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Phase-type distributions and representations: some results and open problems for system theory

CHRISTIAN COMMAULT{* and STÉPHANE MOCANU{

In this paper we consider phase-type distributions. These distributions correspond to the random hitting time of an
absorbing Markov chain. They are used for modelling various random times, in particular, those which appear in
manufacturing systems as processing times, times to failure, repair times, etc. The Markovian nature of these distribu-
tions allows the use of very efficient matrix based computer methods for performance evaluation. In this paper we give a
system theory oriented introduction to phase-type distributions. We concentrate mainly on the representation problem
which consists of finding a Markov chain associated with some phase-type distribution. This is a realization problem in
the sense of system theory with a lot of links with the classical linear system theory but also with a number of constraints
which make the problem harder but more interesting. Indeed this problem has strong connections with the positive
realization problem in control theory. The paper recalls known results, gives some new results, and points out the main
remaining problems.

1. Introduction

In this paper we deal with phase-type distributions

and their representations. A phase-type distribution

(PH-distribution) is the distribution of the time to

absorption in a finite state absorbing Markov chain.

The underlying Markov chain is called a representation

of the distribution. Phase-type distributions appeared as

a generalization of the exponential distribution. They

allow a better modelling of positive random variables,

and in particular random times. Moreover they preserve

the Markovian nature of the model which is crucial for

tractable computations for performance evaluation. The

interest in using representations with several stages has

been recognized for a long time (see Erlang 1917, Jensen

1949), and a lot of special structures have been proposed

until the general definition which was given in Neuts

(1975). In queuing theory specific algorithms have

been developed for queues in which interarrival times

and/or service times are PH distributed (Neuts 1981,

Latouche and Ramaswami 1993).

The aim of this paper is to motivate the interest of

control and system theory communities towards PH-dis-

tributions and representations. This interest should

result, on one hand, from the fact that their domain of

potential applications in modelling, performance eva-

luation, control of production and communication

systems is now considered as intersecting our field of

expertise. On the other hand, the relationship between

the Laplace transform of the probability density func-

tion of a PH-distribution and a corresponding represen-

tation is very similar to the relationship between a
transfer function and a corresponding state space repre-
sentation. The PH-representations are then a special
form of state space representations but with particular
constraints on the Markov generators (Berman and
Plemmons 1994). This induces a realization problem
which is far from being a trivial extension of the classical
linear realization problem. In particular the problem of
finding the minimal order of a representation for a given
PH distribution is still open. The PH-representation
problem is indeed strongly connected with the positive
realization problem which received a great deal of atten-
tion in the last decades in control theory, see Farina and
Rinaldi (2000) for an up-to-date survey on this field. The
power of modelling with canonical PH-representations
and the equivalence between representations also needs
a lot of further investigation. Even for the low order
representations only specific cases have been completely
studied. It would be of interest, for example, to fully
understand the order three representations since they
probably have the same importance for PH-distribu-
tions as second order systems do for classical linear
systems. In summary, this is a problem with applications
we are interested in, which uses tools which are familiar
to us, and with a lot of interesting open questions. Why
abandon it exclusively to probabilists?

This paper is not a survey of PH-representation
theory. It intends to introduce the main definitions
and concepts which are useful to understand this theory.
It recalls a number of known results concerning mainly
the representation problem in two directions: first, gen-
eral properties of representations which may help in
finding a representation for a given PH-distribution,
and second, the particular cases which are completely
solved. We point out the open problems and state a
set of problems and conjectures concerning partial
results. We particularly insist on the structural aspects
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of the problem and on the properties of the graph of the
representation. The notion of cyclicity is particularly
emphasized. We also present a result which states that
the PH-representation problem and the positive realiza-
tion problem are essentially the same. This opens the
way for a fruitful cross-fertilization between these two
fields in the future. This paper is complementary with
O’Cinneide (1999) which is written with a more prob-
abilistic point of view and also contains a number of
conjectures on PH-distributions.

The paper is organized as follows. In } 2 we recall the
definitions of PH-distributions and representations, we
illustrate them by a simple reliability example and give
two fundamental characterization theorems for PH-dis-
tributions. Section 3 contains new results which show
that the PH-representation problem and the positive
realization problem in control theory are essentially
the same problem. In } 4 we recall some general proper-
ties of representations which concern the eigenvalue
locations, the probabilistic properties of the associated
distribution, and some structural aspects. Section 5
reviews some canonical forms which were introduced
as progressive extensions of the exponential law. In } 6
we give some representation theorems and focus on the
cases where there exists a representation whose order is
the degree of the denominator of the Laplace transform
of the distribution. In } 7 we deal with the important role
which is played by cyclicity in the representation prob-
lem. Some concluding remarks and perspectives end the
paper.

2. Definitions and characterizations

In this section we present the main definitions con-
cerning phase-type distributions and phase-type repre-
sentations. We illustrate this material with a simple
example. We then give two characterization theorems
for phase-type distributions.

2.1. Definitions and an example

The first systematic approach to the study of PH-
type distributions was presented by Neuts (1981). The
definition presented here follows Neuts definition.

Definition 1: A phase-type distribution is the distribu-
tion of the absorption time in a finite state absorbing
Markov chain.

In the following we will only consider continuous
time Markov chains, but all the definitions and results
have their natural discrete time counterparts. Consider
now a Markov chain with ðnþ 1Þ states, the first n states
being transient and the last one absorbing. This Markov
chain is governed by a state equation as

_�xx�xxðtÞ ¼ �xxðtÞQ

�xxð0Þ ¼ �

9=
; ð1Þ

where the ith component of the row vector �xxðtÞ is the
probability of being in state i at time t. The vector �
represents the initial probability distribution and is a
stochastic vector. The ðnþ 1Þ � ðnþ 1Þ matrix Q repre-
sents the infinitesimal generator of the Markov process
and can be partitioned as

Q ¼
T v

0 0

 !
ð2Þ

Tij � 0 for i 6¼ j; i ¼ 1; . . . ; n; j ¼ 1; . . . ; n, is the transi-
tion rate from state i to state j. vi for i ¼ 1; . . . ; n, repre-
sents the transition rate from state i to the absorbing
state. Due to the special structure of a Markov genera-
tor we must have v ¼ �T~11 where~11 is the n dimensional
column vector whose entries are all equal to one. The
assumption that the first n states are transient implies
that the matrix T is non-singular. This matrix is called
a PH-generator. From now on we will assume that
� ¼ ð�; 0Þ where � is n dimensional. This means that
we assume that the probability of being in the absorbing
state at time 0 is 0. This is for the sake of simplicity but it
implies no real loss of generality. The pair ð�;TÞ is
called a representation of the corresponding distribution
which is denoted by PHð�;TÞ. We will also denote
�xxðtÞ ¼ ðxðtÞ; �xxnþ1ðtÞÞ. It is easy to see that the distri-
bution function of the random time to absorption, is
in fact the function �xxnþ1ðtÞ. The probability density
function of the absorption time, f ðtÞ, is then its deriva-
tive f ðtÞ ¼ _�xx�xxnþ1ðtÞ and can be read from the state
equation

