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Abstract

Kernel-based learning algorithms have been extensively studied over the past two decades
for their successful applications in scientific research and industrial problem-solving. In
classical kernel methods, such as kernel ridge regression and support vector machines, an
unregularized offset term naturally appears. While its importance can be defended in some
situations, it is arguable in others. However, it is commonly agreed that the offset term in-
troduces essential challenges to the optimization and theoretical analysis of the algorithms.
In this paper, we demonstrate that kernel ridge regression (KRR) with an offset is closely
connected to regularization schemes involving centered reproducing kernels. With the aid
of this connection and the theory of centered reproducing kernels, we will establish general-
ization error bounds for KRR with an offset. These bounds indicate that the algorithm can
achieve minimax optimal rates.
Keywords: Centered reproducing kernels; regularized least squares; offset; minimax opti-
mal rate.

1 Introduction
Kernel methods, with kernel ridge regression, support vector machines and kernel principal
component analysis being the most typical examples, play important roles in nonlinear data
analysis [24, 25, 19, 18, 7]. They have been used in many machine learning tasks such as
classification, regression, clustering, and dimension reduction. Their success in a variety real
applications has inspired extensive research in this topic in the last two decades.

In supervised learning, let X be the input space, Y be the output space, and assume the input
variable x ∈ X and output variable y ∈ Y are linked via an unknown probability measure ρ on
X × Y. Given a data set of N observations D = {(xi, yi) : i = 1, . . . , N} sampled independently
and identically distributed according to ρ, a machine learning algorithm aims to learning a
function that can predict the value y for any x ∈ X as accurate as possible. Given a reproducing
kernel K, denote by HK the corresponding reproducing kernel Hilbert space and ‖·‖K the norm
on HK . A kernel based learning algorithm with an unregularized offset takes the form

(fD,λ, bD,λ) = arg min
f∈HK
b∈R

{
1

N

N∑
i=1

L(yi, f(xi) + b) + λ‖f‖2K

}
,

∗corresponding author
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where L is a loss function measuring the error made when f(x)+b is used to predict the value y
and λ > 0 is the regularization parameter that trades off the fitting error and model complexity.
The constant term b is called offset (or bias, threshold) and is usually not regularized in the
traditional formula of kernel learning algorithms. It appears naturally and is clearly necessary
in linear model based learning such as ridge regression and linear support vector machines.
When nonlinear reproducing kernels are used, its importance seems arguable. It is observed
that the offset may play a crucial role in spline based regression if the kernel is only positive
semidefinite or in text processing applications where the distribution of labels is typically uneven.
From an approximation perspective, however, the offset term seems unnecessary if the kernel is
universal, i.e., the reproducing kernel Hilbert space HK is sufficiently rich and can approximate
any function well. Nevertheless, it is commonly agreed that the offset term brings essential
difficulty to the optimization and theoretically analysis of these algorithms [6, 26, 4, 32]. In this
paper we focus on the regression problem. As the kernel ridge regression without an offset term
has been well studied in the literature, we will consider the kernel ridge regression with offset,
study its similarity to and difference from the no-offset algorithm, and derive its generalization
error bounds.

A main tool for our analysis is the theory of centered reproducing kernels. Centered kernel
matrix is closely related to the empirical covariance operator and arises naturally in kernel
principal component analysis and other kernel based dimension reduction algorithms [23, 31].
Centered kernel alignment was found beneficial in kernel based regression, classification, pairwise
learning, as well multiple kernel clustering [5, 14, 30, 2, 28, 29].

The two main contributions of this paper are as follows. (i) We will build a connection
between the kernel ridge regression with offset and regularization schemes with centered repro-
ducing kernels. (ii) By the aid of centered reproducing kernel theory we derive the generalization
bounds for KRR with offset and verify it achieves minimax optimal learning rate.

The rest of this paper will be arranged as follows. In Section 2 we will introduce the
algorithm for KRR with offset, discuss its relation to centered reproducing kernels, and state
our main theorem as well as the key ideas towards its proof. In Section 3 we provide properties
of centered reproducing kernels that play essential roles in our analysis. The proof of the main
theorem is given in Sections 4-6, where some preliminary lemmas are stated in 4 while Sections
5 and 6 are devoted to present our technical analysis. We close with some concluding remarks
in Section 7.

2 Kernel ridge regression with offset
In this paper, we set Y ⊂ R and use the least squares loss L(y, t) = (y − t)2. The algorithm for
KRR with offset can be written as

(fD,λ, bD,λ) = arg min
f∈HK
b∈R

{
1

N

N∑
i=1

(f(xi) + b− yi)
2 + λ‖f‖2K

}
. (1)

Our primary purpose is to understand how well the solution fD,λ + bD,λ can approximate the
mean regression function

fρ(x) = E[y|x] =
∫
Y
ydρ(y|x),

where ρ(y|x) is the conditional distribution of y for a given x ∈ X.
By the well known representer theorem, fD,λ ∈ span{Kxi , 1 ≤ i ≤ N}, so we write

fD,λ =
N∑
i=1

ciKxi ,
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where Kxi = K(xi, ·). Let K = [K(xi, xj)]
N
i,j=1 be the kernel matrix defined on the sampled

input values x = {x1, . . . , xN}, IN denote the identity matrix on RN , e = 1√
N
(1, . . . , 1)⊤ ∈ RN ,

and Pe = ee⊤ be the orthogonal projection operator. By simple calculation we can verify that
the solution of (1) is given by

c = (c1, · · · , cN )⊤

= (IN − Pe)(λNIN + (IN − Pe)K(IN − Pe))
−1(IN − Pe)y

bD,λ =
1

N

N∑
i=1

yi −
1

N

N∑
i=1

fD,λ(xi).

Note that (IN − Pe)K(IN − Pe) is the centered kernel matrix, which naturally motivates the
potential relation between KRR with offset and centered reproducing kernels. To investigate
this relationship, we define an empirically centered reproducing kernel

K̂(x, u) = K(x, u)− 1

N

N∑
i=1

K(x, xi)−
1

N

N∑
i=1

K(xi, u) +
1

N2

N∑
i=1

N∑
j=1

K(xi, xj),

and an associated regularization scheme

(f̂D,λ, b̂D,λ) = arg min
f∈H

K̂
b∈R

{
1

N

N∑
i=1

(f(xi) + b− yi)
2 + λ‖f‖2

K̂

}
. (2)

Let K̂ be the kernel matrix corresponding to K̂. Obviously, K̂ = (IN − Pe)K(IN − Pe). Again,
by the representer theorem and the properties of quadratic function we have

f̂D,λ =

N∑
i=1

ĉiK̂xi ,

with
ĉ = (ĉ1, ..., ĉN )⊤ =

(
λNIN + K̂

)−1
(IN − Pe)y,

and b̂D,λ = 1
N

∑N
i=1 yi. It is easy to verify that ĉ = c and

∑N
i=1 ĉi = 0. They together with the

definition of K̂ imply the equivalence between (1) and (2).

Proposition 2.1. We have

f̂D,λ = fD,λ − 1

N

N∑
i=1

fD,λ(xi).

Consequently,
f̂D,λ + b̂D,λ = fD,λ + bD,λ.

