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Abstract
This article provides convergence analysis of online stochastic gradient descent

algorithms for functional linear models. Adopting the characterizations of the slope
function regularity, the kernel space capacity, and the capacity of the sampling
process covariance operator, significant improvement on the convergence rates is
achieved. Both prediction problems and estimation problems are studied, where
we show that capacity assumption can alleviate the saturation of the convergence
rate as the regularity of the target function increases. We show that with prop-
erly selected kernel, capacity assumptions can fully compensate for the regular-
ity assumptions for prediction problems (but not for estimation problems). This
demonstrates the significant difference between the prediction problems and the
estimation problems in functional data analysis.
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1 Introduction
In this paper, we consider a functional linear model

Y =

∫
T
β∗(u)X(u)du+ ε. (1.1)

Here, T is a compact subset in a Euclidean space Rd, X is a random function, β∗ is
an unknown slope function, ε is a centered random noise independent of X, with finite
variance σ2 = Var(ε) <∞, and Y ∈ R is the response. We write (L2(T ), 〈·, ·〉2 , ‖·‖2) the
space of square integrable functions on T , and assume X, β∗ ∈ L2(T ). Then, Model (1.1)
can be equivalently written as Y = 〈β∗, X〉2 + ε. Without loss of generality, we assume
that T = [0, 1]d throughout the paper.

We study two kinds of learning problems for Model (1.1). The estimation problem
asks one to recover the unknown slope function β∗, and the prediction problem asks one
to recover the linear functional on L2(T ), denoted by φ∗, which is given by

φ∗ : f 7→ 〈β∗, f〉2 =
∫
T
β∗(u)f(u)du. (1.2)

Mathematically, φ∗ is defined with β∗, which in turn is fully determined by φ∗ through the
Riesz representation theorem. Nonetheless, it is well understood that the two learning
problems are different. In particular, the integral in (1.2) brings a smoothing effect,
leading to a weaker regularity requirement for the prediction problems [4, 7].

Write D = {(xt, yt)}Tt=1 a sample of independent copies of (X,Y ) in Model (1.1). We
study both the case of a finite sample T < ∞, and the case T = ∞ where D models an
ongoing indefinite sampling process.

Both prediction and estimation problems can be solved by constructing an estimator
β̂ of the slope function β∗. In the literature, many works have been done on functional
principal component analysis (FPCA) [22, 4, 16]. FPCA defines β̂ with a linear combina-
tion of the estimated eigenfunctions of C, which is the covariance function of the random
function X. Another approach of constructing β̂ is the kernel method, which adopts
a reproducing kernel K and represents β̂ by the linear combination of kernel functions
[27, 5].

We adopt the kernel method and define β̂ through stochastic gradient descent approach
in this paper. A reproducing kernel K on T is defined as a function K : T ×T → R that
is symmetric (i.e. K(u, v) = K(v, u) for any u, v ∈ T ) and positive semi-definite (which
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requires that the Gram matrix (K(ui, uj))
n
i,j=1 is positive semi-definite for any n ≥ 1 and

any u1, . . . , un ∈ T ). We further assume that K is continuous, exclude the trivial case
K ≡ 0, and let (HK , 〈·, ·〉K , ‖·‖K) denote the reproducing kernel Hilbert space (RKHS)
associated with K [8, 23]. The stochastic gradient descent algorithm defines a sequence
{β̂t} of estimators, from β̂1 = 0 and then iteratively by

β̂t+1 = β̂t − ηt

(∫
T
β̂t(u)xt(u)du− yt

)∫
T
K(v, ·)xt(v)dv, for t ≥ 1. (1.3)

Here ηt > 0 is the step-size. Based on the nature of the sample D, we study two settings
of the step-sizes {ηt}.

• The online setting. We write |D| = ∞ and use D to model the outcome of an
ongoing and indefinite sampling process. The estimator β̂ is being updated following
the sampling process. For example, we update the estimator to β̂ = β̂t+1 after
t steps of iterations and before the observation (xt+1, yt+1) is available. For the
online setting, the step-sizes {ηt} are designed to decrease, rendering Algorithm
(1.3) more and more conservative against the possible random noise brought by
new observations.

• The finite-horizon setting. We assume a finite sample D with size |D| = T < ∞.
A constant step-size ηt ≡ η = η(T ) is adopted throughout the iterations (1.3) with
t = 1, . . . , T . The sample D is then exhausted and we use β̂ = β̂T+1 as the derived
estimator. The step-size η(T ) can be optimized (at least asymptotically) over T ,
but it could be not trivial later to warm-start the iteration efficiently when new
sample points are available.

To measure the estimation performance of β̂, we use the expected squared HK norm
E[‖β̂ − β∗‖2K ]. Write φ̂ : L2(T ) → L2(T ) the estimator of the functional φ∗,

φ̂ : f 7→ 〈β̂, f〉2 =
∫
T
β̂(u)f(u)du.

The prediction performance of φ̂ is measured by the expected excess generalization error
E[E(φ̂)]. Here for any linear functional φ on L2(T ),

E(φ) = E[(Y − φ(X))2 − (Y − φ∗(X))2],

where the expectation is taken with respect to the distribution of (X,Y ) in Model (1.1).

3



As a technical instrument, the integral operator LK : L2(T ) → L2(T ) is defined with
the reproducing kernel K, by

LK(f) =

∫
T
K(·, u)f(u)du. (1.4)

It is well understood in the literature that LK is positive semi-definite (thus self-adjoint),
and of trace class (so, compact). See, e.g., [23, Theorem 4.27]. The power Lr

K with
r ∈ (0,∞) is well defined by the spectral theorem. In terms of LK , the iteration (1.3) is
equivalently written as

β̂t+1 = β̂t − ηt

(
〈β̂t, xt〉2 − yt

)
LKxt, for t ≥ 1. (1.5)

For the sake of simplicity we assume E[X] = 0 and ‖X‖2 = 1 a.s. Consequently,
E[Y ] = 0. The covariance function C has the form

C(u, v) = E[X(u)X(v)], for u, v ∈ T .

Obviously C is also a reproducing kernel. We further assume that C is continuous, exclude
the trivial case C ≡ 0, and define the operator LC on L2(T ) in the same way as (1.4) by
substituting K with C. So, LC is self-adjoint, positive semi-definite, of trace class, and
thus compact. The power Lr

C with r > 0 is well defined. For any f, g, h ∈ L2(T ), we
define f ⊗ g as a rank-one operator on L2(T ) defined by (f ⊗ g)h = 〈g, h〉2 f . For any
linear functional φ(·) = 〈β, ·〉2 on L2(T ), the excess generalization error can be written in
terms of the norm of L2(T ),

E(φ) = E
[
(Y − 〈β,X〉2)2 − (Y − 〈β∗, X〉2)2

]
= E

[
〈β − β∗, X〉22

]
= E[〈β − β∗, X ⊗X(β − β∗)〉2]

= ‖L1/2
C (β − β∗)‖22. (1.6)

Since T is compact, we write

κ = max
u∈T

√
K(u, u) ∈ (0,∞).

Recall that by the positive semi-definiteness, |K(u, v)| ≤
√
K(u, u)K(v, v) ≤ κ2 for any

u, v ∈ T . The spectral norm of LK is bounded by ‖LK‖op(L2) ≤ κ2. For the sake of
simplicity we assume ‖LC‖op(L2) ≤ 1.
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Modern scalable computing and stochastic optimization techniques make stochastic
gradient descent a popular approach across various applications. Theoretical analysis
of its convergence is recently extensively studied. The present work aims to establish a
novel capacity-dependent convergence analysis for stochastic gradient descent (1.3) which
is applied to solve the linear functional model (1.1) in an RKHS. We study prediction
problem through the convergence of excess generalization error (1.6) and estimation prob-
lem through the strong convergence in an RKHS. Our analysis developed in this paper
leads to fast rates for both types of convergence. State-of-the-art convergence rates in
RKHS metric are obtained. Our error estimates fully exploit the spectral structure of the
operators and the capacity condition encoding the smoothness of kernels and covariance
function. Our work provides insights for the applications of kernel methods to functional
data analysis, and better understanding of the difference between the estimation problems
and the prediction problems in functional linear models.

The remaining sections of the paper are organized as follows. In Section 2, we provide
convergence analysis of Algorithm (1.3) with explicit rates, for both excess generalization
error and estimation error. Section 3 provides comprehensive discussion on our main
assumptions, and literature discussions. Detailed error analysis is put in Sections 4, 5,
and 6. In Section 7 we give a simple numerical experiment with an example used in [5].

2 Main Results
In this section we list some main assumptions and present the convergence rates of the
stochastic gradient descent algorithm (1.3), in the finite-horizon and online settings, re-
spectively. We provide discussions of the assumptions in Section 3.

Denote LK = L
1/2
C LKL

1/2
C and LC = L

1/2
K LCL

1/2
K . It is easy to verify that both of the

operators LK and LC are self-adjoint, positive semi-definite, of trace class, and compact.

Assumption 1 (Regularity Condition of the slope β∗). There exists some g∗ in L2(T )

and r ∈ (0,∞) such that

L
1/2
C β∗ = L r

Kg
∗.

One can see Section 2 and 3 of [20] for more illustrations, and Theorem 3 in [7] for a
more insightful description of Assumption 1. In particular, we have Remark 2 in Section
3 that provides some insights.
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For any positive semi-definite compact operator L, let Tr(L) denote the trace of L,
i.e., the sum of all the positive eigenvalues (counting multiplicity) of L. In particular,
Tr(L) <∞ if and only if L is of trace class.

Assumption 2 (Capacity Condition).

Tr(L s
K) <∞, for some 0 < s ≤ 1.

Note that since LK is a trace-class operator, Assumption 2 with s = 1 holds true
automatically.

Assumption 3 (Moment Condition). For Model (1.1), there exist a constant cM > 0

such that for any f in L2(T ),

E[〈X, f〉42] ≤ cM
(
E[〈X, f〉22]

)2
. (2.1)

2.1 Analysis of the Prediction Error
In this subsection, we study the estimator φ̂ = 〈β̂, ·〉2 for the prediction problem and
bound the expected excess generalization error.

