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Definition and Notation

Let {Xt : t ∈ R+
0 } denote a simple birth process (SBP)

with parameter λ. Moreover, X0
a.s.
= x0 .

It is Markovian with infinitesimal conditions

Pr(Xt+h = j |Xt = i) =


λih +O(h) for j = i + 1

1− λih +O(h) for j = i

O(h) otherwise

.

Transition probability Pr(Xs+t = j |Xs = i) := pij(t):

pij(t) =

(
j − 1

i − 1

)
e−λti (1− e−λt)j−i .
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The Fisher Information

Estimating the unknown parameter λ .

Take the sample Xt1 ,Xt2 , . . . ,Xtn at sampling times
0 < t1 ≤ t2 ≤ . . . ≤ tn, respectively.

Finding the volume of information obtained from the sample
to estimate the unknown parameter λ .

A good tool to measure the volume of information gained
from a sample is the Fisher Information.

It can be shown that

FI(Xt1
,Xt2

,··· ,Xtn )
(λ) = EL

[(
d

dλ
ln(L(Xt1 ,Xt2 , . . . ,Xtn ;λ))

)2
]
.
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The Fisher Information for the Simple Birth Process

Proposition (Becker and Kersting, 1983)

The Fisher Information for the simple birth process with the
parameter λ, the initial value of x0 and the sampling times of
(t1, t2, . . . , tn) is as follows:

FI(Xt1 ,Xt2 ,··· ,Xtn )
(λ) = x0

n∑
i=1

(ti − ti−1)2

e−λti−1 − e−λti
.
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Definition and Notation

Suppose that at each sampling time ti , we can observe the
population, partially.

Yt is the sample observed at time t.

(Yt |Xt = x) ∼ Binomial(x,p).

We call the stochastic process {Yt : t ∈ R+
0 } the

partially-observable simple birth process (POSBP) with
parameters (λ, p).

POSBP(λ, 1) ≡ SBP(λ) .
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Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2013)

The POSBP {Yt : t ∈ R+
0 } with parameters (λ, p) is not

Markovian.

However,

Pr(Yt1 = yt1 ,Yt2 = yt2 , . . . ,Ytn = ytn |Xt1 = xt1 ,Xt2 = xt2 , . . . ,Xtn = xtn)

=
n∏

i=1

Pr(Yti = yti |Xti = xti ) .
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The Fisher Information for the POSBP

The Fisher Information:

FI(Yt1
,Yt2

,··· ,Ytn )
(λ) =

∑
yt1 ,yt2 ,...,ytn

(
dL(yt1 ,yt2 ,...,ytn ;λ)

dλ )2

L(yt1 , yt2 , . . . , ytn ; λ)
.

Here, the likelihood function L(yt1 , yt2 , . . . , ytn ; λ) is equal to∑
xt1 ,...,xtn

n∏
i=1

(
xti
yti

)
pyi qxti−yti

(
xti − 1

xti−1 − 1

)
υ
xti−1

i−1,i (1− υi−1,i )xti−xti−1 ,

where υi−1,i := e−λ(ti−ti−1) .

By exploiting Chebyshev’s inequality, we have

Pr
(

E [Z ]− 12
√

Var(Z ) ≤ Z ≤ E [Z ] + 12
√

Var(Z )
)
≥ 1− 1

122

= 99.3% .
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Results for x0 = 1, λ = 2, n = 2 and t2 = 1

The Fisher Information vs. t1 and p
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The Chain Rule

The likelihood function

L(yt1 , yt2 |λ)= Pr(Yt2 = yt2 |Yt1 = yt1 , λ) Pr(Yt1 = yt1 |λ) .

Accordingly,

log (L(yt1 , yt2 |λ))= log (Pr(Yt2 = yt2 |Yt1 = yt1 , λ))

+ log (Pr(Yt1 = yt1 |λ)) .

The Fisher Information:

FI(Yt1
,Yt2

)(λ) = FI(Yt2
|Yt1

)(λ) + FI(Yt1
)(λ) .
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Delayed Geometric Distribution

Definition

A discrete random variable V has the “Delayed Geometric”
distribution with parameters α ∈ [0, 1) and β ∈ (0, 1), denoted
by DG(α,β), if its probability mass function (p.m.f.) is

PV (v) =

{
α for v = 0

(1− α)β(1− β)v−1 for v = 1, 2, . . . .