The data dependent feature of K̂ makes it inappropriate to characterize the approximation
ability of the algorithm. To overcome this difficulty and for theoretical analysis purpose, we
define a population version of the centered kernel as

K̄(x, u) = K(x, u)− Eξ[K(ξ, u)]− Eξ′ [K(x, ξ′)] + Eξ,ξ′ [K(ξ, ξ′)],

and denote K̄ the corresponding kernel matrix. Define mean value of y as b̄ = E[y] = E[fρ(x)]
and the centered response values by ȳi = yi − b̄. Then D̄ = {(xi, ȳi) : i = 1, . . . , N} is a sample
of (x, ȳ = y − b̄) which corresponds to a centered regression function

f̄ρ(x) = E[y − b̄|x] = fρ(x)− b̄ = fρ(x)−
∫
X×Y

ydρ(x, y).
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Define

f̄D,λ = arg min
f∈HK̄

{
1

N

N∑
i=1

(f(xi)− ȳi)
2 + λ‖f‖2K̄

}
. (3)

Note that both the kernel K̄ and sample D̄ are not computable, so f̄D,λ is not computable
either. But since ȳi ≈ yi − b̂D,λ and K̄ ≈ K̂, we would expect f̄D,λ is close to for f̂D,λ and
thus is able to serve as a good bridge to our theoretical analysis of KRR with offset. Our error
bound analysis will be based on the follow error decomposition:

‖fD,λ + bD,λ − fρ‖ρ =
∥∥∥f̂D,λ + b̂D,λ − fρ

∥∥∥
ρ
=
∥∥∥f̂D,λ + b̂D,λ − f̄ρ − b̄

∥∥∥
ρ

≤
∥∥∥f̂D,λ − f̄D,λ

∥∥∥
ρ
+
∥∥f̄D,λ − f̄ρ

∥∥
ρ
+
∣∣∣b̂D,λ − b̄

∣∣∣ , (4)

where ‖ · ‖ρ denotes the L2
ρX

norm.
Now we state our assumptions and error bounds. Define the integral operator associated to

the kernel K by
LKf(x) =

∫
X
K(x, u)f(u)dρX(u).

It defines a symmetric, positive, and compact operator both on L2
ρX

and on HK . We also
analogously define the integral operator associated to K̄. Our first assumption requires that f̄ρ
be well approximated by HK̄ . We adopt classical source condition in the interpolation space,

f̄ρ = Lr
K̄ h̄ρ, for some h̄ρ in L2

ρX
(X) and r > 0. (5)

The second condition is on the capacity of the reproducing kernel Hilbert space as measured by
the effective dimension. We assume the effective dimension of LK satisfies

NLK
(λ) := Tr

(
LK (LK + λI)−1

)
≤ C0λ

−s, (6)

for some C0 ≥ 1 and s > 0. From Theorem 3.1, (6) implies NLK̄
(λ) ≤ C0λ

−s. With the
assumptions above, we have the following error bounds.

Theorem 2.2. Assume |y| ≤ M almost surely, (5) holds with some 0 < r ≤ 1 and (6) holds
with some 0 < s < 1.

(i) If 1
2 ≤ r ≤ 1, then with the choice λ = N− 1

2r+s we have

E
[
‖f̂D,λ + b̂D,λ − fρ‖ρ

]
≤ C∗

1N
− r

2r+s ;

(ii) If 0 < r < 1
2 , then with the choice λ = N− 1

1+s we have

E
[
‖f̂D,λ + b̂D,λ − fρ‖ρ

]
≤ C∗

2N
− r

1+s ,

where C∗
1 and C∗

2 , are constant independent of D,N, or λ and will be specified in the proof.

Remark: It is proved in [1] that, under a similar source condition fρ ∈ Lr
K(L2

PX
) (which is

almost equivalent to the assumption (5)) and the assumption (6), the minimax optimal rate of
learning fρ by KRR without offset is O(n− r

2r+s ). As a result, under the source condition (5)
and (6) the minimax rate of learning f̄ρ by the centered kernel K̄ via the scheme (3) is also
O(n− r

2r+s ). Theorem 2.2 shows that KRR with offset can also reach the minimax optimal rate
if 1

2 ≤ r ≤ 1.
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3 Centered reproducing kernels
One easily verifies that LK̄ = (I − P )LK(I − P ), where P is the orthogonal projection on
the subspace in L2

ρX
spanned by constant functions. Recall that LK is compact and positive

semi-definite on L2
ρX

, and so is LK̄ .

Theorem 3.1. Let λ1 ≥ λ2 ≥ · · · ≥ 0 be the eigenvalues of LK , and λ̄1 ≥ λ̄2 ≥ · · · ≥ 0 be the
eigenvalues of LK̄ . We count multiplicity for both eigenvalue sequences. One has the interlacing
relationship

λ1 ≥ λ̄1 ≥ λ2 ≥ λ̄2 ≥ · · ·λn ≥ λ̄n ≥ · · · .

Consequently, for any 0 < s < 1,

NLK
(λ)− λ1

λ1 + λ
≤ NLK̄

(λ) ≤ NLK
(λ),

and therefore, as λ ↓ 0,

NLK
(λ) = O(λ−s) ⇐⇒ NLK̄

(λ) = O(λ−s).

Proof. This is a direct corollary of the Cauchy interlacing theorem in linear algebra. See for
example, [10, page 242]. We give a proof for the sake of completeness. For n ≥ 0, denote En

a subspace of L2
ρX

with dimension n. In particular, E0 = {0}. For n ≥ 1, we use the min-max
theorem to have

λ̄n = inf
En−1

sup
x∈E⊥

n−1\{0}

〈x, (I − P )LK(I − P )x〉ρ
‖x‖2ρ

= inf
En−1

sup
x∈(En−1∪{1})⊥\{0}

〈x, LKx〉ρ
‖x‖2ρ

≤ inf
En−1

sup
x∈E⊥

n−1\{0}

〈x, LKx〉ρ
‖x‖2ρ

= λn.

On the other hand, for any subspace En−1 of L2
ρX

,

sup
x∈(En−1∪{1})⊥\{0}

〈x, LKx〉ρ
‖x‖2ρ

≥ inf
v

sup
x∈(En−1∪{v})⊥\{0}

〈x, LKx〉ρ
‖x‖2ρ

≥ inf
En

sup
x∈E⊥

n \{0}

〈x, LKx〉ρ
‖x‖2ρ

= λn+1,

which implies that λ̄n ≥ λn+1. This verifies the interlacing relation. Therefore,

NLK
(λ)− λ1

λ1 + λ
≤ NLK̄

(λ) ≤ NLK
(λ).

The proof is complete.

In the following lemma, we state the relationship between K̂ and K̄.

Lemma 3.2. For K̂ and K̄, we have the following assertions.

(i) If we take the maps K 7→ K̄ and K 7→ K̂ as transformations of kernels and denote them
by ·̂ and · , respectively, then we have the following relations:

ˆ̄K = K̂,
¯̂
K = K̄, ¯̄K = K̄,

ˆ̂
K = K̂. (7)
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(ii) The associated kernel matrices satisfy

K̂ = (IN − Pe)K̄(IN − Pe), (8)

As a result, we have

K̂e = 0. (9)

So e is an eigenvector of K̂ associated with the eigenvalue 0.

Proof. For item (i) we only prove ¯̂
K = K̄. Other relations in (7) follow from similar calculation.

Note that

¯̂
K(s, t) = K̂(s, t)−

∫
X
K̂(ξ, t)dρX(ξ)

−
∫
X
K̂(s, ξ

′
)dρX(ξ

′
) +

∫
X×X

K̂(ξ, ξ
′
)dρX(ξ)dρX(ξ

′
)

= K(s, t)− 1

N

N∑
i=1

K(xi, t)−
1

N

N∑
i=1

K(s, xi) +
1

N2

N∑
p,q=1

K(xp, xq)

−

(∫
X
K(ξ, t)dρX(ξ)− 1

N

N∑
i=1

K(xi, t)

− 1

N

N∑
i=1

∫
X
K(ξ, xi)dρX(ξ) +

1

N2

N∑
p,q=1

K(xp, xq)


−

(∫
X
K(s, ξ

′
)dρX(ξ

′
)− 1

N

N∑
i=1

∫
X
K(xi, ξ

′
)dρX(ξ

′
)

− 1

N

N∑
i=1

K(s, xi) +
1

N2

N∑
p,q=1

K(xp, xq)


+

(∫
X×X

K(ξ, ξ
′
)dρX(ξ)dρX(ξ

′
)− 1

N

N∑
i=1

∫
X
K(xi, ξ

′
)dρX(ξ

′
)

− 1

N

N∑
i=1

∫
X
K(ξ, xi)dρX(ξ) +

1

N2

N∑
p,q=1

K(xp, xq)


= K(s, t)−

∫
X
K(ξ, t)dρX(ξ)−

∫
X
K(s, ξ

′
)dρX(ξ

′
)

+

∫
X×X

K(ξ, ξ
′
)dρX(ξ)dρX(ξ′)

= K̄(s, t).