Theorem 1. In the online setting, define {φ̂t = 〈β̂t, ·〉2} through (1.3). Under Assump-
tions 1 (with r > 0), 2 (with 0 < s ≤ 1), and 3, set ηt = η0t

−θ with

θ =
min{2r, 2− s}

1 + min{2r, 2− s}
=

{
2r

2r+1
, when 2r ≤ 2− s,

2−s
3−s

, when 2r ≥ 2− s.
(2.2)

If 0 < η0 ≤ min{1, κ−2, CS
1 } (where CS

1 is a constant, and it will be specified by (5.20) in
the proof), then

E[E(φ̂t+1)] ≤ C1

{
(t+ 1)−θ, 0 < s < 1,

(t+ 1)−θ log(t+ 1), s = 1,
for any t ≥ 1, (2.3)

where C1 is a constant independent of t, and it will be specified by (5.22) in the proof.

For the piecewise definition (2.2), we let the domains overlap on purpose to highlight
the continuity of θ on the whole domain r > 0 and 0 < s ≤ 1. The index θ as a function
of r and s is also visualized in Figure 1. Without Assumption 2 (i.e., case s = 1 in (2.3)),
the convergence rate O((t+ 1)−2r/(2r+1) log(t+ 1)), saturated as O((t+ 1)−1/2 log(t+ 1))
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Figure 1: The index θ in Theorem 1 as a function of (r, s). Here the double-headed arrows
show the gradient directions.

for r ≥ 1/2, is also obtained in [7]. Here, r indicates the regularity of the target function
β∗ as described in Assumption 1. The saturation means beyond r ∈ (0, 1/2], further
improvement of such regularity (i.e., increasing of r) does not help to improve the rate
E[E(φ̂t+1)] converges to zero. In this paper, Theorem 1 suggests that Assumption 2 on
capacity with s < 1, not only removes the logarithmic factor in the convergence rates,
but also uplifts the saturating boundary from 1/2 to 1/2 + (1− s)/2.

In the following, Theorem 2 shows that in the finite-horizon setting, Algorithm (1.3)
does not suffer from the above discussed saturation, and the expected prediction error
converges to zero in a rate arbitrarily close to O(T−1), for sufficiently large r.

Theorem 2. In the finite-horizon setting with 1 ≤ T = |D| <∞, define φ̂T+1 = 〈β̂T+1, ·〉2
through (1.3). Under Assumptions 1 (with r > 0), 2 (with 0 < s ≤ 1), and 3, set the
constant step-size ηt = η0T

−2r/(2r+1), with 0 < η0 ≤ min{1, κ−2, CS
2 } (where CS

2 is a
constant independent of T , and it will be specified by (5.25) in the proof). Then,

E[E(φ̂T+1)] ≤ C2

{
T−2r/(2r+1), when 0 < s < 1,

T−2r/(2r+1) log(T + 1), when s = 1.
(2.4)

where the constant C2 is independent of T , and it will be specified by (5.27) in the proof.

The capacity independent convergence rate O(T−2r/(2r+1) log(T +1)) for s = 1 in (2.4)
is first derived in [7]. In the finite-horizon setting, the capacity assumption 0 < s < 1

helps remove the logarithmic factor.
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2.2 Analysis of the Estimation Error
In this subsection, we study the estimator β̂ for the estimation problem. The analysis
employs the following Assumption 4 to replace Assumption 1.

Assumption 4 (Regularity Condition of the slope β∗). There exists some g† in L2(T )

and r > 0, such that

β∗ = L
1/2
K L r

Cg
†.

This assumption implies that the slope β∗ lies in the range of L1/2
K , i.e., β∗ ∈ HK .

Theorem 3. In the online setting, define {β̂t}t≥1 through (1.3). Under Assumptions
2 (with 0 < s < 1), 3, and 4 (with r > 0), set step-sizes ηt = η0t

−θ with 0 < η0 ≤
min{1, κ−2, CS

3 } (where CS
3 is a constant independent of t, and it will be specified by (6.6)

in the proof), and

θ =

{
2r+s

2r+s+1
, when 2r ≤ 1− s,

1/2, when 2r ≥ 1− s.
(2.5)

Then,

E[‖β̂t+1 − β∗‖2K ] ≤ C3

{
(t+ 1)−2r/(1+s+2r), 2r < 1− s,

(t+ 1)−(1−s)/2 log(t+ 1), 2r ≥ 1− s,
for any t ≥ 1, (2.6)

where C3 is a constant independent of t, and it will be specified by (6.10) in the proof.

In the definition (2.5), θ is a continuous function of r > 0 and 0 < s < 1. So we
purposely use two overlapping domains. The power index of the rates in (2.6) will be
elucidated in Figure 2.

Remark 1. Theorem 3 does not work in the capacity independent setting s = 1, where
the convergence analysis remains an open problem.

Next we establish unsaturated convergence rates of estimation error for the finite-
horizon setting.

Theorem 4. In the finite-horizon setting with 1 ≤ T = |D| < ∞, define {β̂t : 1 ≤ t ≤
T + 1} through (1.3). Under Assumptions 2 (with 0 < s ≤ 1), 3, and 4 (with r > 0), set
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Figure 2: The power index ω̃(r, s) of the convergence estimate (2.6) in Theorem 3. The
thick black line marks the boundary 2r = 1− s of the two regimes. ω̃ = −2r/(1+ s+2r)

when 2r ≤ 1− s, and ω̃ = −(1− s)/2 when 2r ≥ 1− s. Contours of ω̃ are plotted in solid
blue lines, and further extended by dotted lines.

the constant step-size ηt = η0T
−(s+2r)/(1+s+2r), with 0 < η0 ≤ min{1, κ−2, CS

4 } (where CS
4

is a constant independent of T , and it will be specified by (6.11) in the proof). Then,

E[‖β̂T+1 − β∗‖2K ] ≤ C4T
−2r/(1+s+2r), (2.7)

where the constant C4 is independent of T , and it will be specified by (6.16) in the proof.

The rates (2.7) in Theorem 4 does not saturate for r > 0, and are arbitrarily close
to O(T−1) for sufficiently large r. For a fixed r > 0, with a smaller s one has a faster
rate in (2.7). Here, a smaller s indicates a stronger capacity assumption (Assumption 2).
As we shall see in Theorem 5 below, a smaller s corresponds to faster eigenvalue decay
for LK (equivalently, faster eigenvalue decay for LC), and a smaller hypothesis space
L
1/2
K L r

C(L
2(T )) in Assumption 4.

3 Comparisons and Discussions
There has been rapidly growing literature focusing on stochastic gradient descent and its
variants in an RKHS or general Hilbert spaces [26, 9, 21, 18, 14, 2, 11, 12]. We refer the

9



readers to these papers and references therein. Our paper contributes to the theoretical
analysis of functional linear regression in an RKHS that stems from the works of Yuan
and Cai [27, 5] which establish capacity dependent analysis for batch learning. As far as
we know, the convergence of stochastic gradient descent has not been investigated in the
context of functional linear regression in an RKHS till the very recent paper [7] in which
the authors conduct capacity independent analysis of the prediction error.

Under the batch learning setting, Yuan and Cai [27] derive the minimax optimal con-
vergence rate T−2s∗/(2s∗+1) of the excess generalization error E(φ̂T+1) for prediction, with
the regularity assumption β∗ ∈ HK and capacity assumption on the rates of eigenvalue
decay, λi(LK) ∼ i−2s1 (here ai ∼ bi means ai/bi being uniformly bounded away from zero
and infinity as i→ ∞) and λi(LC) ∼ i−2s2 , where s1, s2 > 1/2 and s∗ = s1+s2. Later, Cai
and Yuan [5] derive the same rate with a different capacity assumption λi(LC) ∼ i−2s∗ .

Compared with these works, the strength of our analysis includes that first, our As-
sumption 2 on capacity, Tr(L s

K) < ∞, is way more general. We shall see in Theorem
5 that this is roughly equivalent to the assumption λi(LK) = O(i−1/s). We shall see in
Remark 3 that although the eigenvalues {λi(LK)}∞i=1 are arranged non-increasingly, in
general there is no exact index s∗ such that λi(LK) ∼ i−2s∗ (same for other compact op-
erators including LK , LC , and LC). Second, our analysis supports finer characterizations
L
1/2
C β∗ = L r

K(g
∗) (Assumption 1) and β∗ = L

1/2
K L r

C(g
†) (Assumption 4) of slope function

regularity. This leads to a better convergence rate O(T−2r/(2r+1)) in Theorem 2, than
O(T−2s∗/(2s∗+1)) when r > s∗. Third, we proved the non-trivial convergence rates for the
estimation error ‖β̂−β∗‖2K in HK metric, O(T−2r/(2r+1)) (saturated at r = (1−s)/2) in the
online setting in Theorem 3, and O(T−2r/(1+s+2r)) in the finite-horizon setting in Theorem
4. Note that the analysis in [27] only provides a constant rate O(1) for ‖β̂ − β∗‖2K .

It is an interesting problem to replace Assumptions 1 and 4 by general forms of source
conditions like ϕ(LK ,LC)g

∗ or ϕ(LC ,LK)g
∗ as studied in [1].

Next we provide some comments on the main assumptions in Section 2. For any
bounded self-adjoint operators A and B on L2(T ), we write A � B (or B � A) if A−B

is positive semi-definite.

Remark 2. It is well understood [7, Remark 2] that when 0 < r < 1/2, if Lτ
K � δLν

C for
some τ, δ, ν > 0 with τ + ν ≥ 1 and r = τ/(2τ + 2ν), then Assumption 1 is guaranteed by
any β∗ ∈ L2(T ). That is, with a carefully selected reproducing kernel K, for the prediction
error to converge, the capacity assumption (Assumption 2) can fully compensate for the
regularity assumption (Assumption 1). Note that the above condition Lτ

K � δLν
C puts
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some requirement on the selection of the reproducing kernel K, but it does not require the
one-to-one matching between the eigenfunctions of LK and LC, respectively.

Similarly, if LC � δLν
K for some δ, ν > 0, then Assumption 4 with 0 < r ≤ 1/2 is guar-

anteed when β∗ ∈ L
r(1+ν)+ 1

2
K (L2(T )). However, Assumption 4 implies β∗ ∈ L

1/2
K (L2(T )).

Therefore, the regularity assumption for the estimation error to converge, can not be fully
compensated for by the capacity assumption. This demonstrates a significant difference
between the prediction problems, and the estimation problems in functional data analysis.