_xxðtÞ ¼ xðtÞT

f ðtÞ ¼ _�xx�xxnþ1ðtÞ ¼ xðtÞv

9=
; ð3Þ

Up to a transposition, these equations are very similar
to our classical linear state space equations. The solution
is then f ðtÞ ¼ � etT v. We will also frequently make use
of the Laplace transform of f ðtÞ that we will denote
by ~ff ðsÞ. ~ff ðsÞ ¼ �ðsI � TÞ�1v, where I denotes the
order n identity matrix. In the sequel, we will for short
say, Laplace transform of a distribution to mean the
Laplace transform of the probability density function
of the distribution. Again this function has the familiar
aspect of the transfer function of a single input–single
output (SISO) linear system. The order of a representa-
tion is the number of transient states of the Markov
chain which is the dimension of the matrix T . Let ~ff ðsÞ
be the Laplace transform of a PH-distribution and
~ff ðsÞ ¼ pðsÞ=qðsÞ, where pðsÞ and qðsÞ are coprime poly-
nomials. We call the degree of the distribution the
polynomial degree of qðsÞ. Obviously, for any PH repre-
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sentation the order is greater than or equal to the degree
of the corresponding distribution. But, contrary to what
happens for standard linear systems, given a PH-distri-
bution there generally does not exist a representation of
order equal to the degree of this distribution. Let us
recall the constraints of the problem at hand compared
to the usual linear system model used in control.

. The non-singular matrix T represents an infinite-
simal generator, then

Tij � 0 for i 6¼ j; i ¼ 1; . . . ; n; and j ¼ 1; . . . ; n

Xn
j¼1

Tij 	 0 for i ¼ 1; . . . ; n

9>>=
>>;
ð4Þ

. The v vector is defined as

v ¼ �T~11 ð5Þ

. The initial probability distribution is a stochastic
vector, that is : �i � 0 for i ¼ 1; . . . ; n and

Xn
i¼1

�i ¼ 1 ð6Þ

It is known that a lot of qualitative properties of
Markov chains can be obtained from the study of
their graphs. The graph representation will thus be a
very important tool for our study of phase-type repre-
sentations. To a phase-type representation ð�;TÞ we
associate a directed graph Gð�;TÞ, where the set of
vertices is composed of ðnþ 2Þ elements. The vertices
1; . . . ; nþ 1 correspond to the states of the representa-
tion. The vertex 0 is a dummy vertex corresponding to
the initial state. There exists an edge ði; jÞ, i 6¼ j, if
Tij 6¼ 0 for i ¼ 1; . . . ; n; j ¼ 1; . . . ; n. There exists an
edge ði; nþ 1Þ, if vi 6¼ 0 for i ¼ 1; . . . ; n. There exists an
edge ð0; jÞ, if �j 6¼ 0 for j ¼ 1; . . . ; n. To each vertex i
for i ¼ 1; . . . ; n, we associate its outgoing rate ð�TiiÞ.
To each edge ð0; iÞ for i ¼ 1; . . . ; n, we associate the
probability �i. To each edge ði; jÞ for i 6¼ j, and for
i ¼ 1; . . . ; n, j ¼ 1; . . . ; n, we associate the routing prob-
ability pij ¼ �Tij=Tii. To each edge ðj; nþ 1Þ,
j ¼ 1; . . . ; n, we associate the absorption probability
pj;nþ1 ¼ �vj=Tjj .

A representation in which graph all the state vertices
are connected to the initial vertex and to the absorbing
vertex is called irreducible (Neuts 1981). It is obvious
that, when it is not the case, the representation may be
simplified and the corresponding states discarded with-
out altering the distribution.

Example 1: Let us now present an example to illus-
trate the previous definitions. A highly reliable system

is composed of three identical machines. Only one ma-
chine works at a time. When a machine fails another
one begins to work, if there is a machine in working
order. Each machine has a Time to Failure which is
exponentially distributed with rate �. When the re-
pairer is working on it, a machine has a Repair Time
which is exponentially distributed with rate �. There is
a single repairer, moreover he is rather lazy and begins
repairs only if there are at least two machines down.
When he is working, the repairer works until all the
down machines are repaired. The system is in total cat-
astrophic breakdown when all machines are down.

We are interested in the time between the initial
situation when all the machines are in working order,
and the total breakdown.

To model this problem recall that a situation which
has a duration which is exponentially distributed corre-
sponds to a markovian state. We are then able to list the
states of the system:

. State x1: the three machines are in working order,
one is operating.

. State x2: two machines are in working order, with
one operating.

. State x3: one machine is in working order, with
one operating. The repairer is repairing one of
the down machines.

. State x4: two machines are in working order, with
one operating. The repairer is repairing the down
machine.

. State x5: the three machines are down. This is our
absorbing state.

The time we are interested in is therefore phase-type
with representation ð�;TÞ where

T ¼

�� � 0 0

0 �� � 0

0 0 �ð�þ �Þ �

� 0 � �ð�þ �Þ

0
BBBBBB@

1
CCCCCCA

� ¼ ð1; 0; 0; 0Þ

ð7Þ

If we assume that � ¼ 1 and � ¼ 10, the probability
density function is

f ðtÞ ¼ 0:0028 e�14:251 t þ 0:0133 e�7:481 t

� 0:0638 e�2:221 t þ 0:0477 e�0:0465 t

and its Laplace transform is

~ff ðsÞ ¼ sþ 11

s4 þ 24 s3 þ 156 s2 þ 244 sþ 11

568 C. Commault and S. Mocanu
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Figure 1 shows the graph associated with this Markov
chain. The ‘dotted’ node in the graph corresponds to the
initial state of the chain. To the final state of the chain is
associated the ‘shaded’ node in the graph. If ði; jÞ is the
unique outgoing edge from the state i, then obviously
pij ¼ 1 and the weight is omitted in the graph.

2.2. Characterization theorems

We recall in this subsection some characterization
theorems for phase-type distributions and comment on
their consequences. The fundamental characterization
theorem was first given by O’Cinneide (1990). Although
the result is simple in its expression, the proof is long
and technical and mainly based on convex analysis. An
alternate proof for the discrete time case was given by
Maier (1991). It is interesting to note that the technique
of proof was completely different and used ideas of
automata theory. The fundamental theorem is the
following.

Theorem 1 (O’Cinneide 1990): A probability distribu-
tion on ½0;1Þ which is not the point mass at zero is of
phase-type if and only if:

1. it has a rational Laplace transform with a unique
pole of maximal real part, and

2. its probability density function is positive on ½0;1Þ.