We obtain ¯̂
K = K̄ in (7).

6



For item (ii), note

PeK̄ =
1√
N

e

(
N∑
i=1

K̄(xi, x1),
N∑
i=1

K̄(xi, x2), ...,
N∑
i=1

K̄(xi, xN )

)
,

K̄Pe =
1√
N

(
N∑
i=1

K̄(x1, xi),

N∑
i=1

K̄(x2, xi), ...,

N∑
i=1

K̄(xN , xi)

)⊤

e⊤,

PeK̄Pe =

 1

N

N∑
i,j=1

K̄(xi, xj)

 ee⊤.

We can verify (8) by comparing each entry of both sides of the equation. In particular, note
that ˆ̄K = K̂ = (IN − Pe)K(IN − Pe) is the kernel matrix of ˆ̄K = K̂. Equation (9) follows from
(8) and the simple fact (IN − Pe) e = e− e = 0.

4 Useful preliminary lemmas
In this section we collect some useful preliminary lemmas that will be used in the proof of our
main result. The first one is a well known concentration inequality. It is derived by simple
calculation.

Lemma 4.1. Let ξ be a random variable on a Hilbert space and {ξi}Ni=1 be a sample of N
observations drawn independently for ξ. If ‖ξ‖ ≤ M almost surely, then

E

[∥∥∥∥∥ 1

N

N∑
i=1

ξi − E[ξ]

∥∥∥∥∥
]
≤ M√

N
.

The following lemma allows to obtain expectation bound from probabilistic bound. It is
well known and a detailed proof can be found in [9].

Lemma 4.2. Let ξ be positive random variable. If there are constants a > 0, b > 0, τ > 0 such
that for any 0 < δ ≤ 1, with confident at least 1 − δ, there holds ξ ≤ a(log b

δ )
τ , then for any

θ > 0 we have E[ξθ] ≤ aθbΓ(τθ + 1).

For a Mercer kernel K, define the sampling operator Sx : HK 7→ RN by Sxf = (f(x1), . . . , f(xn))
⊤.

Its adjoint operator is S∗
x : RN 7→ HK defined by S∗

xa =
∑N

i=1 aiKxi for a = (a1, . . . , aN ) ∈ RN .
Then LK,x = 1

N S∗
xSx is a positive symmetric operator on HK such that

LK,xf =
1

N

N∑
i=1

f(xi)Kxi .

It is an empirical version of the integral operator LK . It is useful to notice that for any a ∈ RN

we have

LK,x

 N∑
j=1

ajKxj

 =
1

N
S∗
x (Ka) ,

and hence∥∥∥∥∥∥L1/2
K,x

 N∑
j=1

ajKxj

∥∥∥∥∥∥
K

=

〈
N∑
j=1

ajKxj , LK,x

 N∑
j=1

ajKxj

〉
K

=
1

N
a⊤K2a.
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We can analogously define LK̄,x for the centered kernel K̄.
We need the following two quantities:

QD,λ = ‖(LK + λI)1/2(LK,x + λI)−1/2‖op(K),

and
Q̄D,λ = ‖(LK̄ + λI)1/2(LK̄,x + λI)−1/2‖op(K̄),

where ‖ · ‖op(K) represents the operator norm on HK and ‖ · ‖op(K̄) is the operator norm on HK̄ .
The following lemma can be found in [1, 8, 13, 3].

Lemma 4.3. For each 0 < δ < 1, we have with probability at least 1− δ

Q2
D,λ ≤ 2

(
2(κ2 + κ)AD,λ log(2/δ)√

λ

)2

+ 2,

where

AD,λ =
1

N
√
λ
+

√
NLK

(λ)√
N

.

We apply Theorem 3.1 to obtain

1

N
√
λ
+

√
NLK̄

(λ)
√
N

≤ AD,λ.

Moreover, √
sup
x∈X

K̄(x, x) ≤ 2κ.

So we can obtain the following estimation for Q̄D,λ by adapting Lemma 4.3 for the kernel K̄.

Lemma 4.4. For any 0 < δ < 1, we have with probability at least 1− δ,

Q̄2
D,λ ≤ 2

(
4(2κ2 + κ)AD,λ log(2/δ)√

λ

)2

+ 2. (10)

Consequently, for any α > 0,

E
[
Q̄α

D,λ

]
≤

(
8(2κ+ 1)4

(
A2

D,λ

λ
+ 1

))α
2

2Γ(α+ 1). (11)

Proof. As we already mentioned, the bound (10) is an easy adaption of Lemma 4.3 for K̄. Note
that 2 log(2/δ) > 1 for 0 < δ < 1. So we have with probability 1− δ,

Q̄2
D,λ ≤ 8(2κ+ 1)4

(
A2

D,λ

λ
+ 1

)(
log

2

δ

)2

.

Then the estimation (11) follows from Lemma 4.2. This finishes the proof.

To carry out the error analysis, we need to treat the difference between two invertible
operators on a Banach space. The following lemma from [13] will be useful.

Lemma 4.5. Let A and B be two invertible operators on a Banach space. We have

A−1 −B−1 = B−1 (B −A)A−1 = A−1(B −A)B−1 (12)

and

A−1 −B−1 = B−1(B −A)B−1 +B−1(B −A)A−1(B −A)B−1.

8



5 Error analysis when f̄ρ is in HK̄

We are going to conduct the error analysis and derive the error bound in our main result,
Theorem 2.2. Recall the error decomposition in (4). The second term on the right hand side
can be easily bounded by the studies on KRR without offset in the literature. The last term is
the difference between the sample mean and expected value of the response variable y and thus
can be bounded easily. So our main effort will be on a technical treatment of the first term.
Note that f̄ρ ∈ HK̄ when r ≥ 1

2 while f̄ρ is not in HK̄ when r < 1
2 . The estimation techniques

are different for these two cases. In this section we consider r ≥ 1
2 first and we will move to

r < 1
2 in the next section.

5.1 Bounding the difference between f̂D,λ and f̄D,λ

Notice that the solution to (3) takes the form

f̄D,λ =

N∑
i=1

c̄iK̄xi ,

with the coefficients

c̄ = (c̄1, ..., c̄N )⊤ =
(
λNIN + K̄

)−1
ȳ,

where ȳ = (ȳ1, . . . , ȳN )⊤ = y −
√
N b̄e.

In the sequel, for notational simplicity, we write Ḡ = 1
N K̄ and Ĝ = 1

N K̂. By the preliminary
fact (IN − Pe) e = e−e = 0, we have (IN −Pe)ȳ = (IN −Pe)y. Note further that Pe commutes
with K̂. We can now rewrite

ĉ =
1

N
(IN − Pe)

(
Ĝ+ λIN

)−1
ȳ, (13)

c̄ =
1

N

(
Ḡ+ λIN

)−1
ȳ. (14)

By K̂ = ˆ̄K in (7) and
∑N

i=1 ĉi = 0 we verify that

f̂D,λ =

N∑
i=1

ĉi

K̄xi −
1

N

N∑
j=1

K̄xj −
1

N

N∑
j=1

K̄(xi, xj) +
1

N2

∑
1≤p,q≤N

K̄(xp, xq)


=

N∑
i=1

ĉiK̄xi −
1

N

N∑
i=1

N∑
j=1

ĉiK̄(xi, xj).