In the literature of kernel-based learning algorithms [6, 1, 3, 19, 15, 13, 24, 17], the
capacity of the hypothesis space HK is usually measured by covering numbers, or the
effective dimension [28] NLK

(λ) = Tr((LK + λI)−1LK), where I denotes the identity
operator. A typical capacity assumption takes the form NLK

(λ) = O(λ−s) (as λ ↓ 0)
for some 0 < s < 1, and is well understood. The following theorem shows that roughly
speaking, Assumption 2 with 0 < s < 1 is comparable to the assumption NLK

(λ) =

O(λ−s) as λ ↓ 0. The conclusion is well understood [14, 11], but the proof through (3.1),
is to our best knowledge not available elsewhere.

Theorem 5. Let L be a positive semi-definite operator of trace class with infinite positive
eigenvalues {λi = λi(L)}∞i=1 arranged in non-increasing order. Let 0 < s < 1. We have

Tr(Ls) =
sin(πs)

π

∫ ∞

0

λs−1NL(λ)dλ. (3.1)

Consequently,

(a). If Tr(Ls) <∞, then NL(λ) = O(λ−s) as λ ↓ 0;

(b). If NL(λ) = O(λ−s) as λ ↓ 0, then Tr(Ls+ϵ) <∞ for any ϵ > 0;

(c). Moreover, for any fixed 0 < s < 1, NL(λ) = O(λ−s) as λ ↓ 0 if and only if
λi = O(i−1/s) as i→ ∞.

The relations listed in Theorem 5 are summarized in Figure 3.
The case L has only finite positive eigenvalues is trivial, where NL(λ) = O(1) as λ ↓ 0

and Tr(Ls) < 0 for any s > 0.
Note that on the one hand, when Ls does not belong to the trace class (equivalently,

Tr(Ls) = ∞), Equation (3.1) implies that the integral on its right-hand side diverges to
infinity. On the other hand, when this integral diverges to infinity, Tr(Ls) = ∞.
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Tr(Ls) < ∞
⇓

NL(λ) = O(λ−s) ⇐⇒ λi(L) = O(i−1/s)
⇓

Tr(Ls+ϵ) < ∞

Figure 3: Summary of the relations listed in Theorem 5.

The bound NL(λ) = O(λ−s) as λ ↓ 0 does not guarantee Tr(Ls) < ∞. For example,
λi = i−1/s implies Tr(Ls) = ∞, yet we still have

NL(λ) =
∞∑
i=1

1

1 + λi1/s
≤
∫ ∞

0

du

1 + λu1/s
= λ−s

∫ ∞

0

du

1 + u1/s
= O(λ−s), as λ ↓ 0.

Remark 3. Note that in general, for a non-increasing sequence {ak}∞k=1 ⊂ (0,∞), The-
orem 5 does not suggest the existence of some γ > 0 such that ak ∼ k−γ. It is easy to
construct a non-increasing sequence that stays between k−γ1 and k−γ2 for any γ1 > γ2 > 0.
To this end, we define {bk} as b1 = 2 and bk+1 = b

γ1/γ2
k for k ≥ 1. We define a function

f on [2,∞), piece-wisely by f(x) = b−γ1
k for bk ≤ x < bk+1. Writing ak = f(k+ 1) to give

lim sup
k→∞

ak
k−γ2

= lim inf
k→∞

ak
k−γ1

= 1.

Proof of Theorem 5. Write B(u, v) the Euler beta function for u, v > 0. Recall that for
any a > 0,

π

sin(πs)
= B(s, 1− s) =

∫ ∞

0

ξs−1

1 + ξ
dξ

ξ=λ/a
==== a−s

∫ ∞

0

aλs−1

a+ λ
dλ.

So,

as =
sin(πs)

π

∫ ∞

0

λs−1 a

a+ λ
dλ. (3.2)

In (3.2) substitute a with all the positive eigenvalues of L respectively, and take the sum
to obtain (3.1). Since L is of trace class, NL(λ) is well defined for each λ > 0. Obviously
λs−1 and NL(λ) are non-increasing. So when Tr(Ls) <∞,

λsNL(λ) = λs−1NL(λ)

∫ λ

0

dξ <

∫ ∞

0

ξs−1NL(ξ)dξ =
πTr(Ls)

sin(πs)
<∞,
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which verifies (a). Now assume NL(λ) = O(λ−s) as λ ↓ 0. Then there are two constants
0 < δ,C1 <∞ such that 0 ≤ NL(λ) ≤ C1λ

−s for any 0 < λ ≤ δ. So,∫ δ

0

λs+ϵ−1NL(λ)dλ ≤ C1

∫ δ

0

λϵ−1dλ <∞.

Since L is in the trace class, when s + ϵ ≥ 1, (b) is trivial. Now we assume s + ϵ < 1.
Note that NL(λ) ≤ Tr(L)/λ. So∫ ∞

δ

λs+ϵ−1NL(λ)dλ ≤ Tr(L)

∫ ∞

δ

λs+ϵ−2dλ <∞.

The claim (b) is verified by combining the above two bounds together.
Now we verify item (c). When λi = O(i−1/s), there is some constant C2 > 0 such that

λi ≤ C2i
−1/s for all i ≥ 1. Since u/(u+ λ) is an increasing function of u,

NL(λ) ≤
∞∑
i=1

C2i
−1/s

C2i−1/s + λ
=

∞∑
i=1

1

1 + λi1/s/C2

≤
∫ ∞

0

du

1 + λu1/s/C2

=

(
λ

C2

)−s ∫ ∞

0

du

1 + u1/s
= O(λ−s).

This verifies the “if” part. For the “only-if” part, when NL(λ) = O(λ−s), it is easy to see
that there is some C3 > 0 such that NL(λ) ≤ C3λ

−s for every 0 < λ ≤ sλ1/(1− s). Since
for a fixed λ, {λi/(λi + λ)}∞i=1 is a non-increasing sequence, iλi/(λi + λ) ≤ C3λ

−s for each
λ ∈ (0, sλ1/(1− s)] and i ≥ 1. Therefore,

iλi ≤ inf
λ∈(0,sλ1/(1−s)]

C3λ
−s(λi + λ) = C3λ

1−s
i s−s(1− s)s−1, (3.3)

where the infimum is achieved at λ = sλi/(1 − s) ∈ (0, sλ1/(1 − s)]. From (3.3) one
obtains λi = O(i−1/s) as i→ ∞, and completes the proof.

Assumption 3 is quite often adopted in the literature of functional linear regression.
For example, if X is a Gaussian process, then (2.1) is satisfied with cM = 3. See [27, 5, 10].

4 Error Decomposition
Our analysis starts with error decomposition. By (1.5) (the equivalent expression of
algorithm (1.3)), for any t ≥ 1,

β̂t+1 − β∗ = β̂t − β∗ − ηt(〈β̂t, xt〉2 − yt)LKxt

= (I − ηtLKLC)(β̂t − β∗) + Bt, (4.1)

13



where Bt = ηt(yt − 〈β̂t, xt〉2)LKxt + ηtLKLC(β̂t − β∗), of which the second term is the
conditional mean of the first term,

Ezt

[
(yt − 〈β̂t, xt〉2)LKxt

]
= Ext

[
〈β∗ − β̂t, xt〉2LKxt

]
= LKLC(β

∗ − β̂t). (4.2)

Where zt = (xt, yt), and the expectations Ezt and Ext are taken with respect to the
(conditional) distributions of zt = (xt, yt) and xt, respectively. Equation (4.2) shows that
Bt is mean-zero, Ezt [Bt] = 0. Then applying induction to (4.1) implies that for any t ≥ 1,

β̂t+1 − β∗ = −

[
t∏

k=1

(I − ηkLKLC)

]
β∗ +

t∑
k=1

[
t∏

j=k+1

(I − ηjLKLC)

]
Bk, (4.3)

where and in the following, the product of an empty set of operators is defined as the
identity operator,

∏t
j=t+1(I − ηjLKLC) = I. Recall that LK = L

1/2
C LKL

1/2
C .

Proposition 6. Define {φ̂t = 〈β̂t, ·〉2 : t ≥ 1} through (1.3). Then for any t ≥ 0,

E [E(φ̂t+1)] ≤

∥∥∥∥∥
[

t∏
k=1

(I − ηkLK)

]
L
1/2
C β∗

∥∥∥∥∥
2

2

+
t∑

k=1

η2k

(
σ2 + E

√
Exk

〈β∗ − β̂k, xk〉42
)E∥∥∥∥∥

[
t∏

j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
4

2

1/2

, (4.4)

where the sum of an empty set is defined as zero.

The techniques of proving Proposition 6 are standard. For example, see [14], [18], and
[26] for kernel-based online algorithms. The proof of Proposition 6 follows [7, Theorem
4], and is provided for the sake of completeness.

Proof of Proposition 6. The case t = 0 is trivial and we assume t ≥ 1. For any k,

L
1/2
C (I − ηkLKLC) = L

1/2
C − ηkLKL

1/2
C = (I − ηkLK)L

1/2
C .

From (4.3),

L
1/2
C (β̂t+1 − β∗) = −

[
t∏

k=1

(I − ηkLK)

]
L
1/2
C β∗ +

t∑
k=1

[
t∏

j=k+1

(I − ηjLK)

]
L
1/2
C Bk.

14



It follows from (1.6) that

E [E(φ̂t+1)] = E
[∥∥∥L1/2

C (β̂t+1 − β∗)
∥∥∥2
2

]

=E

∥∥∥∥∥−
[

t∏
k=1

(I − ηkLK)

]
L
1/2
C β∗ +

t∑
k=1

[
t∏

j=k+1

(I − ηjLK)

]
L
1/2
C Bk

∥∥∥∥∥
2

2


=

∥∥∥∥∥
[

t∏
k=1

(I − ηkLK)

]
L
1/2
C β∗

∥∥∥∥∥
2

2

+ E

∥∥∥∥∥
t∑

k=1

[
t∏

j=k+1

(I − ηjLK)

]
L
1/2
C Bk

∥∥∥∥∥
2

2


= : ΥE

1 +ΥE
2 (4.5)

where in the expansion of the squared norm, the cross terms vanish because E[Bk] =

Ezk [Bk] = 0. The notations ΥE
1 and ΥE

2 are used only within this proof.
Let W1, . . . ,Wt be deterministic bounded linear operators. When k > s, Bs is inde-

pendent of zk, so E[〈WkBk,WsBs〉2] = EEzk〈WkBk,WsBs〉2 = E[〈WkEzk [Bk],WsBs〉2] = 0.
We use this trick to expand the squared norm and cancel the cross terms,

E

∥∥∥∥∥
t∑

k=1

WkBk

∥∥∥∥∥
2

2

 =
t∑

k=1

E[‖WkBk‖22] + 2
t−1∑
s=1

t∑
k=s+1

E [〈WkBk,WsBs〉2]

=
t∑

k=1

E[‖WkBk‖22].

