Consider the CDF (Cumulative Distribution Function),
\[F(t) = \begin{cases}
0, & t < 0, \\
t^2, & 0 \leq t \leq 1, \\
1, & 1 \leq t.
\end{cases} \]

Let \(U \) be a uniform random variable on \([0,1]\). Find a function, \(g(\cdot) \), such that \(X = g(U) \) has the CDF \(F(\cdot) \):

\[g(u) = \]

For each of the following continuous time LTI systems, write the impulse response:

(a) A system that “delays the input by 3 time units”:

\[h(t) = \]

(b) A system that integrates the input (starting from time 0). That is \(\mathcal{O}(u(t)) = \int_0^t u(\tau) \, d\tau \):

\[h(t) = \]

(c) A system that superimposes (adds) the input with a delayed input, where the delay is by one time unit:

\[h(t) = \]