Thus we can decompose

f̂D,λ − f̄D,λ =
N∑
i=1

(ĉi − c̄i) K̄xi −
1

N

N∑
i=1

N∑
j=1

ĉiK̄(xi, xj) =: J1 − J2. (15)

Note that J1 is a function in HK̄ and J2 is a constant.

Lemma 5.1. Let ỹ = 1√
N
(y1 − fρ(x1), . . . , yN − fρ(xN ))⊤ ∈ RN . Assume f̄ρ ∈ HK̄ . We have∥∥∥∥∥

N∑
i=1

(ĉi − c̄i) K̄xi

∥∥∥∥∥
ρ

≤ B̄x,λ

(∣∣∣e⊤ (Ḡ+ λIN
)−1

ỹ
∣∣∣+ 1√

λ

∥∥f̄ρ∥∥K̄) , (16)
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with B̄x,λ = Q̄D,λ

(
3
√
λ
∥∥Ḡ1/2e

∥∥
2
+ 2

∥∥Ḡ1/2e
∥∥2
2

)
and∥∥∥∥∥

N∑
i=1

(ĉi − c̄i) K̄xi

∥∥∥∥∥
K̄

≤ 2
∥∥∥Ḡ1/2e

∥∥∥
2

(∣∣∣e⊤ (Ḡ+ λIN
)−1

ỹ
∣∣∣+ 1√

λ

∥∥f̄ρ∥∥K̄) .

Proof. Note that∥∥∥∥∥
N∑
i=1

(ĉi − c̄i) K̄xi

∥∥∥∥∥
ρ

=

∥∥∥∥∥L1/2

K̄

(
N∑
i=1

(ĉi − c̄i) K̄xi

)∥∥∥∥∥
K̄

≤

∥∥∥∥∥(LK̄ + λI)1/2
(

N∑
i=1

(ĉi − c̄i) K̄xi

)∥∥∥∥∥
K̄

≤ Q̄D,λ

∥∥∥∥∥(LK̄,x + λI
)1/2 N∑

i=1

(ĉi − c̄i) K̄xi

∥∥∥∥∥
K̄

= Q̄D,λ

√
(ĉ− c̄)

(
1

N
K̄2 + λK̄

)
(ĉ− c̄)

≤ Q̄D,λ

(∥∥∥∥ 1√
N

K̄ (ĉ− c̄)

∥∥∥∥
2

+
√
λ
∥∥∥K̄1/2(ĉ− c̄)

∥∥∥
2

)
:= Q̄D,λ

(
Υ1 +

√
λΥ2

)
. (17)

By the expression of ĉ in (13) and c̄ in (14), we have

Υ1 =

∥∥∥∥Ḡ [(IN − Pe)
(
Ĝ+ λIN

)−1
−
(
Ḡ+ λIN

)−1
]

1√
N

ȳ

∥∥∥∥2
2

.

Recall that

(IN − Pe)(Ḡ− Ĝ) = (IN − Pe)(PeḠ+ ḠPe − PeḠPe) = (IN − Pe)ḠPe.

By (12) and noting the facts Pe commutes with Ĝ and (IN − Pe)
2 = (IN − Pe), we obtain

(IN − Pe)(Ĝ+ λIN )−1 − (Ḡ+ λIN )−1

=(IN − Pe)[Ĝ+ λIN )−1 − (Ḡ+ λIN )−1]− Pe(Ḡ+ λIN )−1

=(IN − Pe)(Ĝ+ λIN )−1(IN − Pe)[Ḡ− Ĝ](Ḡ+ λIN )−1 − Pe(Ḡ+ λIN )−1

=(IN − Pe)(Ĝ+ λIN )−1ḠPe(Ḡ+ λIN )−1 − Pe(Ḡ+ λIN )−1.
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Therefore,

Ḡ

[
(IN − Pe)

(
Ĝ+ λIN

)−1
−
(
Ḡ+ λIN

)−1
]

1√
N

ȳ

= Ḡ (IN − Pe)
(
Ĝ+ λIN

)−1
ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ − ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ

= (IN − Pe) Ḡ (IN − Pe)
(
Ĝ+ λIN

)−1
ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ

− ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ + PeḠ (IN − Pe)
(
Ĝ+ λIN

)−1
ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ

=

(
Ĝ
(
Ĝ+ λIN

)−1
− IN

)
ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ

+ PeḠ (IN − Pe)
(
Ĝ+ λIN

)−1
ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ

= − λ
(
Ĝ+ λIN

)−1
ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ

+ PeḠ (IN − Pe)
(
Ĝ+ λIN

)−1
ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ

=:Υ11 +Υ12.

For Υ11, note that by (8) we have∥∥∥∥(Ĝ+ λIN

)−1/2
(IN − Pe) Ḡ

1/2

∥∥∥∥
2

=

∥∥∥∥(Ĝ+ λIN

)−1/2
(IN − Pe) Ḡ (IN − Pe)

(
Ĝ+ λIN

)−1/2
∥∥∥∥1/2
2

=

∥∥∥∥(Ĝ+ λIN

)−1/2
Ĝ
(
Ĝ+ λIN

)−1/2
∥∥∥∥1/2
2

≤ 1.

So,

‖Υ11‖2 ≤
√
λ

∥∥∥∥(Ĝ+ λIN

)−1/2
Ḡ1/2

∥∥∥∥
2

∥∥∥Ḡ1/2e
∥∥∥
2

∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣
≤

√
λ

∥∥∥∥(Ĝ+ λIN

)−1/2
(IN − Pe) Ḡ

1/2

∥∥∥∥
2

∥∥∥Ḡ1/2e
∥∥∥
2

∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣
+
√
λ

∥∥∥∥(Ĝ+ λIN

)−1/2
PeḠ

1/2

∥∥∥∥
2

∥∥∥Ḡ1/2e
∥∥∥
2

∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣
≤
(√

λ
∥∥∥Ḡ1/2e

∥∥∥
2
+
∥∥∥Ḡ1/2e

∥∥∥2
2

) ∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣ .
For Υ12, we have

‖Υ12‖2 ≤
∥∥∥Ḡ1/2e

∥∥∥
2

∥∥∥∥Ḡ1/2 (IN − Pe)
(
Ĝ+ λIN

)−1
Ḡ1/2

∥∥∥∥
2

∥∥∥Ḡ1/2e
∥∥∥
2

×
∣∣∣∣e⊤ (Ḡ+ λIN

)−1 1√
N

ȳ

∣∣∣∣
≤
∥∥∥Ḡ1/2e

∥∥∥2
2

∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣ .
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Combining the estimation for Υ11 and Υ12 we obtain

Υ1 ≤
(√

λ
∥∥∥Ḡ1/2e

∥∥∥
2
+ 2

∥∥∥Ḡ1/2e
∥∥∥2
2

) ∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣ .
For Υ2, note that∥∥∥∥Ḡ1/2

(
Ĝ+ λIN

)−1
(IN − Pe) Ḡ

1/2

∥∥∥∥
2

=

∥∥∥∥Ḡ1/2 (IN − Pe)
(
Ĝ+ λIN

)−1/2 (
Ĝ+ λIN

)−1/2
(IN − Pe) Ḡ

1/2

∥∥∥∥
2

=

∥∥∥∥(Ĝ+ λIN

)−1/2
Ĝ
(
Ĝ+ λIN

)−1/2
∥∥∥∥2
2

≤ 1. (18)