So we expand the squared norm in ΥE
2 ,

ΥE
2 =

t∑
k=1

E

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLK)

]
L
1/2
C Bk

∥∥∥∥∥
2

2

 . (4.6)

Recall that for any random vector B with E[‖B‖22] < ∞, E[‖B − E[B]‖22] = E[‖B‖22] −
‖E[B]‖22 ≤ E[‖B‖22]. Note that Bk = ηk(yk − 〈β̂k, xk〉2)LKxk −Ezk [ηk(yk − 〈β̂k, xk〉2)LKxk]

as we explained in (4.2). So, E[‖WkBk‖22] ≤ η2kE[(yk − 〈β̂k, xk〉2)2‖WkLKxk‖22] for any
deterministic bounded linear operator Wk. Therefore,

ΥE
2 ≤

t∑
k=1

η2kE

Eεk [(yk − 〈β̂k, xk〉2)2]

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
2

2

 , (4.7)
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Furthermore, we recall that Eεk [(yk − 〈β̂k, xk〉2)2] = σ2 + 〈β∗ − β̂k, xk〉22 and obtain

ΥE
2 ≤σ2

t∑
k=1

η2kE

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
2

2


+

t∑
k=1

η2kE

〈β∗ − β̂k, xk〉22

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
2

2

 . (4.8)

The proof is complete by applying Cauchy-Schwarz inequality to the right-hand side of
(4.8).

Now we consider the error decomposition for estimation error.

Proposition 7. Let {β̂t} be defined by (1.3). Assume β∗ ∈ HK. We have the following
error decomposition for any t ≥ 0.

E
[
‖β̂t+1 − β∗‖2K

]
≤

∥∥∥∥∥
[

t∏
k=1

(I − ηkLKLC)

]
β∗

∥∥∥∥∥
2

K

+
t∑

k=1

η2k

(
σ2 + E

√
Exk

〈β∗ − β̂k, xk〉42
)E

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLKLC)

]
LKxk

∥∥∥∥∥
4

K

1/2

(4.9)

The proof of Proposition 7 parallels that of Proposition 6. We see similar analysis in
the literature for studying kernel-based online algorithms [14].

Proof of Proposition 7. By (4.3) and the fact E[Bk] = 0 we have

E
[
‖β̂t+1 − β∗‖2K

]
= E

∥∥∥∥∥−
[

t∏
k=1

(I − ηtLKLC)

]
β∗ +

t∑
k=1

[
t∏

j=k+1

(I − ηjLKLC)

]
Bk

∥∥∥∥∥
2

K


=

∥∥∥∥∥
[

t∏
k=1

(I − ηkLKLC)

]
β∗

∥∥∥∥∥
2

K

+ E

∥∥∥∥∥
t∑

k=1

[
t∏

j=k+1

(I − ηjLKLC)

]
Bk

∥∥∥∥∥
2

K

 , (4.10)

where the second term on the right-hand side is further estimated with the trick we used
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in (4.7).

E

∥∥∥∥∥
t∑

k=1

[
t∏

j=k+1

(I − ηjLKLC)

]
Bk

∥∥∥∥∥
2

K

 =
t∑

k=1

E

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLKLC)

]
Bk

∥∥∥∥∥
2

K


≤

t∑
k=1

η2kE

(yk − 〈β̂k, xk〉2)2
∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLKLC)

]
LKxk

∥∥∥∥∥
2

K


≤

t∑
k=1

η2k

(
σ2 + E

√
Exk

〈β∗ − β̂k, xk〉42
)E

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLKLC)

]
LKxk

∥∥∥∥∥
4

K

1/2

.

The proof is complete.

5 Bounding the Excess Generalization Error
In this section, we study the excess generalization error E [φ̂] and prove Theorems 1 and 2.
This is achieved by continuing the estimation (4.4) in Proposition 6 to bound E[E(φ̂t+1)]

in terms of the step-sizes first, which is given in Theorem 10. The factors E[E(φ̂k)] in
the bound are difficult to avoid directly, and are further bounded by constant through
Proposition 11. So, the coarse bound in Proposition 11, although appearing to be a
corollary for the derived learning rates in Theorems 1 or 2, is to the contrary essential
for deriving such rates. Then the step-sizes are specified in the online setting and finite-
horizon setting to derive the learning rates for Theorems 1 and 2 respectively. This
technique is widely used for the analysis of online algorithms, for example in [14, 18, 26]
for analyzing kernel-based online learning schemes, in [7] for capacity independent analysis
for online functional data learning algorithms, and in [11] for analyzing relaxed randomized
Kaczmarz algorithms.

5.1 Analysis with General Step-sizes
In this subsection, we study the excess generalization error with minimal assumptions on
the step-sizes. The following Lemma 8 is a typical application of the spectral theorem on
the polynomial uα

∏b
j=a(1 − ηju) for u ≥ 0. For a detailed proof, see e.g. [7, Lemma 2].

See also [11, 14, 18, 26, 25]. Note that when b < a, the sum
∑b

j=a ηj is defined to be zero.
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Lemma 8. Let A be a compact positive semi-definite operator on a Hilbert space. Let
{ηi} ⊂ (0, 1/‖A‖op]. Then for any a ≤ b and α > 0, we have∥∥∥∥∥Aα

b∏
j=a

(I − ηjA)

∥∥∥∥∥
2

op

≤
(α/e)2α + ‖A‖2αop

1 +
(∑b

j=a ηj

)2α . (5.1)

When α = 0, we have ∥∥∥∥∥
b∏

j=a

(I − ηjA)

∥∥∥∥∥
2

op

≤ 1. (5.2)

In particular, when a > b, recall that the product
∏b

j=a(I − ηjA) is the identity operator.
So the above estimates (5.1) and (5.2) still hold true.

The following lemma provides an equivalent condition (5.3) to Assumption 3. It is
interesting because apparently, Condition (5.3) is much stronger than Assumption 3.

Lemma 9. Let X be the random function in Model (1.1). Let W be a compact operator
(not necessarily self-adjoint or positive) on L2(T ). Under Assumption 3,

E
[
‖WX‖42

]
≤ cM

(
E
[
‖WX‖22

])2
. (5.3)

Proof. Write W ′ the adjoint operator of W . Then W ′W is a compact positive operator.
So we write µ1 ≥ µ2 ≥ · · · > 0 as all the positive eigenvalues of W ′W , counting multiplic-
ity. We use an orthonormal sequence {ψi} in L2(T ) as the corresponding eigenvectors.
Assumption 3 implies that

E
[
‖WX‖42

]
= E

[
〈X,W ′WX〉22

]
= E

(∑
i

µi〈ψi, X〉22

)2
 =

∑
i,j

µiµjE
[
〈ψi, X〉22〈ψj, X〉22

]
≤
∑
i,j

µiµj

√
E[〈ψi, X〉42]

√
E[〈ψj, X〉42] ≤ cM

(
E
∑
i

µi〈ψi, X〉22

)2

= cM
(
E
[
‖WX‖22

])2
.

The proof is then completed.
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Theorem 10. Let {β̂t} be defined by (1.3) with step-sizes {ηt} ⊂ (0, κ−2]. Under As-
sumption 1 (with r > 0), Assumption 2 (with 0 < s ≤ 1), and Assumption 3, for any
t ≥ 0,

E[E(φ̂t+1)] ≤
‖g∗‖22 ((r/e)2r + κ4r)

1 +
(∑t

k=1 ηk
)2r

+
t∑

k=1

η2k
(
σ2 +

√
cME[E(φ̂k)]

) √cMTr(L s
K)
[
(2−s

2e
)2−s + κ4−2s

]
1 +

(∑t
j=k+1 ηj

)2−s . (5.4)

Proof. When t = 0, Bound (5.4) is reduced to

E[E(0)] ≤ ‖g∗‖22((r/e)2r + κ4r). (5.5)

We use Assumption 1 to have E(0) = ‖L1/2
C β∗‖22 = ‖L r

Kg
∗‖22 ≤ κ4r‖g∗‖22, which verifies

(5.5).
Now we assume t ≥ 1. We let J1 and J2 denote the two terms in the right-hand side

of (4.4) in Proposition 6, respectively. That is, E[E(φ̂t+1)] ≤ J1 + J2, with

J1 =

∥∥∥∥∥
[

t∏
k=1

(I − ηkLK)

]
L
1/2
C β∗

∥∥∥∥∥
2

2

, and

J2 =
t∑

k=1

η2k

(
σ2 + E

√
Exk

〈β∗ − β̂k, xk〉42
)E∥∥∥∥∥

[
t∏

j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
4

2

1/2

.

Assumption 1 gives L1/2
C β∗ = L r

Kg
∗ for some r > 0. Recall the assumption {ηj} ⊂

(0, κ−2]. We apply Lemma 8 to bound J1,

J1 =

∥∥∥∥∥
[

t∏
k=1

(I − ηkLK)

]
L r

Kg
∗

∥∥∥∥∥
2

2

≤ ‖g∗‖22
(r/e)2r + κ4r

1 +
(∑t

k=1 ηk
)2r .