Let us leave aside the point mass at 0 which is directly
translated into an initial probability of being in the
absorbing state, and concentrate on the continuous
part of the probability density function. The probability
density function is a non-negative function of t and
therefore its Laplace transform cannot have a dominat-
ing oscillating pole. Thus, the theorem says that all the
probability distribution functions having a rational
Laplace transform are PH except for some boundary
cases. It has been shown that if the p.d.f. approaches
the time axis for a finite t0 we are lead to consider repre-
sentations of increasing order. The same observation
can be made concerning condition 1 of the theorem,
which will be made more precise in a following section.
The characterization given by the theorem is simple but
one may regret that it is expressed partly in the t-domain
and partly in the s-domain. Then we can set the follow-
ing problem, even if it seems rather difficult since its

solution would imply that we could characterize transfer
functions with positive impulse response.

Problem 1: Find a characterization of PH-distribu-
tions only in terms of their Laplace transform.

The phase-type distributions have a number of nat-
ural applications in reliability theory (see our example).
It was proved in (Neuts 1981) that the usual operations
encountered in reliability applications preserve the
phase-type nature of the distributions. Conversely the
phase-type distributions can be characterized by a clo-
sure property (Maier and O’Cinneide 1992). Let � be a
distribution on Rþ, p be a probability, and consider the
new distribution defined as: �ðpÞ ¼ ð1� pÞ½�þ p� � � þ
p2� � � � �þ 
 
 
�, where � is the convolution operation.
This is in fact nothing more than feedback. The closure
theorem can then be formulated as follows.

Theorem 2 (Maier and O’Cinneide 1992): The family
of phase-type distribution is the smallest family of distri-
butions which:

1. contains the Dirac impulse in 0 and the exponential
distributions,

2. is closed under the operations of convolution and
convex combination,

3. is closed under the operation � ! �ðpÞ, where
0 	 p < 1:

This suggests that one could see the set of finite
dimensional linear time invariant systems as the smallest
set which contains constants and integrators and which
is closed under series, parallel, and feedback connec-
tions.

3. Positive realizations and PH-representations

In this section we will introduce the positive realiza-
tion problem and recall some results on this control
theoretic problem, see Farina and Rinaldi (2000) for a
fairly complete introduction to this field. We will then
prove that the PH-representation problem is in fact a
particular positive realization problem.

3.1. The positive realization problem

A positive state space representation for a SISO
system is said to be positive if it has the form

_xxðtÞ ¼ AxðtÞ þ BuðtÞ

yðtÞ ¼ CxðtÞ

9=
; ð8Þ

where A;B and C are real matrices of respective dimen-
sions n� n, n� 1, 1� n with

Phase-type distributions and representations 569
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Figure 1. Graph of the Markov chain in Example 1.
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aij � 0 for i 6¼ j; i ¼ 1; . . . ; n; j ¼ 1; . . . ; n ð9Þ

bi � 0 for i ¼ 1; . . . ; n ð10Þ

ci � 0 for i ¼ 1; . . . ; n ð11Þ

This state space representation is such that for any
initial state xð0Þ � 0 and any input function uðtÞ � 0
for t � 0, the state and output functions remain non-
negative. Positive representations appear naturally in
modelling of a number of physical, economical and eco-
logical systems (Luenberger 1979).

A linear system defined by its rational transfer func-
tion ~ggðsÞ is said to be (externally) positive if its impulse
response gðtÞ, the inverse Laplace transform of ~ggðsÞ, is
such that gðtÞ � 0 for t � 0. We assume that the transfer
function is strictly proper, that is gð0Þ ¼ 0.

The positive realization problem is the following:
given a positive system defined by its transfer function
~ggðsÞ, find, if possible, a positive state space representa-
tion ðA;B;CÞ such that ~ggðsÞ ¼ CðsI � AÞ�1B. The prob-
lem of existence of such a positive realization was solved
in Farina (1996).

Theorem 3: A linear system with transfer function ~ggðsÞ
and impulse response gðtÞ has a positive realization if
and only if:

1. ~ggðsÞ has a unique pole with maximal real part, and

2. gðtÞ > 0 for t > 0.

Since it is clear that a PH-representation is a par-
ticular positive realization with specific and seemingly
hard constraints, it is surprising that the conditions of
Theorems 1 and 3 are exactly the same. This raises an
interesting question: is not the PH-representation simply
a canonical form which can always be achieved, pro-
vided of course that the impulse response has the same
properties as a p.d.f.? This question will be studied and
answered affirmatively in the next subsection.

3.2. From a positive realization to a PH-representation

To a positive state space representation one can as-
sociate a graph as we did for PH-representations. The
vertices are associated with input, state and output vari-
ables, therefore we have one vertex u, one vertex y and n
vertices ðx1; . . . ; xnÞ. There is an edge ðxi; xjÞ (resp.
ðu; xiÞ, ðxi; yÞ) if aji > 0 (resp. bi > 0, ci > 0). This
graph is called the influence graph in Farina and
Rinaldi (2000). We say that the representation is irredu-
cible if any state vertex belongs to an input–output path
in the associated graph. Irreducibility is equivalent to
both excitability and transparency in the terminology
of Farina and Rinaldi (2000). It is clear that when a
representation is not irreducible it can be simplified by
discarding some states, therefore we may restrict our

attention, without loss of generality, to irreducible
representations. The following result which is specific
to positive realizations is of importance.

Proposition 1: Consider a linear system with transfer
function ~ggðsÞ which admits a positive realization. For
any irreducible positive realization ðA;B;CÞ the eigenva-
lue of A with maximal real part is the pole of maximal
real part of ~ggðsÞ.

Proof: The result is proved in Anderson et al. (1996)
for discrete-time systems but the same arguments can
be used for continuous-time systems. Also the notion
of irreducibility is not explicit in the formulation of
Anderson et al. (1996) &

Although irreducibility is weaker than the as-
sumption of joint controllability and observability, the
proposition says that for positive irreducible represen-
tations, the dominant eigenvalue of A can never be
simplified. The same result was proved for PH-
representations in Neuts (1984).

From the basic properties of a p.d.f. it follows that
the impulse response gðtÞ of a linear positive system may
be interpreted as a p.d.f. if the corresponding transfer
function ~ggðsÞ is asymptotically stable and if the normal-
ization condition ~ggð0Þ ¼ 1 is satisfied. This allows us to
give the correspondence between positive realizations
and PH-representations.

Theorem 4: Consider a linear system with transfer
function ~ggðsÞ and impulse response gðtÞ which admits a
positive irreducible realization of order n, ðF ;G;HÞ:

1. if ~ggðsÞ is asymptotically stable there exists an order
n positive irreducible realization of ~ggðsÞ, ðA;B;CÞ,
which satisfies

Xn
j¼1

aij þ bi ¼ 0 for i ¼ 1; . . . ; n ð12Þ

and the graph of ðA;B;CÞ is the same as the graph
of ðF ;G;HÞ,

2. if moreover ~ggð0Þ ¼ 1 then

Xn
i¼1

ci ¼ 1 ð13Þ

Before proving the theorem let us state a technical
lemma.