Remark

The DG(β, β) and DG(0, β) distributions reduce, respectively, to
the Geometric distribution-failure model and -success model
both with parameter β.
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Delayed Negative Binomial Distribution

Definition

Suppose V1, · · · ,Vr are i.i.d. random variables with common
DG(α, β) distribution. If W :=

∑∑∑r
i=1Vi, then W has “Delayed

Negative Binomial” distribution with parameters r, α and β,
denoted by DNB(r, α, β).

Proposition (Bean, Eshragh and Ross; 2013)

If W follows the DNB(r , α, β) distribution, then its p.m.f. is

PW (w) =


αr for w = 0
min{r ,w}∑
ξ=1

(
w − 1

ξ − 1

)
βξ(1− β)w−ξ

(
r

ξ

)
(1− α)ξαr−ξ for w ≥ 1
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The Distribution of Yt

Theorem (Bean, Eshragh and Ross; 2013)

Consider the POSBP {Yt , t ≥ 0} with parameters (λ, p) and the
initial population size x0 ≥ 1. For any real value t > 0, the
random variable Yt follows the DNB(x0, (1− p)βt, βt)
distribution where

βt:=
e−λt

p + (1− p)e−λt
.

Corollary (Bean, Eshragh and Ross; 2013)

Consider the POSBP {Yt , t ≥ 0} with parameters (λ, p) and the
initial population size x0 = 1. For any real value t > 0, the
random variable Yt follows the DG((1− p)βt, βt) distribution.
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The Fisher Information for a Single Observation

Proposition (Bean, Eshragh and Ross; 2013)

Consider the POSBP {Yt , t ≥ 0} with parameters (λ, p) and the
initial population size x0 = 1. The Fisher Information of a single
observation Yt1 for parameter λ is equal to

FIY1(λ)=
pt21
(
p + (1− p)(1− e−λt1)e−λt1

)
(1− e−λt1)(p + (1− p)e−λt1)2

.
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The Distribution of (Y 2|Y 1 = yt1)

Theorem (Bean, Eshragh and Ross; 2013)

Consider the POSBP {Yt , t ≥ 0} with parameters (λ, p) and the
initial population size x0 = 1. Then

W1
d
= (Yt2 |Yt1 = yt1) + V1

where (Yt2 |Yt1 = yt1) and V1 are mutually independent and
W1 ∼DNB(yt1 + 1, (1− p)β◦, β◦) and V1 ∼DG((1− p)βt2−t1, βt2−t1).

Moreover,

(Yt2 |Yt1 = yt1)
d
= W2 + V2

where W2 ∼DNB(yt1 , (1− p)β◦, β◦) and
V2 ∼DG

((
peλ(t2−t1) + 1− p

)
β◦, β◦

)
are two independent random

variables.
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Bounds for the General Form of the Fisher Information

Theorem

If Z1, · · · ,Zn are independent random variables from distributions
with common unknown parameter γ and g : Rn→ R is a
real-value function, then

FIg(Z1,··· ,Zn)(γ)≤
n∑∑∑

i=1

FIZi(γ) .

Furthermore, equality occurs if and only if g is a sufficient
estimator for γ.

Also, the Carmer-Rao lower bound implies that

FIg(Z1,··· ,Zn)(γ)≥

(
∂E [g(Z1, · · · ,Zn)]

∂γ

)2

Var (g(Z1, · · · ,Zn))
.
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Results for x0 = 1, λ = 2, n = 2 and t2 = 1

The Fisher Information (blue) and its Approximation (red) vs.
t1
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Bounds for the Fisher Information

By exploiting the last two theorems, we found a lower and an
upper bounds for Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)

The approximation function for the Fisher Information lies within
the lower and upper bounds found for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)

The lower and upper bounds for the Fisher Information approach
together as λ tends to infinity.
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Theorem (Bean, Eshragh and Ross; 2013)
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By exploiting the last two theorems, we found a lower and an
upper bounds for Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)

The approximation function for the Fisher Information lies within
the lower and upper bounds found for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)

The lower and upper bounds for the Fisher Information approach
together as λ tends to infinity.
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Results for x0 = 1, λ = 6, n = 2 and t2 = 1

Lower (brown) and Upper (green) Bounds for The Fisher
Information and its Approximation (red) vs. t1
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Results for x0 = 1, λ = 10, n = 2 and t2 = 1

Lower (brown) and Upper (green) Bounds for The Fisher
Information and its Approximation (red) vs. t1
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Further Developments

Developing analogous approximation for higher values of n .

Finding the Fisher Information to estimate parameter p along
with λ, both together.
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Further Developments

Developing analogous approximation for higher values of n .

Finding the Fisher Information to estimate parameter p along
with λ, both together.
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End

Thank you · · · Questions?
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