To bound J2, we apply Assumption 3 (the moment condition),

E
√

Exk
〈β∗ − β̂k, xk〉42 ≤

√
cME

[
〈β∗ − β̂k, xk〉22

]
=

√
cME[E(φ̂k)]. (5.6)

Recall that for any bounded linear operator A on L2(T ), E[‖Axt‖22] = ETr(Axt⊗xtA
′) =

Tr(ALCA
′). We apply Lemma 9, Assumption 2 (with 0 < s ≤ 1), and Lemma 8 to obtain
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thatE∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
4

2

1/2

≤
√
cME

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
2

2

=
√
cMTr

(
L 2

K

t∏
j=k+1

(I − ηjLK)
2

)

≤
√
cMTr(L

s
K)

∥∥∥∥∥L 1− s
2

K

t∏
j=k+1

(I − ηjLK)

∥∥∥∥∥
2

op(L2)

≤
√
cMTr(L

s
K)

(
2−s
2e

)2−s
+ κ4−2s

1 +
(∑t

j=k+1 ηj

)2−s . (5.7)

The proof is complete.

Proposition 11. Let t ≥ 1. Let {β̂k} be defined by (1.3) with step-sizes {ηk} ⊂ (0, κ−2].
Suppose that Assumption 2 with 0 < s ≤ 1 (in particular, Assumption 2 is not needed when
s = 1) and Assumption 3 hold. In particular, when t ≥ 2 we assume for any k ≤ t − 1

that

cMTr(L
s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]
k∑

l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s ≤ 1

2
. (5.8)

Then we have a coarse estimation of the expected excess generalization error for k =

1, · · · , t,

E [E(φ̂k)] ≤ 2 ‖β∗‖22 +
σ2

√
cM
. (5.9)

We see that (5.9) only provides a coarse bound E [E(φ̂k)] = O(1). However, the
designed purpose of Proposition 11 is to estimate E [E(φ̂k)] in the right-hand side of (5.4)
in our convergence analysis, and a bound finer than O(1) would not serve the purpose
better, because a constant variance σ2 is added to √

cME[E(φ̂k)] in (5.4).

Proof of Proposition 11. We organize the proof by induction. Recall that φ̂1 = 0 and
‖LC‖op(L2) ≤ 1. When t = 1, (5.8) is verified by

E(0) = ‖L1/2
C β∗‖22 ≤ ‖β∗‖22.

Let T ≥ 2, and we assume Proposition 11 holds for t = 1, . . . , T − 1. To finish the
induction, we need only to prove Proposition 11 for t = T . That is, we assume (5.8) and
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(5.9) for t = 1, . . . , T − 1 and need only to prove (5.9) for t = T . To this end, we use
Proposition 6 to have

E[E(φ̂T )] ≤ ΥT
1 +

T−1∑
k=1

η2k

(
σ2 + E

√
Exk

〈β∗ − β̂k, xk〉42
)
ΥT

2,k, (5.10)

where

ΥT
1 =

∥∥∥∥∥
[
T−1∏
k=1

(I − ηkLK)

]
L
1/2
C β∗

∥∥∥∥∥
2

2

, and

ΥT
2,k =

E∥∥∥∥∥
[

T−1∏
j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
4

2

1/2

, k = 1, . . . , T − 1.

To bound ΥT
1 , we note that ‖I−ηkLK‖op(L2) ≤ 1 because ηk ∈ (0, κ−2] and ‖LK‖op(L2) ≤

κ2. So,

ΥT
1 ≤ ‖L1/2

C β∗‖22 ≤ ‖β∗‖22.

Next, we follow (5.6), use the induction assumption and Assumption 3 (the moment
condition) to obtain

E
√

Exk
〈β∗ − β̂k, xk〉42 ≤

√
cME[E(φ̂k)] ≤ σ2 + 2

√
cM‖β∗‖22, k = 1, . . . , T − 1.

Then, we follow (5.7) and use Assumption 2 with 0 < s ≤ 1 to obtain

ΥT
2,k ≤

√
cME

∥∥∥∥∥
[

T−1∏
j=k+1

(I − ηjLK)

]
L
1/2
C LKxk

∥∥∥∥∥
2

2

≤
√
cMTr(L

s
K)

(
2−s
2e

)2−s
+ κ4−2s

1 + (
∑T−1

j=k+1 ηj)
2−s

, k = 1, . . . , T − 1.

We continue (5.10) and use Condition (5.8) for k = 1, . . . , T − 1 to have

E[E(φ̂T )] ≤ ‖β∗‖22 +
T−1∑
k=1

η2k(2σ
2 + 2

√
cM‖β∗‖22)

√
cMTr(L

s
K)

(
2−s
2e

)2−s
+ κ4−2s

1 + (
∑T−1

j=k+1 ηj)
2−s

≤ ‖β∗‖22 +
σ2

√
cM

+ ‖β∗‖22.

This completes the proof.
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5.2 Analysis in Online and Finite-horizon Settings of Step-sizes
In this subsection we study the excess generalization error in the online and finite-horizon
settings of step-sizes, respectively. The following Lemma 12 is commonly used in the
literature [7, 26, 11] with smaller ranges of parameters θ and ν. In this paper, we need
coverage of the whole domain ν > 0 and 0 < θ < 1, and the proof is not elsewhere
available to our best knowledge.

Lemma 12. Let t ≥ 1, ηk = η0k
−θ with η0 > 0 and 0 < θ < 1. For any ν > 0,(

t∑
k=1

ηk

)−ν

≤
(
η0(1− 2θ−1)

1− θ

)−ν

(t+ 1)−ν(1−θ), (5.11)

and
t∑

k=1

η2k

1 +
(∑t

j=k+1 ηj

)ν ≤ COL

{
(t+ 1)ω log(t+ 1), (ν, θ) ∈ Ω,

(t+ 1)ω, (ν, θ) 6∈ Ω,

where Ω = {(ν, θ) : 0 < ν ≤ 1 and θ = 1/2} ∪ {(ν, θ) : ν = 1 and 0 < θ ≤ 1/2}, COL is a
constant independent of t, and

ω = ω(ν, θ) =


1− 2θ − ν + νθ, 0 < ν ≤ 1 and 0 < θ ≤ 1/2,

−θ, ν ≥ 1 and 0 < θ ≤ ν/(ν + 1),

−ν(1− θ), 1/2 ≤ θ < 1 and θ ≥ ν/(ν + 1).

(5.12)

In particular, when ν ≥ 1, ω = −min{θ, ν(1− θ)}. The constant COL will be specified by
(5.15) in the proof.

Lemma 12 is based on Lemma 14 in Appendix. Same as Lemma 14, we purposely
allow the domains to overlap in (5.12), to simplify the usage later. We will elucidate the
parameter ω and the set Ω by Figure 5 in Appendix.

Proof of Lemma 12. For any k ≥ 0 and t ≥ k + 1,
t∑

j=k+1

ηj = η0

t∑
j=k+1

j−θ ≥ η0
1− θ

[
(t+ 1)1−θ − (k + 1)1−θ

]
. (5.13)

We set k = 0 to have
t∑

j=1

ηj ≥
η0(1− 2θ−1)

1− θ
(t+ 1)1−θ. (5.14)
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One raises (5.14) to power −ν to obtain (5.11).
Recall that for k ≥ 1, one has k ≥ (k + 2)/3, and

t∑
k=1

η2k

1 +
(∑t

j=k+1 ηj

)ν ≤ η2t +
t−1∑
k=1

η20(k + 2)−2θ32θ

1 +
(

η0
1−θ

)ν
[(t+ 1)1−θ − (k + 1)1−θ]ν

.

Note that for any k = 1, . . . , t− 1,

(k + 2)−2θ

1 + [(t+ 1)1−θ − (k + 1)1−θ]ν
≤
∫ k+2

k+1

u−2θdu

1 + [(t+ 1)1−θ − u1−θ]ν
.

We use Lemma 14 to have
t∑

k=1

η2k

1 +
(∑t

j=k+1 ηj

)ν ≤ η20t
−2θ +

32θη20
min

{
1,
(

η0
1−θ

)ν} ∫ t+1

2

u−2θdu

1 + [(t+ 1)1−θ − u1−θ]ν

≤ η202
2θ(t+ 1)−2θ +

32θη20C
OL
0

min
{
1,
(

η0
1−θ

)ν} ×

{
(t+ 1)ω log(t+ 1), (ν, θ) ∈ Ω,

(t+ 1)ω, (ν, θ) 6∈ Ω.

Now we verify that −2θ ≤ ω on the whole domain (0,∞) × (0, 1) of parameters. When
0 < θ ≤ 1/2 and 0 < ν ≤ 1, ω = −2θ + (1 − ν) + νθ ≥ −2θ. When 1/2 < θ < 1

and 0 < ν ≤ 1, ω = −ν(1 − θ) ≥ −1 + θ > −θ > −2θ. When 0 < θ < ν/(ν + 1)

and ν > 1, ω = −θ > −2θ. When ν/(ν + 1) ≤ θ < 1 and ν > 1, θ > ν/(ν + 2), so
ω = −ν(1− θ) > −2θ.

We complete the proof by letting

COL =
η202

2θ

log 2
+

32θη20C
OL
0

min
{
1,
(

η0
1−θ

)ν} . (5.15)

Proof of Theorem 1. First, we shall apply Proposition 11. To verify the assumptions in
Proposition 11, we need only to determine the constant CS

1 to guarantee (5.8), i.e., for
k = 1, . . . , t− 1,

cMTr(L
s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]
k∑

l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s ≤ 1

2
. (5.16)

Recall r > 0 and 0 < s ≤ 1. We apply Lemma 12 with

ν = 2− s ≥ 1, and, 0 < θ =
min{2r, 2− s}

1 + min{2r, 2− s}
≤ ν

ν + 1
, (5.17)
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so ω = −θ < 0, and for k = 1, . . . , t− 1,
k∑

l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s ≤ COL

{
(k + 1)−θ log(k + 1), s = 1,

(k + 1)−θ, 0 < s < 1.
(5.18)

Recall η0 ≤ 1. The above inequality is continued by

COL =
η202

2θ

log 2
+

32θη20C
OL
0

min
{
1,
(

η0
1−θ

)2−s
} ≤ ηs04

θ

log 2
+

9θη20C
OL
0

η2−s
0 min{1, (1− θ)−2+s}

≤ ηs0

(
4θ

log 2
+ 9θCOL

0

)
. (5.19)

On the other hand, (k + 1)−θ ≤ 1, and (k + 1)−θ log(k + 1) ≤ 1
eθ

(see (A.6)). Therefore,
to achieve (5.16) (which is just (5.8) for Proposition 11), we need simply to let

CS
1 =

{
2cMTr(L

s
K)