Lemma 1 Consider an irreducible positive representa-
tion ðF ;G;HÞ, where F is asymptotically stable, the
equation

570 C. Commault and S. Mocanu
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F
 ¼ �G ð14Þ
has a unique solution 
 ¼ ð
1; . . . ; 
nÞT with 
i > 0 for
i ¼ 1; . . . ; n.

Proof: The solution of the equation exists and is un-
ique since F is asymptotically stable and then non-sin-
gular. From Berman et al. (1989, Theorem 4.12), this
solution is non-negative. Let us now prove that it has
indeed only positive entries. For i such that gi 6¼ 0 the
ith equation implies that 
i > 0. Let j 6¼ i be such that
fji > 0, then we must have 
j > 0. From the irreducibil-
ity assumption, each state is connected to the input
and we can repeat the reasoning for all the entries of

. &

Proof of Theorem 4:

1. Define the n� n diagonal non-singular matrix
M ¼ Diagð
1; . . . ; 
nÞ where 
 is the solution of
F
 ¼ �G. Define the new triplet ðA;B;CÞ where

A ¼ M�1FM; B ¼ M�1G; C ¼ HM ð15Þ
ðA;B;CÞ is a new realization of ~ggðsÞ and it is
clearly positive. The change of basis corresponds
here to a simple rescaling of the state variables. It
can easily be checked that the relation (12) follows
from the definition of 
.
The change of basis amounts to a multiplica-

tion of rows and columns (resp. rows, columns) of
F (resp. G, H) by positive numbers. Then an entry
of a matrix which is positive remains positive after
the change of basis, an entry of a matrix which is 0
remains 0 after the change of basis. Therefore the
graph of ðA;B;CÞ is the same as the graph of
ðF ;G;HÞ.

2. Since C is a non-zero matrix with non-negative
entries we can write C ¼ �ĈC where

� ¼
Xn
i¼1

ci ð16Þ

the entries of ĈC are non-negative and sum up to
one. Therefore the triplet ðA;B; ĈCÞ corresponds to
a PH-representation and the corresponding distri-
bution has a Laplace transform which satisfies
ĝgð0Þ ¼ ĈCA�1B ¼ 1. If we start with ~ggð0Þ ¼ 1
then ~ggð0Þ ¼ HF�1G ¼ CA�1B ¼ �ĈCA�1B ¼ � ¼ 1
which implies

Xn
i¼1

ci ¼ 1 ð17Þ

&

Remark 1: Theorem 4 is a generalization of a result
in Maeda et al. (1981) in which it is proved that any
asymptotically stable positive system which has a posi-

tive realization may be seen as a compartmental sys-
tem.

Remark 2: A very important consequence of Theorem
4 is that most of the results in the realization theory of
positive systems may be used for PH-representations
and vice versa. As an example Theorem 1 follows im-
mediately from Theorems 3 and 4.

With this last remark in mind we will continue the
paper with the point of view of PH-representations.

4. Canonical forms for PH-representations

The search for and the study of particular represen-
tations have been subject of important work in the
theory of phase-type representations. The particularities
of a representation can be of a structural nature, that is
its graph has some special features, or of a parametric
nature. The interest of these studies is twofold. First, in
fitting a given data set, it is much easier to identify the
parameters of a representation which is constrained than
those of a general representation which is overparame-
terized. Second, given some canonical form it is import-
ant to characterize the set of representations which are
equivalent in the sense that they lead to the same PH-
distribution. We will not develop in this paper the iden-
tification aspects although this is a very promising sub-
ject (Johnson and Taaffe 1990 a, b, 1991, Ryden 1996).

If we again discard the Dirac impulse whose repre-
sentation is only an absorbing state, the simplest repre-
sentation consists of one transient state with rate �. This
representation leads to the exponential distribution
which has probability density function f ðtÞ ¼ � e��t,
and Laplace transform

~ff ðsÞ ¼ �

sþ �
ð18Þ

If we consider the convolution of k exponentials with the
same rate �, this is obtained by the series connection of k
states, we then have

f ðtÞ ¼ �ktk�1

ðk� 1Þ! e
��t ð19Þ

and

~ff ðsÞ ¼ �

sþ �

� �k

ð20Þ

This representation is called the Erlang representation.
It has been known for a long time and has demonstrated
its utility within modelling tele-traffic problems (Erlang
1917). The simple graph associated with an Erlang dis-
tribution is composed of k ‘chained’ identical states with
each transition rate � (figure 2).

We call a generalized Erlang representation one that
has the series structure of the Erlang representation but
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where the rates of the states are not necessarily equal.
The Laplace transform of the distribution is then

~ff ðsÞ ¼ �1
sþ �1

� �

 �2

sþ �2

� �
. . .

�k

sþ �k

� �
ð21Þ

The associated graph is very similar to the one in figure 2
but the corresponding transition rates are different
according to (21).

A generalization of the previous form, by allowing a
direct routing to the absorbing state after leaving a given
state, results in the Cox representation (Cox 1955) which
leads to a distribution whose Laplace transform is

~ff ðsÞ ¼ �1
sþ �1

p1 þ ð1� p1Þ
�2

sþ �2
p2 þ ð1� p2Þ

�3
sþ �3

. . .

��

þð1� pk�1Þ
�k

sþ �k

�
. . .

�
ð22Þ

The corresponding graph topology can be easily
derived from (22), and is shown in figure 3.

We call a Cox representation such that �1 � �2 �
. . . � �k, an ordered Cox representation.

The hyperexponential distribution is obtained as a
convex combination of several exponentials, which in
terms of graphs is simply a parallel connection (see
figure 4). If the initial probability distribution on the k
states is � ¼ ð�1; . . . ; �kÞ the Laplace transform of the
distribution is

~ff ðsÞ ¼ �1

�1
sþ �1

� �
þ �2

�2
sþ �2

� �
þ 
 
 
 þ �k

�k

sþ �k

� �
ð23Þ

The Mixture of Generalized Erlang (MGE) distri-
bution is defined as the convex combination of a finite
set of generalized Erlang distributions.

All the previously introduced representations have
the common feature that their graph is acyclic. In
general we call a representation whose graph is acyclic,
triangular. The term triangular comes from the fact that,
in an acyclic graph, there is a natural order among
the vertices and renumbering the states according to

this order induces a PH generator T which is upper
triangular.

We will now state an important result on equivalence
between representations. We say that two representa-
tions are equivalent if they give rise to the same PH-
distribution.

Theorem 5 (Cumani 1982): A triangular PH-represen-
tation is equivalent to an ordered Cox representation of
at most the same order.

Proof (sketch): We will not give a complete and for-
mal proof of this result but instead present the main
ideas and illustrate them on a simple example. This
will be representative of some simple techniques which
can be used to simplify representations.