We have

Υ2 ≤
∥∥∥∥Ḡ1/2Pe

(
Ḡ+ λIN

)−1 1√
N

ȳ

∥∥∥∥
2

+

∥∥∥∥Ḡ1/2
(
Ĝ+ λIN

)−1
(IN − Pe) ḠPe

(
Ḡ+ λIN

)−1 1√
N

ȳ

∥∥∥∥
≤ 2

∥∥∥Ḡ1/2e
∥∥∥
2

∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣ .
Plugging the estimation for Υ1 and Υ2 into (17), we obtain∥∥∥∥∥

N∑
i=1

(ĉi − c̄i) K̄xi

∥∥∥∥∥
ρ

≤ Q̄D,λ

(
3
√
λ
∥∥∥Ḡ1/2e

∥∥∥
2
+ 2

∥∥∥Ḡ1/2e
∥∥∥2
2

) ∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣ . (19)

Since 1√
N
ȳ = ỹ + 1√

N
S̄xf̄ρ, we have∣∣∣∣e⊤ (Ḡ+ λIN

)−1 1√
N

ȳ

∣∣∣∣ ≤ ∣∣∣e⊤ (Ḡ+ λIN
)−1

ỹ
∣∣∣+ ∣∣∣∣e⊤ (Ḡ+ λIN

)−1 1√
N

S̄xf̄ρ

∣∣∣∣ .
By ∥∥∥∥(Ḡ+ λIN

)−1/2 1√
N

S̄xf̄ρ

∥∥∥∥2
2

=

〈(
Ḡ+ λIN

)−1/2 1√
N

S̄xf̄ρ,
(
Ḡ+ λIN

)−1/2 1√
N

S̄xf̄ρ

〉
2

=
1

N

〈
S̄∗
x

(
Ḡ+ λIN

)−1
S̄xf̄ρ, f̄ρ

〉
K̄

=
1

N

〈
S̄∗
x

(
1

N
S̄xS̄

∗
x + λIN

)−1

S̄xf̄ρ, f̄ρ

〉
K̄

=
1

N

〈(
1

N
S̄∗
xS̄x + λIN

)−1( 1

N
S̄∗
xS̄x + λIN

)
S̄∗
x

(
1

N
S̄xS̄

∗
x + λIN

)−1

S̄xf̄ρ, f̄ρ

〉
K̄

=

〈(
1

N
S̄∗
xS̄x + λIN

)−1 1

N
S̄∗
xS̄xf̄ρ, f̄ρ

〉
K̄

≤
∥∥f̄ρ∥∥2K̄ , (20)
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we obtain ∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣ ≤ ∣∣∣e⊤ (Ḡ+ λIN
)−1

ỹ
∣∣∣+ 1√

λ

∥∥f̄ρ∥∥K̄ .

Plugging this estimation into (19), we prove the bound in (16).
Note that ∥∥∥∥∥

N∑
i=1

(ĉi − c̄i)K̄xi

∥∥∥∥∥
K

=
√
(ĉ− c̄)⊤K̄(ĉ− c̄) = Υ2,

which has already been estimated above. We finish the proof of Lemma 5.1.

Lemma 5.2. For any vector η = (η1, ..., ηN )⊤ ∈ RN we have

E
[
|η⊤ỹ|

∣∣∣x] ≤ 2M‖η‖2√
N

.

Proof. For each i, recall ỹi = 1√
N
(yi − fρ(xi)). Note that E[ỹi|xi] = 1√

N
(E[yi|xi]− fρ(xi)) = 0.

Since |ỹi| ≤ 2M√
N

, by the independence between ȳi and ȳj , we have

E
[
|η⊤ỹ|2

∣∣∣x] = E

 N∑
i=1

N∑
j=1

ηiηj ỹiỹj

∣∣∣∣x
 = E

[
N∑
i=1

η2i ỹ
2
i

∣∣∣∣x
]
≤ 4M2‖η‖22

N
.

By Cauchy’s inequality E
[
|η⊤ỹ||x

]
≤
√
E [|η⊤ỹ|2|x] we obtain the desired bound.

Lemma 5.3. We have

E
[
e⊤Ḡe

]
≤ 4κ2

N
and E

[(
e⊤Ḡe

)2]
≤ 48κ4

N2
.

Consequently, by Hölder’s inequality, we have E[
∥∥Ḡ1/2e

∥∥r
2
] ≤

(
2κ√
N

)r
for any r ∈ (0, 2].

Proof. Since

e⊤Ḡe =
1

N2

N∑
i=1

N∑
j=1

K̄(xi, xj) =
1

N2

N∑
i=1

K̄(xi, xi) +
1

N2

N∑
i=1

N∑
j=1
j ̸=i

K̄(xi, xj),

and
E
[
K̄(xi, xj)|xi

]
= 0, for j 6= i, (21)

we have

Ee⊤Ḡe =
1

N2

N∑
i=1

E
[
K̄(xi, xi)

]
≤ (2κ)2

N
.

Write

(
e⊤Ḡe

)2
=

 1

N2

N∑
i=1

K̄(xi, xi) +
1

N2

N∑
i=1

N∑
j=1
j ̸=i

K̄(xi, xj)


2

=
1

N4


(

N∑
i=1

K̄(xi, xi)

)2

+ 2

(
N∑
i=1

K̄(xi, xi)

) N∑
k=1

N∑
l=1
l ̸=k

K̄(xk, xl)



+

 N∑
i=1

N∑
j=1
j ̸=i

K̄(xi, xj)


2 .
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By the degenerate property (21), we obtain

E

( N∑
i=1

K̄(xi, xi)

) N∑
k=1

N∑
l=1
l ̸=k

K̄(xk, xl)


 = 0,

and

E

 N∑
i=1

N∑
j=1
j ̸=i

K̄(xi, xj)


2

= E

 N∑
i=1

N∑
j=1
j ̸=i

N∑
k=1

N∑
l=1
l ̸=k

K̄(xi, xj)K̄(xk, xl)


= 2E

 N∑
i=1

N∑
j=1
j ̸=i

K̄(xi, xj)
2

 ≤ 32κ4N(N − 1).

Since (
N∑
i=1

K̄(xi, xi)

)2

≤ 16N2κ4,

we get

E
(
e⊤Ḡe

)2
≤ 48κ4

N2
.

This completes the proof.

Lemma 5.4. If |y| ≤ M almost surely and f̄ρ ∈ HK̄ , then

E
[
‖J1‖ρ

]
≤ C1

(
1 +

AD,λ√
λ

)(
1

N
√
λ
+

1√
N

+
1

Nλ
√
N

)
(22)

with some constant C1 independent of D, N or λ.

Proof. We estimate J1 according to (16). By the obvious bound
∥∥∥(Ḡ+ λIN

)−1
e
∥∥∥
2
≤ ∥e∥2

λ = 1
λ

and Lemma 5.2, we obtain

E
[∣∣∣e⊤ (Ḡ+ λIN

)−1
ỹ
∣∣∣ ∣∣∣∣x] = 2M2

λ
√
N

.

Thus,

E
[
‖J1‖ρ

]
= E

[
E
[
‖J1‖ρ

∣∣∣x]]
≤ E

[
B̄x,λ

(
E
[∣∣∣e⊤ (Ḡ+ λIN

)−1
ỹ
∣∣∣ ∣∣∣∣x]+ 1√

λ

∥∥f̄ρ∥∥K̄)]
≤ E

[
B̄x,λ

]( 2M2

√
Nλ

+

∥∥f̄ρ∥∥K̄√
λ

)
.