[(
2− s

2e

)2−s

+ κ4−2s

](
4θ

log 2
+ 9θCOL

0

)(
1 +

1

eθ

)}−1/s

. (5.20)

Second, we apply Theorem 10, of which the conditions are now all satisfied. We plug
(5.9) of Proposition 11, into (5.4) of Theorem 10, to obtain

E[E(φ̂t+1)] ≤
‖g∗‖22((r/e)2r + κ4r)(∑t

k=1 ηk
)2r

+
√
cMTr(L

s
K)

[(
2− s

2e

)2−s

+ κ4−2s

] (
2‖β∗‖22

√
cM + 2σ2

)
×

t∑
k=1

η2k

1 +
(∑t

j=k+1 ηj

)2−s . (5.21)

For the first term in the right-hand side of (5.21), we apply Lemma 12 with ν = 2r. The
last sum in (5.21) is bounded above in (5.18). We have

E[E(φ̂t+1)] ≤‖g∗‖22((r/e)2r + κ4r)

(
η0(1− 2θ−1)

1− θ

)−2r

(t+ 1)−2r(1−θ)

+ 2(σ2 +
√
cM‖β∗‖22)

√
cMTr(L

s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]
COL

×

{
(t+ 1)−θ log(t+ 1), s = 1,

(t+ 1)−θ, 0 < s < 1.
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From θ = min{2r,ν}
1+min{2r,ν} ≤ 2r

1+2r
, we have −2r(1− θ) ≤ −θ. Therefore,

E[E(φ̂t+1)] ≤ C1

{
(t+ 1)−θ log(t+ 1), s = 1,

(t+ 1)−θ, 0 < s < 1.

with

C1 =
‖g∗‖22 ((r/e)2r + κ4r)

log 2

(
η0(1− 2θ−1)

1− θ

)−2r

+ 2(σ2 +
√
cM‖β∗‖22)

√
cMTr(L

s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]
COL. (5.22)

Proof of Theorem 2. First, for applying Proposition 11, we need only to find an upper
bound CS

2 of step-sizes to guarantee (5.8), i.e., for k = 1, . . . , T − 1,

cMTr(L
s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]
k∑

l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s ≤ 1

2
. (5.23)

Recall ηt = η0T
−2r/(2r+1). We write η = ηt. For any k ≤ T − 1, we bound the sum in

(5.23) as

k∑
l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s = η2 +
k−1∑
t=1

η2

1 + (tη)2−s
≤ η2 + η

∫ k−1

0

ηdu

1 + (ηu)2−s

≤ η2 + η

∫ ηT

0

du

1 + u2−s
≤ η2 + η

{
2−s
1−s

, 0 < s < 1,

log(ηT + 1), s = 1,
(5.24)

where in the last inequality we used (A.4) for 0 < s < 1. Recall that η0 ≤ 1.

η log(ηT + 1) ≤ η log(T
1

2r+1 + 1) ≤ CS
2T

−2r
2r+1

(
log 2 +

1

2r + 1
log T

)
≤ CS

2

2er + 1

2er
,

where in the last inequality we used (A.6). We have a coarse estimate for k ≤ T − 1,

k∑
l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s ≤ CS
2C

S
2∗, CS

2∗ := 2 +

{
1/(1− s), 0 < s < 1,

1/(2er), s = 1.
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Therefore, to guarantee (5.23) (which is just (5.8) for Proposition 11), we just need

CS
2 =

{
2cMTr(L

s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]
CS

2∗

}−1

. (5.25)

We plug (5.9) of Proposition 11, into (5.4) of Theorem 10 to obtain

E[E(φ̂T+1)] ≤
‖g∗‖22((r/e)2r + κ4r)(∑T

k=1 ηk

)2r +
√
cMTr(L

s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]

× (2‖β∗‖22
√
cM + 2σ2)

T∑
k=1

η2k

1 +
(∑T

j=k+1 ηj

)2−s . (5.26)

At the right-hand side, the first term is bounded with(
T∑

k=1

ηk

)−2r

≤ η−2r
0 T−2r/(2r+1),

and the second term is bounded in (5.24),

T∑
k=1

η2k

1 +
(∑T

j=k+1 ηj

)2−s ≤ η20T
− 2r

2r+1 + η0

{
2−s
1−s

T− 2r
2r+1 , 0 < s < 1,

2r+2
2r+1

T− 2r
2r+1 log(T + 1), s = 1,

where in the case s = 1 we have used

log(T a + 1) ≤ log 2 + a log T ≤ (a+ 1) log(T + 1), for any T ≥ 1, a > 0.

The proof is therefore completed by letting

C2 =
η−2r
0 ‖g∗‖22
log 2

((r/e)2r + κ4r) + 2
√
cMTr(L

s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]

× (‖β∗‖22
√
cM + σ2)×

{
η20 + η0

2−s
1−s

, 0 < s < 0,

η20 + η0
2r+2
2r+1

, s = 1.
(5.27)

26



6 Bounding the Estimation Error
In this section, we bound the estimation error in HK metric and prove Theorems 3 and 4.
The analysis parallels Section 5. We continue the Bound (4.9) in Proposition 7 to derive
Bound (6.2) in Theorem 13 for general step-sizes. The coarse estimation in Proposition
11 is used again. Then the settings on step-sizes are applied to derive Theorems 3 and 4
respectively. We see similar analysis in [11] for randomized Kaczmarz algorithms, in [14]
for kernel-based online algorithms, and in [26] for capacity independent analysis of online
algorithms.

Theorem 13. Let t ≥ 0 be an integer. Let {β̂k : 1 ≤ k ≤ t+ 1} be defined by (1.3) with
step-sizes {ηk} ⊂ (0, κ−2]. Suppose that Assumptions 2 (with 0 < s ≤ 1), 3, and 4 (with
r > 0) hold. In particular, when t ≥ 2 we assume for any k ≤ t− 1 that

cMTr(L
s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]
k∑

l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s ≤ 1

2
. (6.1)

Then,

E[‖β̂t+1 − β∗‖2K ] ≤ CK

( t∑
k=1

ηk

)−2r

+
t∑

k=1

η2k

1 +
(∑t

j=k+1 ηj

)1−s

 , (6.2)

where CK is a constant independent of t and will be specified in the proof, and when s = 1,
(
∑t

j=k+1 ηj)
1−s := 1 even when k = t that vanishes the sum.

Proof. Assumption 4 that β∗ = L
1/2
K L r

Cg
† (for some g† ∈ L2(T ) and r > 0) guarantees

β∗ ∈ HK . So we start from Proposition 7 by bounding E[‖β̂t+1 − β∗‖2K ] ≤ ΥK
1 + ΥK

2 ,
where

ΥK
1 =

∥∥∥∥∥
[

t∏
k=1

(I − ηkLKLC)

]
β∗

∥∥∥∥∥
2

K

, and

ΥK
2 =

t∑
k=1

η2k(σ
2 + E

√
Exk

〈β∗ − β̂k, xk〉42)

E

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLKLC)

]
LKxk

∥∥∥∥∥
4

K

1/2

.
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Recall that LC = L
1/2
K LCL

1/2
K . We use Lemma 8 to bound the operator norm,

ΥK
1 ≤

∥∥∥∥∥L1/2
K

[
t∏

k=1

(I − ηkLC)

]
L r

Cg
†

∥∥∥∥∥
2

K

≤

∥∥∥∥∥L r
C

t∏
k=1

(I − ηkLC)

∥∥∥∥∥
2

op(L2)

‖g†‖22

≤
‖g†‖22((r/e)2r + ‖LC‖2rop(L2))

1 + (
∑t

k=1 ηk)
2r

.

For ΥK
2 , we consider its different factors separately. First, recall that β̂k is independent

of xk. Assumption 3 (moment condition) guarantees that

E
√

Exk
〈β∗ − β̂k, xk〉42 ≤

√
cME[〈β∗ − β̂k, xk〉22] =

√
cME[E(φ̂k)].

With Proposition 11, our assumption on step-sizes guarantees that

E[E(φ̂k)] ≤ 2‖β∗‖22 +
σ2

√
cM
, for all k = 1, . . . , t.

Second, we use Lemma 9 and recall that ‖L1/2
K f‖K = ‖f‖2 for any f ∈ L2(T ) to obtain

ΥK
2∗ :=

E

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLKLC)

]
LKxk

∥∥∥∥∥
4

K

1/2

=

E

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLC)

]
L
1/2
K xk

∥∥∥∥∥
4

2

1/2

≤
√
cME

∥∥∥∥∥
[

t∏
j=k+1

(I − ηjLC)

]
L
1/2
K xk

∥∥∥∥∥
2

2

.

Recall that E[‖Axt‖22] = ETr(Axt ⊗ xtA
′) = Tr(ALCA

′) for any bounded linear operator
A on L2(T ).

ΥK
2∗ ≤

√
cMTr

(
LC

t∏
j=k+1

(I − ηjLC)
2

)

≤
√
cMTr(L

s
C)

∥∥∥∥∥L 1−s
2

C

t∏
j=k+1

(I − ηjLC)

∥∥∥∥∥
2

op(L2)

,
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where we abuse the notation a little and let L (1−s)/2
C denote the identity operator when

s = 1. Thanks to Lemma 8,

ΥK
2∗ ≤

√
cMTr(L

s
C)

(
1−s
2e

)1−s
+ ‖LC‖1−s

op(L2)

1 + (
∑t

j=k+1 ηj)
1−s

, when 0 < s < 1,

and ΥK
2∗ ≤

√
cMTr(LC) when s = 1.

To summarize, for any t ≥ 1, when 0 < s < 1,

E[‖β̂t+1 − β∗‖2K ] ≤ CK

( t∑
k=1

ηk

)−2r

+
t∑

k=1

η2k
1 + (

∑t
j=k+1 ηj)

1−s

 , (6.3)

where

CK = max

{
‖g†‖22

((r
e

)2r
+ ‖LC‖2rop(L2)

)
,

(2
√
cM‖β∗‖22 + 2σ2)

√
cMTr(L

s
C)

[(
1− s

2e

)1−s

+ ‖Lc‖1−s
op(L2)

]}
,

and when s = 1,

E[‖β̂t+1 − β∗‖2K ] ≤ CK

( t∑
k=1

ηk

)−2r

+
1

2

t∑
k=1

η2k

 , (6.4)

where CK = max
{
‖g†‖22((r/e)2r + ‖LC‖2rop(L2)), 4(

√
cM‖β∗‖22 + σ2)

√
cMTr(LC)

}
. Bounds

(6.3) and (6.4) are unified by abusing the notation and denoting 00 = 1 (so as to make
(
∑t

j=k+1 ηj)
0 = 1 even when the sum is zero). The proof is then completed.