1. First, we note that we can view a PH-representa-
tion as the movement of an entity in the graph. At
time 0 the entity routes towards state i with prob-
ability �i. In state i it spends an exponentially
distributed time with rate �Tii, the outgoing
rate of state i. Then it moves to state j with prob-
ability pij ¼ �ðTij=TiiÞ and so on, until it reaches
the absorbing state. One can then get another
representation which is the finite convex combina-
tion of all the possible paths from the initial state
to the absorbing state, in fact a MGE. Let us
perform this operation on the example in figure
5 whose representation is (24). We get the repre-
sentation of figure 6.

T ¼

�3 1 2

0 �1 1

0 0 �2

0
BBB@

1
CCCA � ¼ ð0:5; 0:2; 0:3Þ ð24Þ

2. In each path we reorder the states in decreasing
order of magnitude of their outgoing rate.

3. At this point we use the following simple trick. It
is easy to check that an exponential stage of rate �
is equivalent to the two stage Cox representation
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λ λ λ

k stages

Figure 2. Graph of the Markov chain of an Erlang repre-
sentation

λ1 λ2 λk

p1 p2

1 p21 p1

Figure 3. Graph of the Markov chain of a Cox representa-
tion.

λ1

λ2

λ
k

α
1

α
2

α
k

Figure 4. Graph of the Markov chain of a hyperexponential
distribution.
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of figure 7 for any � such that � < �, and

p ¼ �=�. We can then put ahead in each path a

stage with rate equal to the maximal rate. This

stage can be ‘factorized’ on all paths. We have

then a stage with maximal rate, followed by a

convex combination of paths in which this max-

imal rate has an order reduced by one. Continue

the procedure until a Cox representation is

obtained. &

From the procedure it is clear that we will end up

with a Cox representation in which the outgoing rates

are the outgoing rates of the initial representation

appearing in decreasing order of magnitude. Note that

this procedure may result in a strict decrease of the num-

ber of states (think of a hyperexponential with two states

of the same rate which reduces to a unique exponential).

The ordered Cox representation of the distribution con-

sidered in (24) and figure 5 is given in figure 8.

Since, up to a reordering of states, the T matrix of an

acyclic representation can always be considered as trian-

gular, the poles of the Laplace transform of the corre-

sponding distribution are real. If we want to take into

account the possibility of non-real poles we must intro-

duce representations with a cyclic graph. The simplest

cyclic representation is obtained by adding a feedback

on an Erlang representation. The result is called a feed-

back Erlang representation. For example, adding a feed-
back of weight z on the Erlang representation of figure 2
leads to the representation in figure 9.

The Laplace transform of a feedback Erlang distri-
bution is obtained by a formula similar to the closed
loop transfer function expression. If one thinks of equa-
tion (20) as the open loop transfer function of a system,
adding a feedback of constant value z leads to the
expression of the Laplace transform of the feedback
Erlang distribution

~ff ðsÞ ¼ ð1� zÞ�k

ðsþ �Þk � z�k
ð25Þ

One can easily provide analytical expressions for the
poles of the Laplace transform. They can be obtained
by elementary manipulations of the kth order roots of
unity

�j ¼ � 1� zð1=kÞ eð2j�=kÞi
� �

j ¼ 0 . . . k� 1 8k > 3

One can construct canonical cyclic representations as
extensions of the existing acyclic representations. The
idea is to ‘replace’ one or more states in an acyclic repre-
sentation by a feedback Erlang block. The representa-
tions obtained in such a way are called monocyclic
representations (Mocanu and Commault 1999). If in
(21) we replace some of the exponential stages by dis-
tributions with Laplace transform of the form (25) we
obtain a series structure analogous to the generalized
Erlang representation but obtained as convolutions of
exponentials and feedback Erlang blocks (figure 10). We
call such a representation a generalized monocyclic
Erlang representation. As exponentials and Erlang dis-
tributions can be seen as feedback Erlangs of adequate
order and zero feedback weight we can express the
Laplace transform of a monocyclic Erlang representa-
tion as

~ff ðsÞ ¼
Yk
i¼1

ð1� ziÞ�ni

ðsþ �Þni � zi�
ni

ð26Þ
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3 1 21/3

2/3

0.5 0.2 0.3

Figure 5. The acyclic graph corresponding to the upper-
triangular phase-type representation (24).

3 1 2

3 2

1 2

2

1/6
1/3

1/5

3/10

Figure 6. The convex combination of all the paths in the
graph of figure 5.

λ µ
p

µ<λ
p=µ/λ

Figure 7. A second order Cox representation that reduces to
the exponential of rate �.

3 2 1

1/5 1/8

Figure 8. The ordered Cox representation of the distribution
in (24)

λ λ λ

k stages

z

1 z

Figure 9. Feedback Erlang representation.
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where ni, i ¼ 1; . . . ; k are the orders of the Erlang blocks
in the convolution.

There are two main characteristics of monocyclic
representations.

. a state vertex of the graph may belong to at most
one cycle of the graph;

. inside a cycle the transition rates of all the states
are equal.

Representations such as the generalized monocyclic
Erlang can be extended easily to other canonical cyclic
representations analogous to Cox or hyperexponential
representations. A class of particular interest in the fol-
lowing is obtained by considering convex combinations
of generalized monocyclic Erlang distributions. We
obtain then Mixtures of generalized Monocyclic Erlang
representations (MME).

A new type of representation can also be obtained by
adding feedbacks to the Cox representation. It is called
the feedback Cox. A particular form of such a represen-
tation (which contains only the outer feedback) was
called a unicyclic representation in O’Cinneide (1999).
This feedback Cox representation, whose graph is
depicted in figure 11, recalls us the canonical observable
form and therefore allows hope for a large power
of representation. Although several authors have sug-
gested this representation, no evidence was given of
the power of representation via a generalization of
Theorem 5 for the cyclic case. We conclude this section
with the question.

Problem 2: Investigate the power of representation of
the feedback Cox representations.

5. Some properties of phase-type representations

In this section we give some general properties of
phase-type representations which will be useful later in
the search for a representation of a given phase-type
distribution. They will in particular induce lower bounds
on the order of possible representations. The first

theorem comes from the numerous studies which have
been done on the eigenvalue location of stochastic
matrices following, for example, the Perron–Frobenius
theorem. The result was obtained independently in
Dmitriev and Dynkin (1945) and O’Cinneide (1991).

Theorem 6 (Dmitriev and Dynkin 1945, O’Cinneide
1991): Let T be a phase-type generator of order n. Let
��1, �1 > 0, be its eigenvalue with maximal real part
and ��2 � i
, �2 > 0 and 
 > 0, be any pair of its com-
plex eigenvalues. The following relation is satisfied




�2 � �1
	 cot

�

n
ð27Þ

The previous relation may be seen as

n � �

arctan
�2 � �1




� � ð28Þ

Since the poles of the Laplace transform of the distri-
bution are eigenvalues of the T matrix of any represen-
tation, it follows that the order of the representation
increases when the angle between the position of com-
plex poles and the vertical line passing through the real
dominating pole decreases. This makes part 2 of
Theorem 1 more precise and gives a first bound on the
order of possible representations of a given distribution.
This result definitely kills the hope that one could find a
representation whose order is the degree of the distri-
bution (recall that the degree of a distribution is the
polynomial degree of the denominator of its Laplace
transform). The previous theorem gives us interesting
and general information about the pole location of the
Laplace transform of a PH distribution, but nothing
general is known about the zeros, so we can ask the
question, which is a relaxed version of Problem 1.

