairly large according to results from dimensionality
selection (669 topics, see Figure 3), while a larger number
of topics is always preferred based on the reconstruction
loss (see Figure 3).

Due to their methodological similarities, findings based
on PCA are virtually the same as these based on LSA. All
coherence statistics appear to suggest that fewer topics are
preferred (see Figure 4). This conclusion is again different
from these based on dimensionality selection and held-
out likelihood. According to results from dimensionality
section, the optimal number of topics should be 698 (see
Figure 5). The likelihood measure also favours more topics
(see Figure 6).

Because FA and other five topic-modeling methods do
not explicitly consider eigenvalues, dimensionality selec-
tion is not applicable. For the FA method, these coherence
statistics still prefer fewer topics (see Figure 7); the
likelihood measure suggests that K should be around 100
(see Figure 8).

Different conclusions are suggested by the coherence
statistics for the NMF method (see Figure 9). While the
curves associated with Cnpmi and Cv are flat, different
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results are suggested by the Cuci and Umass measures:
Umass prefers a small K but Cuci suggests that K should
be somewhere around 50. According to Figure 10, evidence
from the held-out error suggests that a larger K is
associated with better goodness-of-fit.

When we apply coherence statistics to assess results
from the LDA method, we do not observe a clear pattern
for the curves of Cnpmi and Cv (see Figure 11). Cuci

suggests that K should be between 50 and 75 but Umass

favours a smaller K. According to the held-out likelihood
(see Figure 12), the optimal number of topics should be
around 20.

We observe similar patterns for the two neural models
(DocNade and NVDM). Coherence statistics presented in
Figure 13 and Figure 15, especially the curve of Cuci,
suggest that the optimal number of topics should be 50
(or above). Yet, the training loss declines with a larger
number of topics (see Figure 14 and Figure 16). Coherence
statistics tend to suggest a small optimal number of topics
when the HDP method is employed (see Figure 17). The
likelihood measure was not applicable to the assessment of
results from HDP because, in theory, the number of topics
is not a model parameter of HDP and the method has
explored various choices of K. If we sort elements of the
trained super-parameter α and apply the dimensionality-
selection method to these ordered elements, the optimal
solution to K is 2 (results omitted).

After we discuss results from one specific topic-modeling
method based on different measures of optimality, our
discussion above suggests that the same method do not
necessarily produce similar optimal numbers of topics.
The diverse results are particularly striking for classic
data-reduction methods (SVD, PCA, FA, and NMF). In
contrast, optimal numbers of topics reported by statistical
generative models (LDA and HDP) tend to be similar
according to different measures of optimality. Results
from neural models (DocNade and NVDM) appear to
suggest a tradeoff between topic coherence and goodness-
of-fit. Next, by compiling results from eight topic-modeling
methods (see Table I), we investigate whether the optimal
numbers of topics specified by these different methods
would agree with each other. As expected, when two
approaches to topic modeling are methodologically related
to each other, their choices of K are also similar regardless
of the specific measure used. No matter whether we use
coherence statistics, or likelihood/loss, or dimensionality
selection to assess the results, SVD and PCA produce
similar optimal numbers of topics. This conclusion also
holds for results obtained from DocNade and NVDM.
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Fig. 1. The SVD (LSA) method: Coherence.
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Fig. 2. The SVD (LSA) method: Dimensionality selection.
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Fig. 3. The SVD (LSA) method: Held-out error.
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Fig. 4. The PCA method: Coherence.
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Fig. 5. The PCA method: Dimensionality selection.
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Fig. 6. The PCA method: held-out likelihood.
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Fig. 7. The FA method: Coherence.
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Fig. 8. The FA method: held-out likelihood.
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Fig. 9. The NMF method: Coherence.
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Fig. 10. The NMF method: Held-out error.
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Fig. 11. The LDA method: Coherence.
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Fig. 12. The LDA method: Held-out likelihood.

Fig. 13. The DocNade method: Coherence.

Fig. 14. The DocNade method: Training loss.

Fig. 15. The NVDM method: Coherence.
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Fig. 16. The NVDM method: Training loss.

Fig. 17. The HDP method: Coherence.

TABLE I
A summary of optimal numbers of topics, by methods and measures

SVD PCA FA NMF
Cuci small small small 50±
Cv small small small 10-50*
Cnpmi small small small 50±*
Umass small small small small
Held-out likelihood
(or loss) large large 100 large
Dimensionality
Selection 669 698 NA NA

LDA DocNade NVDM HDP
Cuci 50-75 50-200 50± 10±
Cv 25-75* 50+* 50+* small
Cnpmi 25-75* 50+* 50+* small*
Umass small 50-500* 10-300* small
Held-out likelihood
(or loss) 20 large large NA

Note: *Optimal choices are not very clear.

VI. Conclusion

Based on about 120,000 Canadian newspaper articles,
this study uses three measures of optimality (coherence
statistics, held-out likelihood/loss, and dimensionality se-
lection) to assess the performance of eight approaches to
topic modeling. For their choices of optimal numbers of
topics, results from different approaches to topic modeling
often do not agree with one another, even if the same
measure of optimality is used to assess the choice of
K. Yet, a variety of methodologically related approaches
(e.g., SVD and PCA, DocNade and NVDM, LDA and
HDP) do suggest similar choices of K, especially when the
same measure of optimality is used. Statistical generative
models including LDA and HDP report similar optimal
numbers of topics under different measures of optimality
and may be preferred over others. Finally, it should be
noted that these findings are based on one text corpus of
Canadian newspaper articles and may vary with different
data sources.

To put our findings in perspective, we argue that these
eight methods contribute to the methodological repertoire
of topic modeling due to their shared purpose, rather
than their methodological similarities. By reviewing their
methodological details, we show that these eight methods
employ a wide range of modeling philosophies to leverage
semantic information and attributes. Optimality in the
topic-modeling setting can also be defined in different
ways. Depending on whether the fundamental goal is
to have coherent topics or to achieve better goodness-
of-fit, the choice of K could be drastically different. In
practice, researchers’ choices of K need to balance diverse
optimality criteria, and should be informed by knowledge
from domain experts. Based on the premise that “all
models are wrong, but some are useful” [39], researchers
need to identify a useful lens though which the rich
information embedded in texts can be exploited, analysed,
and interpreted [1]. A topic-modeling method is useful as
long as it enhances our understanding of society.
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