By Hölder’s inequality, Lemma 5.3, and Lemma 4.4, we obtain

E
[
B̄x,λ

]
≤
√

E
[
Q̄2

D,λ

](
3
√
λ

√
E
[∥∥Ḡ1/2e

∥∥2
2

]
+ 2

√
E
[(
e⊤Ḡe

)2])

≤ 4
√
2(2κ+ 1)2

(
AD,λ√

λ
+ 1

)(
6κ

√
λ√

N
+

8
√
3κ2

N

)
.
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Therefore the desired estimation (22) holds with

C1 = 4
√
2(2κ+ 1)2 ×max{12Mκ+ 8

√
3κ2

∥∥f̄ρ∥∥K̄ , 6κ
∥∥f̄ρ∥∥K̄ , 16

√
3Mκ2}.

Lemma 5.5. We have
E[|J2|] ≤

4Mκ

N
√
λ
+

4κ
∥∥f̄ρ∥∥K̄√
N

.

Proof. Write

J2 =
1√
N

e⊤K̄
1

N
(IN − Pe)

(
Ĝ+ λIN

)−1
ȳ

= e⊤Ḡ (IN − Pe)
(
Ĝ+ λIN

)−1 1√
N

ȳ

= e⊤Ḡ (IN − Pe)
(
Ĝ+ λIN

)−1
ỹ

+ e⊤Ḡ (IN − Pe)
(
Ĝ+ λIN

)−1 1√
N

S̄xf̄ρ

=: J21 + J22.

Apply Lemma 5.2 to η1 =
(
Ĝ+ λIN

)−1
(IN − Pe) Ḡe. Since ‖η1‖2 ≤

‖Ḡ1/2e‖
2√

λ
, we obtain

E
[
|J21|

∣∣∣x] ≤ 2M ‖η1‖2√
N

≤
2M

∥∥Ḡ1/2e
∥∥
2√

Nλ
.

For J22, by (20) we have

|J22| ≤
∥∥∥Ḡ1/2e

∥∥∥
2

∥∥∥∥Ḡ1/2(IN − Pe)
(
Ĝ+ λIN

)−1 (
Ḡ+ λIN

)1/2∥∥∥∥
2

×
∥∥∥∥(Ḡ+ λIN

)−1/2 1√
N

S̄xf̄ρ

∥∥∥∥
2

≤
∥∥∥Ḡ1/2e

∥∥∥
2

(∥∥∥∥Ḡ1/2(IN − Pe)
(
Ĝ+ λIN

)−1
Ḡ1/2

∥∥∥∥
2

+
√
λ

∥∥∥∥Ḡ1/2(IN − Pe)
(
Ĝ+ λIN

)−1
∥∥∥∥
2

)∥∥f̄ρ∥∥K̄
≤ 2

∥∥f̄ρ∥∥K̄ ∥∥∥Ḡ1/2e
∥∥∥
2
.

Combining the estimation for J21 and J22 and using Lemma 5.3, we obtain the desired bound
and complete the proof.

By (15), Lemma 5.4, and Lemma 5.5 we obtain the error bound for the difference between
f̂D,λ and f̄D,λ. The result is summarized in the following proposition.

Proposition 5.6. Assume |y| ≤ M almost surely and f̄ρ ∈ HK̄ . We have

E
[∥∥∥f̂D,λ − f̄D,λ

∥∥∥
ρ

]
≤ C

′
1

(
AD,λ√

λ
+ 1

)(
1

N
√
λ
+

1√
N

+
1

Nλ
√
N

)
with C

′
1 = C1 + 4κmax{M, ‖f̄ρ‖K̄}.
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5.2 Bounding total error
We are now in the position to estimate the total error and prove our main theorem.

Proof of Theorem 2.2 (i). We estimate the total error by bounding the three terms on the right
hand side of (4). With the choice λ = N− 1

2r+s and using the fact that NLK̄
(λ) ≤ NLK

(λ) ≤
C0λ

−s, we have

AD,λ =
1

N
√
λ
+

√
NLK

(λ)√
N

≤ N−1+
1/2
2r+s + C0N

− 1
2
+

s/2
2r+s ≤ (C0 + 1)N− r

2r+s ,

A2
D,λ

λ
≤ (C0 + 1)2N− 2r−1

2r+s ≤ (C0 + 1)2,
1

Nλ
= N− 2r+s−1

2r+s ≤ 1,

thanks to the assumption r ≥ 1/2.
Proposition 5.6 implies the following bound for the first term:

E
[∥∥∥f̂D,λ − f̄D,λ

∥∥∥
ρ

]
≤ 3C

′
1(C0 + 2)

1√
N

.

To bound the second term ‖f̄D,λ − f̄ρ‖ρ, we apply [13, Theorem 7] (for p = ∞) to f̄D,λ and
f̄ρ, which states that

E
[∥∥f̄D,λ − f̄ρ

∥∥
ρ

]
≤(2 + 56(2κ)4 + 57(2κ)2)(1 + 2κ)

(
1 +

1

(Nλ)2
+

NLK̄
(λ)

Nλ

)
{(

1 +
1√
Nλ

)∥∥f̄λ − f̄ρ
∥∥
ρ
+ 2M

√
NLK̄

(λ)
√
N

}
, (23)

where f̄λ = (LK̄ + λI)−1 LK̄ f̄ρ. Under the assumption (5) we have∥∥f̄λ − f̄ρ
∥∥
ρ
≤ λr

∥∥h̄ρ∥∥ρ =
∥∥h̄ρ∥∥ρN− r

2r+s . (24)

This together with the fact NLK̄
(λ)

Nλ ≤ C0N
− 2r−1

2r+s ≤ C0 leads to

E
[∥∥f̄D,λ − f̄ρ

∥∥
ρ

]
≤ C

′
2

(∥∥f̄λ − f̄ρ
∥∥
ρ
+N− r

2r+s

)
with C

′
2 = (2 + 56(2κ)4 + 57(2κ)2)(1 + 2κ)(C0 + 2)max{2, 2

√
C0M}.

For the third term, we apply Lemma 4.1 to ξ = y and obtain

E
[
|b̂D,λ − b̄|

]
= E

[∣∣∣∣∣ 1N
N∑
i=1

yi − E[y]

∣∣∣∣∣
]
≤ M√

N
≤ MN− r

2r+s . (25)

Combining the estimation for all three terms, we obtain the desired estimation with C∗
1 =

3C
′
1(C0 + 2) + C

′
2

(
‖h̄ρ‖ρ + 1

)
+M. This finishes the proof.

6 Error analysis when f̄ρ is not in HK̄

When r < 1
2 , because f̄ρ /∈ HK̄ , most estimation techniques in previous section do not apply

any more and new techniques are needed. But the proof process is quite similar to that in
previous section. We still use (15) and estimate the J1 and J2 respectively. To this end we need
to bound the following four quantities.
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Lemma 6.1. Denote VD,λ =

(
A2

D,λ

λ + 1

)(
1 + λr−1/2

) AD,λ√
λ
. We have

E

[(
e⊤Ḡ

(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]
≤ C̃1

N

(
V2
D,λ + λ2r−1

)
, (26)

E

[(
e⊤
(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]
≤ C̃2

Nλ2

(
V2
D,λ + λ2r−1 + 1

)
, (27)

E

[(
Q̄D,λe

⊤Ḡ
(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]
≤ C̃3

N

(
V2
D,λ + λ2r−1

)(A2
D,λ

λ
+ 1

)
, and (28)

E

[(
Q̄D,λe

⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

)2
]
≤ C̃4

Nλ2

(
V2
D,λ +

(
1 + λ2r−1

))(A2
D,λ

λ
+ 1

)
. (29)

Proof. Note that∥∥∥∥ 1√
N

Ḡ1/2
(
Ḡ+ λIN

)−1
ȳ

∥∥∥∥2
2

=

〈
Ḡ
(
Ḡ+ λIN

)−1 1√
N

ȳ,
(
Ḡ+ λIN

)−1 1√
N

ȳ

〉
2

=

〈
1

N
S̄xS̄

∗
x

(
Ḡ+ λIN

)−1 1√
N

ȳ,
(
Ḡ+ λIN

)−1 1√
N

ȳ

〉
2

=

∥∥∥∥ 1

N
S̄∗
x

(
Ḡ+ λIN

)−1
ȳ

∥∥∥∥2
K̄

=

∥∥∥∥(LK̄,x + λI
)−1 1

N
S̄∗
xȳ

∥∥∥∥2
K̄

=
∥∥f̄D,λ

∥∥2
K̄
. (30)

By Cauchy’s inequality, we have

E

[(
e⊤Ḡ

(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]
≤
(
E
[∥∥∥Ḡ1/2e

∥∥∥4
2

]) 1
2
(
E
[∥∥f̄D,λ

∥∥4
K̄

]) 1
2

.