Problem 3: Find general properties about the zero
location, or the relative pole/zero location, of the La-
place transform of a PH-distribution.

For contributions to this problem see Zemanian
(1959, 1961) and Sumita and Masuda (1987). But these
results concern sufficient conditions which moreover are
explicit only for small degree distributions.

Up to now we have not mentioned the parameters
which are of main interest for probabilists. Consider a
probability distribution �. We denote by mð�Þ its mean
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Figure 10. Monocyclic Erlang representation.

λ1 λ2 λk

p1 p2

1 p2 z2
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pk 1
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Figure 11. Graph of the Markov chain of a feedback Cox
representation.
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value and �ð�Þ its standard deviation. We call coefficient
of variation the value

Cvð�Þ ¼ �ð�Þ
mð�Þ ð29Þ

The coefficient of variation is a normalized measure of
the variability of the distribution. It is well known that
the exponential distribution of rate � has a mean
m ¼ 1=� and a standard deviation � ¼ 1=�, therefore
its coefficient of variation is Cv ¼ 1. It is of interest to
know how phase-type distributions fit in with given pre-
specified probabilistic features, in particular a given
mean and a given coefficient of variation. The first
answer is given in the following theorem.

Theorem 7 (Aldous and Shepp 1987): Consider an
order n representation and let m be the corresponding
distribution, we have

Cvð�Þ � 1ffiffiffi
n

p : ð30Þ

Moreover, the equality holds only in the case of the n state
Erlang representation.

From this theorem it follows that getting a low coef-
ficient of variation implies a high order representation.
Also the best way to approximate a constant time is to
use an Erlang representation. On the other hand, it is
easy to check that with a two state hyperexponential
representation we can fit any positive mean value and
any coefficient of variation greater than one. In fact, the
previous theorem shows that the coefficient of variation
reduction implies series connection of states. This can be
made more precise concerning the structure of acyclic
representations in the following corollary.

Corollary 1: Consider an acyclic PH-representation
and let m be the maximal number of states which are
visited before absorption. The coefficient of variation of
the corresponding distribution � satisfies

Cvð�Þ � 1ffiffiffiffi
m

p ð31Þ

The proof is postponed to the Appendix. The pre-
vious corollary gives structural information on the
possible representations of a PH-distribution. Further
structural information appears in the following theorem.

Theorem 8 (Commault and Chemla 1996): Consider
a PH-representation and let � be the corresponding
distribution. Denote by ~ff ðsÞ ¼ pðsÞ=qðsÞ the Laplace
transform of this distribution, where pðsÞ and qðsÞ
are coprime polynomials. Then the difference
degðqðsÞÞ � degðpðsÞÞ is equal to the minimal number of
states which are visited before absorption in the repre-
sentation.

This theorem establishes a relation between the dif-
ference of degrees in the denominator and numerator,
and the length of a shortest path in the graph of any
representation. Recall that this difference of degrees is,
up to one, the number of null derivatives at t ¼ 0 of the
probability density function. This number, which is
known as the infinite zero order for a usual transfer
function, is related to the minimal number of integrators
we must cross before reaching the output in a state space
realization. However, the equality holds only generically
(Commault et al. 1991, van der Woude 1991). It is the
set of constraints on the matrices �, T which insures that
the result always holds true for PH-representations.

The results of this section will be guides in the search
for a representation of a given PH-distribution. Let us
now tackle this problem that is the realization problem
in control theory.

6. Getting representations from PH-distributions

We now attack the problem: given a PH-distri-
bution, that is a probability distribution defined on
½0;1Þ which satisfies the conditions of Theorem 1,
find a representation for this distribution. We are inter-
ested, if possible, in getting sympathic representations.
Sympathic representations may be representations of
minimal order or with a special structure (something
like our reachable or observable canonical forms).
These representations with a special structure are
desired because they generally avoid an overparameter-
ization. The minimal representation problem is still open
and, in general, we are far from having a complete rea-
lization theory as in the usual linear systems context. In
the first subsection we present the general realization
theorems.

6.1. General representation results

As noted before, since in an acyclic representation
the states may be numbered so that the T matrix is
triangular, the poles of the corresponding PH-distri-
bution are real. It happens that the converse result is
true, that is given a PH-distribution with real poles
one can find a triangular or acyclic representation. As
we noted previously that acyclic representations are
equivalent to ordered Cox representations, we finally
have the theorem.

Theorem 9 (O’Cinneide 1991): Let m be a PH-distri-
bution whose Laplace transform has only real poles.
Then � has an ordered Cox representation of some
order.

The proof of the sufficiency part of the theorem is
constructive and provides us with such a representation.
A similar result was obtained in the general case using a
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suitable generalization of Cox representations for com-
plex poles. This generalization relies on the notion of
monocyclic Erlang representations which were intro-
duced in } 4.

Theorem 10 (Mocanu and Commault 1999): Let � be
a PH-distribution, � has a representation which is a
mixture of monocyclic Erlang (MME).

The proofs of both theorems are based on convex
analysis and may be summarized as follows:

. Find a generator T whose eigenvalue set contains
the poles of the Laplace transform of the distribu-
tion.

. Construct a pseudo-representation ð�0;TÞ where
�0 is not necessarily stochastic.

. Construct Euler approximants in a suitable space
of distributions. Each step in the approximation
corresponds to the addition of a new state to the
representation.

. Obtain a representation of the distribution.

Although some tricks may be used to limit the
number of additional states, there is no guarantee that
the obtained representation will be minimal. For a prac-
tical implementation of this method see http://www.
multimania.com/mocanu/

6.2. When the order of the representation equals the
degree of the distribution

Given a distribution, there generally does not exist
a representation whose order is the degree of the dis-
tribution. But it is of interest to characterize the repre-
sentations whose corresponding distribution has a
degree equal to the order. This is for us clearly related
to the notions of reachability and observability of a
realization.

Definition 2 (O’Cinneide 1989): A PH generator T is
simple if any two initial probability distributions
�1 6¼ �2, give rise to two different PH-distributions.
That is PHð�1;TÞ 6¼ PHð�2;TÞ.

A representation defined by the matrix T is simple if
and only if the matrix

R ¼ ½v;Tv; . . . ;Tn�1v� ¼ �T ½~11;T~11; . . . ;Tn�1~11� ð32Þ

has rank n. This notion is very close to our observability
notion. Up to now, a direct counterpart of reachability
is not known. This raises a new question.