We are at the position of proving Theorems 3 and 4 as corollaries of Theorem 13.

Proof of Theorem 3. To apply Theorem 13, we need only to select a proper bound CS
3 of

step-sizes, to guarantee (6.1), i.e., for k = 1, . . . , t− 1,

cMTr(L
s
K)

[(
2− s

2e

)2−s

+ κ4−2s

]
k∑

l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s ≤ 1

2
. (6.5)

To bound the sum in (6.5), we apply Lemma 12 with ν = 2 − s > 1 and note that
0 < θ ≤ 1/2, so ω = −θ < 0. We have

k∑
l=1

η2l

1 +
(∑k

j=l+1 ηj

)2−s ≤ COL(ν = 2− s, θ)(k + 1)−θ ≤ ηs0

(
4θ

log 2
+ 9θCOL

0

)
,
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where the last inequality is just (5.19). Therefore, to achieve (6.5) (or equivalently, (6.1)
for Theorem 13), we simply need to let

CS
3 =

{
2cMTr(L

s
K)

[(
2− s

2e

)2−s

+ κ4−2s

](
4θ

log 2
+ 9θCOL

0

)}−1/s

. (6.6)

By Theorem 13,

E[‖β̂t+1 − β∗‖2K ] ≤ CK

( t∑
k=1

ηk

)−2r

+
t∑

k=1

η2k

1 +
(∑t

j=k+1 ηj

)1−s

 . (6.7)

We bound the first term in the right-hand side of (6.7) by Lemma 12 with ν = 2r,(
t∑

k=1

ηk

)−2r

≤
(
η0(1− 2θ−1)

1− θ

)−2r

(t+ 1)−2r(1−θ). (6.8)

We bound the last sum in (6.7) by Lemma 12. Note that now ν = 1 − s ∈ (0, 1) and
0 < θ ≤ 1/2, so for Lemma 12,

ω = 1− 2θ − ν + νθ = s(1− θ)− θ =

 − 2r

2r + s+ 1
, 2r < 1− s,

−(1− s)/2, 2r ≥ 1− s.

From the definition of θ, we see that (ν, θ) ∈ Ω if and only if θ = 1/2, which is equivalent
to 2r ≥ 1− s. So,

t∑
k=1

η2k

1 +
(∑t

j=k+1 ηj

)1−s ≤ COL

{
(t+ 1)−2r/(2r+s+1), 2r < 1− s,

(t+ 1)−(1−s)/2 log(t+ 1), 2r ≥ 1− s.
(6.9)

We now show that the rates of (6.8) is no slower than that of (6.9). In fact, when
2r < 1− s, −2r(1− θ) = − 2r

2r+s+1
. When 2r ≥ 1− s, −2r(1− θ) = −r ≤ −(1− s)/2. We

have proved that

E
[∥∥∥β̂t+1 − β∗

∥∥∥2
K

]
≤ C3

{
(t+ 1)−2r/(2r+s+1), 2r < 1− s,

(t+ 1)−(1−s)/2 log(t+ 1), 2r ≥ 1− s,

where

C3 =
CK

log 2

(
η0(1− 2θ−1)

1− θ

)−2r

+ CKCOL. (6.10)
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Proof of Theorem 4. First, we specify that

CS
4 =

[
2cMTr(L

s
K)

((
2− s

2e

)2−s

+ κ4−2s

)
CS

4∗

]−1

, (6.11)

where CS
4∗ is specified in (6.12) below. Then, we verify bound (6.1) of Theorem 13. To

this end, we substitute ηt = η0T
−θ with θ = (s + 2r)/(1 + s + 2r). Note that 2 − s ≥ 1,

η0 ≤ 1, and k ≤ T − 1.
k∑

l=1

η2l

1 + (
∑k

j=l+1 ηj)
2−s

= η20T
−2θ +

k−1∑
l=1

η20T
−2θ

1 + (η0lT−θ)2−s

≤η20T−2θ + η0T
−θ

∫ T−2

0

η0T
−θdu

1 + (η0T−θu)2−s
≤ η20T

−2θ + η0T
−θ

∫ T 1−θ

0

du

1 + u2−s

≤η20T−2θ + η0T
−θ

{
2−s
1−s

, when 0 < s < 1,

log(T 1−θ + 1), when s = 1,

≤η0CS
4∗ := η0

{
2 + 1

1−s
, when 0 < s < 1,

1 + log 2 + 1−θ
eθ
, when s = 1,

(6.12)

where in the last inequality we used (A.6) and T−θ log(T 1−θ + 1) ≤ T−θ log(2T 1−θ) ≤
T−θ log 2 + T−θ(1− θ) log T ≤ log 2 + 1−θ

eθ
. So (6.1) is verified. Then by Theorem 13,

E[‖β̂T+1 − β∗‖2K ] ≤ CK

[
(η0T

1−θ)−2r +
T∑

k=1

η20T
−2θ

1 + (η0T−θ(T − k))1−s

]
. (6.13)

We now estimate the last sum in (6.13). When 0 < s < 1,
T∑

k=1

η20T
−2θ

1 + (η0T−θ(T − k))1−s
≤ η20T

−2θ + η0T
−θ

∫ T−1

0

η0T
−θdu

1 + (η0T−θu)1−s

≤η0T−θ + η0T
−θ

∫ η0T 1−θ

0

du

1 + u1−s
≤ 2η0T

−θ + η0T
−θ

∫ T 1−θ

1

us−1du

≤2η0T
−θ +

η0
s
T−θ+s(1−θ) ≤ η0(2 + s−1)T−2r/(1+s+2r), (6.14)

where in the last step we used the definition θ = (s + 2r)/(1 + s + 2r) we made above.
When s = 1, θ = (1+2r)/(2+2r). Recall the definition (

∑
ηj)

0 := 1 in Theorem 13 even
when the sum vanishes. We have

T∑
k=1

η20T
−2θ

1 + (η0T−θ(T − k))1−s
=
η20
2
T 1−2θ =

η20
2
T−2r/(1+s+2r). (6.15)
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We summarize the above analysis to obtain

E
[∥∥∥β̂T+1 − β∗

∥∥∥2
K

]
≤ C4T

−2r/(1+s+2r),

where

C4 = CKη−2r
0 + CKη0

{
2 + s−1, when 0 < s < 1,

η0/2, when s = 1.
(6.16)

The proof of Theorem 4 is complete.

7 A Numerical Experiment
In this section, we provide a simple numerical example with artificial data, to verify
the feasibility of our assumptions, and the empirical performance of the algorithm (1.3).
Settings of the example are taken from [5].

We set T = [0, 1]. The functional linear model (1.1) is specified by the Gaussian
process

X(u) =
N∑
k=1

√
2Zk

kα
cos(kπu), 0 ≤ u ≤ 1, (7.1)

where N is a large integer to be specified later, Z1, . . . , ZN ∼ N (0, 1) are independent
standard normal random variables, and α > 0. We employ the reproducing kernel used
in [5],

K(u, v) = −1

3
B4

(
|u− v|

2

)
− 1

3
B4

(
u+ v

2

)
=

∞∑
k=1

2

(kπ)4
cos(kπu) cos(kπv), u, v ∈ [0, 1],

where B4(x) = x4−2x3+x2− 1
30

is the 4-th Bernoulli polynomial. Write HK the associated
RKHS. It is easy to verify that {

√
2 cos(kπx)}∞k=1 is an orthogonal set in HK , and is also

an orthonormal set of L2(T ). We define the coefficient isometry

M : RN → L2(T ), u = (u1, . . . , uN)
T 7→

N∑
k=1

√
2uk cos(kπx).
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Let 〈·, ·〉E and ‖·‖E denote the Euclidean inner product and norm in RN , respectively. It
is obvious that 〈M(u),M(v)〉2 = 〈u,v〉E. Write K = π−4(1−4, 2−4, . . . , N−4)T . Then,

LKM(u) = M(K ◦ u), for any u ∈ RN ,

where for any vectors u,v ∈ RT , u ◦v = (u1v1, . . . , uNvN)
T is the component-wise vector

product.
From (7.1), the covariance function is

C(u, v) = E[X(u)X(v)] =
N∑
k=1

2

k2α
cos(kπu) cos(kπv).

Write Cr = (1−2αr, 2−2αr, . . . , N−2αr)T for r > 0. We see that LC and LK are commutable
and LCM(u) = M(C ◦ u). Define the oracle slope function β∗ = M(β∗). Let g ∈ RN

with ‖g‖E = 1. We set β∗ = Kr ◦Cr− 1
2 ◦ g to meet Assumption 1. Obviously, Tr(L s

K) =

π−4s
∑N

k=1 k
−2αs−4s. From the setting that N is large, it is reasonable to interpret the

assumption Tr(L s
K) < ∞ as −2αs − 4s < −1. So, Assumption 2 is satisfied when

α > max {0, (1− 4s)/(2s)}. Assumption 3 with cM = 3 is guaranteed thanks to the
Gaussian process setting (7.1).

Now we construct the artificial data. For t ≥ 1, let xt be an independent copy of the
coefficient vector (1−αZ1, . . . , N

−αZN)
T of X. Let {εt}∞t=1 be drawn independently from

N (0, σ2). Then yi = 〈xt, β∗〉2 + εt = 〈xt,β
∗〉E + εt. The iterative algorithm (1.5) can be

formulated in RN , and one just needs to map the output back to HK through M. We
use β̂t = M(βt) and rewrite (1.5) as

βt+1 − β∗ = (I − ηtAt)(βt − β∗) + ηtεtK ◦ xt,

where I is the identity matrix in RN , and At = (K ◦ xt)x
T
t is a rank-one positive semi-

definite matrix. Since the oracle function β∗ is available, the excess generalization error
is estimated by

E(φ̂t+1) =
∥∥∥L1/2

C (β̂t+1 − β∗)
∥∥∥2
2
=
∥∥∥C1/2 ◦ (βt+1 − β∗)

∥∥∥2
E
.