To bound ‖f̄D,λ‖K̄ , write
∥∥f̄D,λ

∥∥
K̄

≤
∥∥f̄D,λ − f̄λ

∥∥
K̄
+
∥∥f̄λ∥∥K̄ . By the analysis in [3] (Proposition

6 and the proof of Theorem 1) we know that with confidence 1− δ, we have

∥∥f̄D,λ − f̄λ
∥∥
K̄

≤ 16(2κ+ 1)

(
log

6

δ

)3
(
(4κ2 + 2κ)2A2

D,λ

λ
+ 1

)

×
(
M + 2κλr− 1

2 ‖hρ‖ρ
) AD,λ√

λ

≤ 16(2κ+ 1)6(M + ‖hρ‖ρ)VD,λ

(
log

6

δ

)3

. (31)

By Lemma 4.2 we have

E
[∥∥f̄D,λ − f̄λ

∥∥4
K̄

]
≤
(
16(2κ+ 1)6(M + ‖hρ‖ρ)VD,λ

)4
6Γ(13).

For 0 < r < 1
2 , we can bound

∥∥f̄λ∥∥K̄ as∥∥f̄λ∥∥K̄ ≤
∥∥∥(LK̄ + λI)−1 L

r+1/2

K̄

∥∥∥
op(K̄)

∥∥∥L1/2

K̄
hρ

∥∥∥
K̄

≤ λr−1/2 ‖hρ‖ρ . (32)
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So we have

E
[
‖f̄D,λ‖4K̄

]
≤ 16

(
E
[∥∥f̄D,λ − f̄λ

∥∥4
K̄

]
+
∥∥f̄λ∥∥4K̄)

≤ 165(2κ+ 1)24 (M + ‖hρ‖ρ)4 6Γ(13)
(
V4
D,λ + λ4r−2

)
.

By Lemma 5.3, we obtain

E

[(
e⊤Ḡ

(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]
≤ C̃1

N

(
V2
D,λ + λ2r−1

)
,

with C̃1 = 163κ
√
18Γ(13)(2κ+ 1)12(M + ‖hρ‖ρ)2. This proves (26).

To show (27), note that, by
(
Ĝ+ λIN

)−1
e = 1

λe and Ĝe = 0, we have

e⊤
(
Ḡ+ λIN

)−1
ȳ = e⊤

(
Ḡ+ λIN

)−1
ȳ − e⊤

(
Ĝ+ λIN

)−1
ȳ + e⊤

(
Ĝ+ λIN

)−1
ȳ

=

[
e⊤
(
Ĝ+ λIN

)−1 (
Ĝ− Ḡ

) (
Ḡ+ λIN

)−1
ȳ

]
+

1

λ
e⊤ȳ

= − 1

λ
e⊤Ḡ

(
Ḡ+ λIN

)−1
ȳ +

1

λ
e⊤ȳ. (33)

Thus

E

[(
e⊤
(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]

≤ 2

λ2

(
E

[(
e⊤Ḡ

(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]
+ E

[(
1√
N

e⊤ȳ

)2
])

.

By (26) and the fact

E

[(
1√
N

e⊤ȳ

)2
]
= E

( 1

N

N∑
i=1

ȳi

)2
 ≤ 4M2

N
,

we prove (27) with C̃2 = 2max{C̃1, 4M
2}.

By (30) and Cauchy’s inequality, we have

E

[(
Q̄D,λe

⊤Ḡ
(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]

≤
(
E
(
e⊤Ḡe)2

]) 1
2
(
E
[
Q̄4

D,λ

∥∥f̄D,λ

∥∥4
K̄

]) 1
2

≤ 16
√
3κ2

N

(
E
[
Q̄4

D,λ‖f̄D,λ − f̄λ‖4K̄
]
+ E

[
Q̄4

D,λ

] ∥∥f̄λ∥∥4K̄ ) 1
2

.

By Lemma 4.4 and (31) we have with confidence 1− δ that

Q̄D,λ‖f̄D,λ − f̄λ‖K̄ ≤ 32
√
2(2κ+ 1)8(M + ‖hρ‖ρ)VD,λ

(
AD,λ√

λ
+ 1

)(
log

6

δ

)4

.

By Lemma 4.2 we obtain

E
[
Q̄4

D,λ‖f̄D,λ − f̄λ‖4K̄
]
≤ (32

√
2)4(2κ+ 1)32(M + ‖hρ‖ρ)4V4

D,λ

(
AD,λ√

λ
+ 1

)4

6Γ(17).
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By (11) with α = 4 and (32) we obtain

E
[
Q̄4

D,λ‖f̄λ‖4K̄
]
≤ 48(8)2(2κ+ 1)8‖hρ‖4ρ

(
A2

D,λ

λ
+ 1

)2

λ4r−2.

One summarizes the above two estimates to get (28) with C̃3 = 323 × 6κ2(2κ + 1)16(M +
‖hρ‖ρ)2

√
2Γ(17).

To prove (29), we use (33) and write

E

[(
Q̄D,λe

⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

)2
]
≤ 2

λ2

(
E

[(
Q̄D,λe

⊤Ḡ
(
Ḡ+ λIN

)−1 1√
N

ȳ

)2
]

+E

[(
Q̄D,λ

1√
N

e⊤ȳ

)2
])

.

By the facts E[ȳi] = 0 and |ȳi| ≤ 2M, it is easy to verify that

E

[(
1√
N

e⊤ȳ

)4
]
= E

( 1

N

N∑
i=1

ȳi

)4
 ≤ (2M)4

N2
.

So by (11) we obtain

E

[(
Q̄D,λ

1√
N

e⊤ȳ

)2
]
≤
(
E
[
Q̄4

D,λ

] ) 1
2

(
E

[(
1√
N

e⊤ȳ

)4
]) 1

2

≤ 32
√
3(2κ+ 1)4(2M)2

N

(
A2

D,λ

λ
+ 1

)
.

This in combination with (28) proves (29) with C̃4 = 2C̃3.

With the preparation in Lemma 6.1, we can estimate J1 and J2 now.

Lemma 6.2. We have

E [‖J1‖ρ] ≤ C̃ ′
1

(
1

N
√
λ
+

1

Nλ
√
N

)(A2
D,λ

λ
+ 1

)2 (
1 + λr− 1

2

)
.

Proof. By (19), (29), and Lemma 5.3, we have

E [‖J1‖ρ] ≤
(
E
[
18λe⊤Ḡe+ 8

(
e⊤Ḡe

)2]) 1
2

(
E

[(
Q̄D,λe

⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

)2
]) 1

2

≤ 8
√
3(2κ+ 1)2κ

√
C̃4

(
1

N
√
λ
+

1

Nλ
√
N

)(A2
D,λ

λ
+ 1

)2 (
1 + λr− 1

2

)
.