Problem 4: Give a natural interpretation of the coun-
terpart of reachability for PH-representations

However, we can get such a counterpart through the
duality notion which is related to the reverse time point
of view (Ramaswami 1990). Consider a PH-representa-
tion ð�;TÞ, and denote by � the absorption instant. We
call the dual or reverse time representation the Markov
process in which we are in state i at time t if we are in
state i of the original process at time ð� � tÞ. The
matrices of this representation are obtained as

�� ¼ vTM; v� ¼ M�1�T; T� ¼ M�1TTM ð33Þ

where the matrix M is just a scaling diagonal matrix.

M ¼ diagðm1; . . . ;mnÞ ð34Þ

The row vector m ¼ ðm1; . . . ;mnÞ is given by

m ¼ ��T�1 ð35Þ

Some interesting properties of the reverse time represen-
tation can be derived (Commault and Chemla 1993).

. The representation and its reverse time representa-
tion give rise to the same PH-distribution

. The two representations have the same number of
states and there is a one-to-one correspondence
between these states. The corresponding states
have the same outgoing rate.

. mi is the average time which is spent in state i
before absorption.

. The graph of the reverse time representation is the
reverse graph of the initial one. More precisely, it
is obtained by reversing the direction of all edges.
The initial vertex becomes the absorbing one and
conversely.

From our first courses in control theory the follow-
ing result is readily obtained.

Theorem 11 (Commault and Chemla 1993): An order
n representation ð�;TÞ which is simple and whose re-
verse time representation is simple gives rise to a distri-
bution PHð�;TÞ which has degree n.

This theorem characterizes representations which
cannot be reduced but it is not very helpful in finding
representations.

Let us now give some examples of distributions of a
given degree n for which we can provide an order n
representation. First note that a distribution whose
Laplace transform is

~ff ðsÞ ¼ �1
sþ �1

� �

 �2

sþ �2

� �
. . .

�n

sþ �n

� �
ð36Þ

can be represented by a convolution of n exponential
states. This result can be generalized as follows.
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Theorem 12 (Commault and Chemla 1996): Consider
a PH-distribution with Laplace transform ~ff ðsÞ ¼
pðsÞ=qðsÞ, where pðsÞ and qðsÞ are coprime polynomials,
such that qðsÞ has degree n with n real roots and pðsÞ
has degree less than or equal to one. This distribution
has an order n representation.

Denote pðsÞ ¼ ð1þ s=�Þ, with � � 0, and

qðsÞ ¼
Yn
i¼1

1þ s

�i

� �
; �1 � �2; . . . � �n > 0 ð37Þ

It can be shown that the inverse Laplace transform of
~ff ðsÞ is positive only if � � �n. Under this assumption it
is easy to check that the ordered Cox representation
of figure 12 with pn�1 ¼ �n=� corresponds to this
distribution. A generalization of the previous theorem
can be obtained but only as of a sufficient condition.

Theorem 13: Consider a PH-distribution with Laplace
transform ~ff ðsÞ ¼ pðsÞ=qðsÞ, where pðsÞ and qðsÞ are co-
prime polynomials with real roots

pðsÞ ¼
Ym
i¼1

1þ s

�i

� �
; �1 � �2; . . . � �m > 0 ð38Þ

and

qðsÞ ¼
Yn
i¼1

1þ s

�i

� �
; �1 � �2; . . . � �n > 0; n > m

ð39Þ

If

�m � �n; . . . ; �1 � �n�mþ1 ð40Þ

this distribution has an order n representation.

Proof: The Laplace transform can be written

~ff ðsÞ ¼
Yn�m

i¼1

1

1þ ðs=�iÞð Þ
Yn

j¼n�mþ1

1þ ðs=�j�nþmÞ
� �

1þ ðs=�jÞ
� � ð41Þ

A representation is obtained through a convolution of
ðn�mÞ exponential states and m stages which have the
form of the rightmost part of figure 12. &

In the case of complex poles of the Laplace trans-
form, to our knowledge, the only general result is the
following.

Theorem 14 (Commault and Chemla 1996): Consider
a PH-distribution with Laplace transform ~ff ðsÞ ¼ 1=qðsÞ

qðsÞ ¼ 1þ s

c

� �
1þ s

aþ ib

� �
1þ s

a� ib

� �
ð42Þ

where a; b; c � 0. This distribution has an order 3 repre-
sentation if and only if

b 	 a� cffiffiffi
3

p ð43Þ

It is clear from Theorem 6 that condition (43) is
necessary for obtaining an order 3 representation. In
fact, using Theorem 8 and some simplifying tricks we
can always obtain a representation which has the graph
given in figure 13.

For PH-distributions with Laplace transform
~ff ðsÞ ¼ 1=qðsÞ where qðsÞ is as in (42), Theorem 6 gives
a minimal order nmin for a representation. An interesting
question is the following.

Conjecture 1: There exists a representation of order
nmin for such a distribution.

In Mocanu (1999) it is only proved that we can
obtain a representation of order ðnmin þ 1Þ.

A more interesting problem, both from the theor-
etical and practical points of view, would be the char-
acterization of order 3 PH-distributions. Since it can be
easily proved that order 2 PH-representations must have
real eigenvalues, the order 3 representations appear to
be the smallest ones with a sufficient power of represen-
tation (or approximation). In that sense they probably
could have the same importance for PH-distributions as
order 2 linear systems for classical control applications.
We can state our question.

Problem 5: Consider a PH-distribution whose Laplace
transform is ~ff ðsÞ ¼ pðsÞ=qðsÞ, where pðsÞ has degree
two and qðsÞ degree three. Under which conditions
(besides condition (43)) has this distribution an order 3
representation?

The question was solved in Anderson et al. (1996) for
discrete-time positive systems, but the solvability con-
dition is not easy to check.
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Figure 12. The Cox representation of the distribution (37).

D
ow

nl
oa

de
d 

by
 [

U
Q

 L
ib

ra
ry

] 
at

 0
3:

08
 2

1 
Ja

nu
ar

y 
20

16
 



7. On cyclicity of representations

It appears that the cyclicity issue plays a crucial role
in the search for representations. In some cases the cycli-
city is compulsory, that is when the Laplace transform
of the distribution has non-real poles. From Theorem 9,
when all the poles are real it follows that acyclic repre-
sentations exist. But in some cases there may exist cyclic
representations which may be of a smaller order than
any acyclic one. To make more precise this questions let
us go back to our example.

7.1. Example

Consider again Example 1. From the physical mod-
elling of the problem we obtained a cyclic representa-
tion. It is also clear that the more likely behaviour of the
system consists in the cycling around states x1; x2; x3; x4,
that is, the cyclicity here appears to be somewhat intrin-
sic. But if we compute the poles of ~ff ðsÞ, these poles are
real and from Theorem 12 we know that there exists a
Cox representation of order 4 for this distribution. If we
change the input data to reinforce the cyclicity (in an
intuitive sense) by increasing for example the repair rate
to � ¼ 20, we obtain

~ff ðsÞ ¼ sþ 21

s4 þ 44 s3 þ 506 s2 þ 884 sþ 21
ð44Þ

but the poles remain real. Even more paradoxical, the
non-real poles appear for small values of �. It can be
proved that non-real poles occur for � 2 ð0; 5:729Þ. For
example, with � ¼ 5 we get

~ff ðsÞ ¼ sþ 6

s4 þ 14 s3 þ 56 s2 þ 74 sþ 6
ð45Þ

which has a pair of non-real poles. See also the behav-
iour of the feedback Erlang where the poles are non-real
for any value of the feedback probability.