The simulation results are visualized in Figure 4.
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A Appendix: A Technical Lemma
In this section of Appendix, we include the following Lemma 14, which is commonly used
in the literature [14, 7, 26, 11] with smaller domains of parameters. Lemma 14 covers the
whole domain (ν, θ) ∈ (0,∞)× (0, 1), and the proof is not elsewhere available to our best
knowledge. We use Figure 5 to elucidate the rates in Lemma 14. Figure 5 is also helpful
for understanding the rates in Lemma 12, and Theorems 1 and 3.

Lemma 14. For b ≥ 2, 0 < θ < 1, and ν > 0,∫ b

1

u−2θdu

1 + (b1−θ − u1−θ)ν
≤ COL

0

{
bω log b, θ = 1

2
and ν ≤ 1, or, θ ≤ 1

2
and ν = 1,

bω, otherwise,
(A.1)

where COL
0 is independent of b, and

ω = ω(ν, θ) =


1− 2θ − ν + νθ, 0 < ν ≤ 1 and 0 < θ ≤ 1/2,

−θ, ν ≥ 1 and 0 < θ ≤ ν/(ν + 1),

−ν(1− θ), 1/2 ≤ θ < 1 and θ ≥ ν/(ν + 1).

(A.2)

In particular, when ν ≥ 1, ω = −min{θ, ν(1− θ)}. For different combinations of param-
eters ν and θ, the constant COL

0 = COL
0 (ν, θ) will be specified below in (A.7), (A.8), (A.9),

(A.10), and (A.11), respectively.
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We purposely allow the domains in (A.2) to overlap, to facilitate the applications. In
spite of the piecewise definition, ω(ν, θ) is a continuous function on (0,∞) × (0, 1). We
demonstrate the structure of ω in Figure 5. The estimate in Lemma 14 is tight, that is,
we can reverse the order of the inequality (A.1) by replacing COL

0 with a smaller positive
constant independent of b. We skip the discussion of tightness.
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Figure 5: Summary of the convergence rates ω(ν, θ). The domain (0,∞)×(0, 1) is divided
into four regimes by the solid black lines. Contours of ω are given in blue lines. In Regime
1, ω = −ν(1 − θ). In Regime 2, ω = −θ. In Regimes 3 and 4, ω = 1 − 2θ − ν + νθ =

−ν(1 − θ) + (1 − 2θ) = −θ + (1 − θ)(1 − ν). The values of ω continuously extend to
the boundaries between regimes. Arc BD is from the hyperbola θ = ν/(ν + 1) which is
extended by the dotted line. ω approaches its infimum along the ridge B → D. Logarithm
factor in (A.1) only appears on the line segments AB and BC including point B. In Regime
4 including Arc AC (which is θ = (1− ν)/(2− ν)), ω ≥ 0 and the integral in (A.1) does
not converge to zero as b→ ∞.

Proof of Lemma 14. To verify the estimate (A.1), we divide the integral interval into
[1, b/2] and [b/2, b], and denote ΥOL

1 and ΥOL
2 the associated parts of the integral in (A.1),
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respectively. First,

ΥOL
1 ≤ 1

1 + (b1−θ − (b/2)1−θ)ν

∫ b/2

1

u−2θdu

≤ b−ν(1−θ)

(1− 2θ−1)ν
×


(b/2)1−2θ

1−2θ
, when 0 < θ < 1/2,

log b
2
, when θ = 1/2,

1
2θ−1

, when 1/2 < θ < 1,

≤ 1

(1− 2θ−1)ν
×


22θ−1

1− 2θ
b1−2θ−ν+νθ, 0 < θ < 1/2,

b−ν/2 log b, θ = 1/2,
1

2θ − 1
b−ν(1−θ), 1/2 < θ < 1.

(A.3)

Second, to estimate ΥOL
2 , we change the variable as ξ = b1−θ − u1−θ to give dξ = −(1 −

θ)u−θdu. Therefore,

ΥOL
2 =

∫ b

b/2

u−2θdu

1 + (b1−θ − u1−θ)ν
=

∫ b1−θ−(b/2)1−θ

0

u−θdξ

(1 + ξν)(1− θ)

≤ (b/2)−θ

1− θ

∫ b1−θ

0

dξ

1 + ξν
.

Recall that for any ν > 0 and τ ≥ 1,

∫ τ

0

dξ

1 + ξν
≤ 1 +

∫ τ

1

ξ−νdξ ≤


1 + τ1−ν−1

1−ν
≤ 1

1−ν
τ 1−ν , 0 < ν < 1,

1 + log τ, ν = 1,

1 + 1−τ1−ν

ν−1
≤ ν

ν−1
, ν > 1.

(A.4)

Therefore,

ΥOL
2 ≤


2θ

(1− θ)(1− ν)
b1−2θ−ν+νθ, 0 < ν < 1,

2θ

1−θ

(
1

log 2
+ 1− θ

)
b−θ log b, ν = 1,

2θν
(1−θ)(ν−1)

b−θ, ν > 1.

(A.5)

Now we merge (A.3) and (A.5) to derive (A.1). Note that the bounds of ΥOL
1 are divided

according to θ, while the bounds of ΥOL
2 are divided according to ν, so the merging appears

complicated. Figure 5 provides a clear picture.

• Case 1: ν/(ν + 1) ≤ θ < 1 and θ > 1/2. This corresponds to Regime 1 in Figure
5, including the boundary BD but excluding line segment AB and point B. Below
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we show that ω = −ν(1 − θ). In fact, now ΥOL
1 ≤ (1 − 2θ−1)−ν(2θ − 1)−1b−ν(1−θ).

When 0 < ν < 1, θ > 1/2 implies 1 − 2θ − ν + νθ < −ν(1 − θ), so ΥOL
2 ≤

2θ(1− θ)−1(1− ν)−1b−ν(1−θ). When ν = 1, recall that

max
1≤u<∞

u−a log u =
1

ea
, for any a > 0, (A.6)

where the maximum is achieved at u = e1/a. Since θ > 1/2, b−θ+(1−θ) log b ≤ 1
e(2θ−1)

,
and we have

ΥOL
2 ≤ 2θ

1− θ

(
1

log 2
+ 1− θ

)
b−(1−θ)

e(2θ − 1)
.

When ν > 1, the condition ν/(ν + 1) ≤ θ implies −θ ≤ −ν(1 − θ), so ΥOL
2 ≤

2θν(1− θ)−1(ν − 1)−1b−ν(1−θ). We have proved that∫ b

1

u−2θdu

1 + (b1−θ − u1−θ)ν
= ΥOL

1 +ΥOL
2 ≤ COL

0 b−ν(1−θ),

with

COL
0 =

(1− 2θ−1)−ν

(2θ − 1)
+


2θ(ν + 1)

(1− θ)|1− ν|
, ν > 0 and ν 6= 1,

2θ

(1− θ)(e(2θ − 1))

(
1

log 2
+ 1− θ

)
, ν = 1.

(A.7)

• Case 2: ν > 1 and 0 < θ < ν/(ν + 1). This corresponds to Regime 2 in Figure 5,
excluding the boundaries BC and BD. Below we show that ω = −θ. In fact, in this
regime ΥOL

2 ≤ 2θν(1 − θ)−1(ν − 1)−1b−θ. When 0 < θ < 1/2, 1 − 2θ − ν + νθ =

−θ+ (1− θ)(1− ν) < −θ, so ΥOL
1 ≤ 22θ−1

(1−2θ−1)ν(1−2θ)
b−θ. When θ = 1/2, we use (A.6)

to see b− ν
2
+ 1

2 log b ≤ 2
e(ν−1)

, so ΥOL
1 ≤ (1 − 2θ−1)−ν 2

e(ν−1)
b−θ. When 1/2 < θ < 1,

θ < ν/(ν + 1) implies −ν(1 − θ) < −θ, so ΥOL
1 ≤ (1 − 2θ−1)−ν(2θ − 1)−1b−θ. We

have proved that ∫ b

1

u−2θdu

1 + (b1−θ − u1−θ)ν
= ΥOL

1 +ΥOL
2 ≤ COL

0 b−θ,

with

COL
0 =

2θν

(1− θ)(ν − 1)
+

1

(1− 2θ−1)ν
×


22θ−1/(1− 2θ), 0 < θ < 1/2,

2
e(ν−1)

, θ = 1/2,

1/(2θ − 1), 1/2 < θ < 1.

(A.8)
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• Case 3: 0 < θ < 1/2 and 0 < ν < 1. This corresponds to Regimes 3 and 4 in
Figure 5, including Arc AC but excluding boundaries AB, BC, and point B. Now it
is obvious that ΥOL

1 +ΥOL
2 ≤ COL

0 b1−2θ−ν+νθ, with

COL
0 =

22θ−1

(1− 2θ−1)ν(1− 2θ)
+

2θ

(1− θ)(1− ν)
. (A.9)

• Case 4: θ = 1/2 and 0 < ν ≤ 1. This corresponds to line segment AB, including
point B. Now −ν(1− θ) = −ν/2, b−ν/2 log b ≥ b−θ log b ≥ b−θ log 2, and 1− 2θ− ν+

νθ = −ν(1− θ). So

ΥOL
2 ≤ b−ν(1−θ)(log b)×


2θ

1− θ

(
1

log 2
+ 1− θ

)
, ν = 1,

2θ

(1− θ)(1− ν) log 2
, 0 < ν < 1,

and ΥOL
1 ≤ (1− 2θ−1)−νb−ν/2 log b. So, ΥOL

1 +ΥOL
2 ≤ COL

0 b−ν(1−θ) log b with

COL
0 ≤ 1

(1− 2θ−1)ν
+


2θ

1− θ

(
1

log 2
+ 1− θ

)
, ν = 1,

2θ

(1− θ)(1− ν) log 2
, 0 < ν < 1.

(A.10)

• Case 5: ν = 1 and 0 < θ < 1/2. This corresponds to line segment BC, excluding
point B. In this case, 1− 2θ − ν + νθ = −θ. So ΥOL

1 +ΥOL
2 ≤ COL

0 b−θ log b with

COL
0 =

2θ

1− θ

(
1

log 2
+ 1− θ

)
+

22θ−1

(1− 2θ−1)ν(1− 2θ) log 2
. (A.11)
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