This prove the lemma with C̃ ′
1 = 8

√
3(2κ+ 1)2κ

√
C̃4.

Lemma 6.3. We have

E [|J2|] ≤ C̃ ′
2

(
1√
N

+
1

Nλ
√
N

)(A2
D,λ

λ
+ 1

) 3
2 (

1 + λr− 1
2

)
.
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Proof. We decompose

J2 =
1√
N

e⊤Ḡ
(
Ĝ+ λIN

)−1
(IN − Pe) ȳ

=
1√
N

e⊤Ḡ (IN − Pe)
(
Ḡ+ λIN

)−1
ȳ

+
1√
N

e⊤Ḡ (IN − Pe)

((
Ĝ+ λIN

)−1
−
(
Ḡ+ λIN

)−1
)
ȳ

=
1√
N

e⊤Ḡ
(
Ḡ+ λIN

)−1
ȳ

− 1√
N

e⊤Ḡee⊤
(
Ḡ+ λIN

)−1
ȳ

+
1√
N

e⊤Ḡ (IN − Pe)
(
Ĝ+ λIN

)−1
ḠPe

(
Ḡ+ λIN

)−1
ȳ

=: J̃21 − J̃22 + J̃23.

By (26) we have

E[|J̃21|] ≤
√

E
[
|J̃21|2

]
≤
√
C̃1√
N

(
A2

D,λ

λ
+ 1

) 3
2 (

1 + λr− 1
2

)
.

By (27) and Lemma 5.3 we have

E[|J̃22|] ≤
(
E
[
(e⊤Ḡe)2

]) 1
2

(
E

[(
e⊤(Ḡ+ λIN )−1 1√

N
ȳ

)2
]) 1

2

≤ 4
√
3κ2
√
C̃2

Nλ
√
N

(
A2

D,λ

λ
+ 1

) 3
2 (

1 + λr− 1
2

)
.

For J̃23, we use (18) and (27) to obtain

E
[∣∣∣J̃23∣∣∣] ≤ E

[∥∥∥Ḡ1/2e
∥∥∥2
2

∣∣∣∣e⊤ (Ḡ+ λIN
)−1 1√

N
ȳ

∣∣∣∣]

≤
(
E
[
(e⊤Ḡe)2

]) 1
2

(
E

[(
e⊤(Ḡ+ λIN )−1 1√

N
ȳ

)2
]) 1

2

≤ 4
√
3κ2
√

C̃2

Nλ
√
N

(
A2

D,λ

λ
+ 1

) 3
2 (

1 + λr− 1
2

)
.

Therefore, the desired bound for J2 holds with C̃ ′
2 = max

{√
C̃1, 8κ

2
√

3C̃2

}
.

Combining the results in Lemma 6.2 and Lemma 6.3 and selecting appropriate regularization
parameters, we can bound f̂D,λ − f̄D,λ as follows.

Proof of Theorem 2.2 (ii). We apply the decomposition (4) and (15) as above,

E
[
‖f̂D,λ + b̂D,λ − fρ‖ρ

]
≤ E[‖J1‖ρ] + E[|J2|] + E

[
‖f̄D,λ − f̄ρ‖ρ

]
+ E

[
|b̂D,λ − b̄|

]
,
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of which we bound the four terms in the right-hand side, one by one. Recall λ = N− 1
1+s and

NLK
(λ) ≤ C0λ

−s. From definition,

A2
D,λ

λ
+ 1 =

1

λ

(
1

N
√
λ
+

√
NLK

(λ)√
N

)2

+ 1

≤ N
1

1+s

(
N−1+

1/2
1+s +

√
C0N

− 1
2
+

s/2
1+s

)2

+ 1

≤ 2N
1

1+s

(
N−2+ 1

1+s + C0N
−1+ s

1+s

)
+ 1 ≤ 2C0 + 3.

Since 0 < r < 1/2,

1 + λr− 1
2 ≤ 2N

−r+1
2

1+s .

We apply Lemma 6.2 to give

E[‖J1‖ρ] ≤ C̃ ′
1(2C0 + 3)2 × 2N

−r+1
2

1+s

(
N−1+

1/2
1+s +N− 3

2
+ 1

1+s

)
≤ 4C̃ ′

1(2C0 + 3)2N− r
1+s .

We apply Lemma 6.3 to give

E[|J2|] ≤ C̃ ′
2(2C0 + 3)3/2 × 2N

−r+1
2

1+s

(
N− 1

2 +N− 3
2
+ 1

1+s

)
≤ 4C̃ ′

2(2C0 + 3)3/2N− r
1+s .

To estimate E[‖f̄D,λ − f̄ρ‖ρ], we apply (23). Note that

1 +
1

(Nλ)2
+

NLK̄
(λ)

Nλ
≤ 1 +N−2+ 2

1+s + C0λ
−1−sN−1

≤ 2 + C0.

Here, 1
Nλ ≤ 1. Recall (24) and our assumption 0 < r < 1/2. We have(

1 +
1√
Nλ

)
‖f̄λ − f̄ρ‖ρ + 2M

√
NLK̄

(λ)
√
N

≤ 2‖h̄ρ‖ρλr + 2M
√
C0λ

−s/2N−1/2

≤ 2(‖h̄ρ‖ρ +M
√

C0)N
− r

1+s .

We summarize the above estimates and use (23) to obtain

E[‖f̄D,λ − f̄ρ‖ρ] ≤ C∗
2,1N

− r
1+s ,

where C∗
2,1 := (2 + 56(2κ)4 + 57(2κ)2)(1 + 2κ)(2 + C0)× 2(‖h̄ρ‖ρ +M

√
C0).

Lastly, we use (24) to derive

E[|b̂D,λ − b̄|] ≤ M√
N

≤ MN− r
1+s .

The proof is completed by letting

C∗
2 := 4C̃ ′

1(2C0 + 3)3 + 4C̃ ′
2(2C0 + 3)3/2 + C∗

2,1 +M.
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7 Conclusions and discussions
In this paper we studied KRR with offset and characterized its equivalence to learning with
centered reproducing kernels. By using KRR without offset as a bridge, we derived the general-
ization error bound for KRR with offset and verified it reaches the minimax optimal rate under
appropriate source conditions on the target function and capacity assumptions on the kernels.

It is well understood that kernel ridge regression without offset penalizes the whole output
function, including its constant component which is not penalized in Algorithm (1). By the
operation K 7→ K̂, we separate constant components from the reproducing kernel Hilbert space
HK . Consequently, our main result, Theorem 2.2, uses a weak assumption (5), i.e.,

f̄ρ = fρ − E[fρ] ∈ Lr
K̄(L2

ρX
),

which tolerates the constant component in the target function fρ. Note that this is important
improvement. For example, it is well understood that constant functions are not included in
reproducing kernel Hilbert spaces spanned by Gaussian kernels [17]. Along this way, one can
indeed separate any finite dimensional function spaces from a reproducing kernel Hilbert space.1
The analysis is postponed as future work, and would be useful for kernel-based semi-parametric
regression [15], scattered data interpolation [33, 20], and so on. An interesting question is how
to balance the model complexity and keep the curse of dimensionality back in the bottle.

In future work, we aim to extend the application of our centered kernel to the areas of
distributed learning [13] and semi-supervised learning [22]. Another interesting topic is to
explore the extension of the centered kernel to the Neural Tangent Kernel (NTK) setting, as
indicated by [12], which is related to the universality of deep neural networks [34, 11, 21, 16].
Considering that the centered reproducing kernel adapts the capacity of the RKHS, comparing
the capacities of the centered NTK, the NTK, and deep neural networks in terms of universality
would be an intriguing research area.
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