From this discussion it appears that the relation
between the cyclicity of the representation and the exist-
ence of non-real poles is not yet fully understood.

7.2. The triangular order

Since distributions with real poles have acyclic repre-
sentations, it is natural to define the triangular order as
the minimal order of an acyclic representation of this
distribution. The definition and some properties of the
triangular order were given by O’Cinneide in (1999).

The paper also contains a characterization of this
order. This characterization allows the author to com-
pute the triangular order for a distribution whose
Laplace transform is ~ff ðsÞ ¼ pðsÞ=qðsÞ, where pðsÞ is a
polynomial of degree 2 and qðsÞ ¼ ð1þ s=�Þ3. Unfor-
tunately this is not a general practical tool to compute
the triangular order for a given distribution. Moreover,
it is easy to build examples where the triangular order is
strictly greater than the order. An example with order 3
and triangular order 4 is given in Chemla (1993) (see
also Botta et al. 1987, Harris et al. 1992).

It turns out that we can get a modest generalization
of Theorem 12 for a case where the triangular order is
equal to the degree of the distribution.

Theorem 15 (Commault and Chemla 1996): Consider
a PH-distribution with Laplace transform ~ff ðsÞ ¼
pðsÞ=qðsÞ, where pðsÞ and qðsÞ are coprime polynomials
with real roots, such that

pðsÞ ¼ ð1þ s=�1Þð1þ s=�2Þ; �1 � �2 > 0 ð46Þ

qðsÞ ¼
Yn
i¼1

1þ s

�i

� �
; �1 � �2; . . . � �n > 0 ð47Þ

The distribution has triangular order n if and only if

�2 > �n ð48Þ

and

ð�1 þ �2Þ � ð�n�1 þ �nÞ: ð49Þ

7.3. What is a good representation?

Since the generator T is to be used in matrix com-
putations for performance evaluation, it is of interest
that this matrix has the least possible order and has a
nice structure. In particular the numerical inversion of T
or the formal inversion of ðsI � TÞ would highly benefit
from a triangular form. In linear system theory we are
used to the comfortable situation where we can achieve
at the same time the minimal order and various canoni-
cal forms. This is no longer the case for the representa-
tion problem and in particular, as seen in the previous
subsection, when triangular representations exist they
may be of an order strictly larger than a cyclic one.
Comparing the respective benefits of the incompatible
goals of low order and triangular form raises the ques-
tion: what is really a good practical representation?
As far as cyclic representations are concerned, it has
been proved (Maier 1993) that representations with
embedded cycles are equivalent to representations with
independent cycles (the ‘no cycles within cycles’ con-
dition). Therefore, even if cyclicity is obligatory, this
cyclicity can be made as less intricate as possible.
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Figure 13. An order 3 representation for the PH-type dis-
tribution (42) under the condition (43).
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Although the minimal representation problem
remains a wonderful theoretical problem our feeling is
that in practice canonical sparse forms should be used.
For example, the constructive procedure in the proof of
Theorems 9 and 10 gives rise to representations with a
very interesting structure and of a reasonable order
when they are implemented with some care.

8. Conclusion

In this paper we have tried to make the system
theory community aware of the problem of phase-type
representations. This problem which is of a realization
type has a lot of things in common with the classical
linear system realization problem. It has also a lot of
proper features which make it rather difficult and inter-
esting. The general problem of finding a minimal repre-
sentation for a given PH-distribution is still open and
appears to be so difficult that it seems hopeless to attack
it in its generality. Instead, we suggest that a set of
partial problems could be solved to better understand
the properties of the representations and incidentally
solve some practical problems. In particular we feel
that a better understanding of the properties of low
order PH-distributions together with a complete char-
acterization of their power of representation and
approximation would certainly enhance considerably
the appeal of this field of research.

We have also in this paper put a bridge between the
PH-representation problem and the positive realization
theory. These two fields had their own development
starting with a common root which was the Perron–
Frobenius theory. Our contribution, in particular
through Theorem 4, is to make clear that the problems
are essentially the same and that most of the results
obtained in one of these fields could be translated in
the other one. For example the structural results and
canonical forms obtained for PH-representations have
their natural counterparts for positive systems. Finally,
we think that the communities of control and probabil-
ity theory should work together on the exciting remain-
ing open problems.

Appendix

Proof of Corollary 1: As noted before, an acyclic re-
presentation can be transformed into a representation
which is a convex combination (or mixture) of general-
ized exponentials (MGE). In this MGE, the longest
path has the same length as the longest path in the ori-
ginal representation. The length (or number of edges)
of this path in the graph is in fact the maximal number
m of states which are visited before absorption plus
one. If we consider all the distributions corresponding
to paths in the MGE, the theorem says that their coef-

ficient of variation is greater than or equal to 1=
ffiffiffiffi
m

p
. If

we can prove that the convex combination produces a
coefficient of variation which is greater than or equal
to the smallest coefficient of variation of the paths, we
are done. If we prove this for two distributions the
general result will follow easily. Consider two distribu-
tions �1 and �2 (which need not be phase-type), with
respective mean values m1 and m2, standard deviations
�1 and �2, coefficients of variation Cv1 and Cv2. We
assume that Cv1 	 Cv2. We consider the convex com-
bination with probabilities p and ð1� pÞ of these dis-
tributions, called �. We get for � the first and second
moments which are

Eð�Þ ¼ pm1 þ ð1� pÞm2

and

Eð�2Þ ¼ pEð�21Þ þ ð1� pÞEð�22Þ ¼ pð�21 þm2
1Þ

þ ð1� pÞð�22 þm2
2Þ

Inserting these expressions in

Cv2ð�Þ ¼ Eð�2Þ � Eð�Þ2

Eð�Þ2

we get after some calculations

Cv2ð�Þ ¼ pð1� pÞðm1 �m2Þ2 þ p�21 þ ð1� pÞ�22
Eð�Þ2

then

Cv2ð�Þ � pm2
1Cv

2
1 þ ð1� pÞm2

2Cv
2
2

Eð�Þ2

Since Cv21 	 Cv22 we get

Cv2ð�Þ � Cv21
pm2

1 þ ð1� pÞm2
2

ðpm1 þ ð1� pÞm2Þ2

It is easy to see that

pm2
1 þ ð1� pÞm2

2 � ðpm1 þ ð1� pÞm2Þ2

And finally

Cv2ð�Þ � Cv21

which ends the proof. &
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