Fisher Information for a Partially-Observable Simple Birth Process

Ali Eshragh (Joint work with Nigel Bean and Joshua Ross)
School of Mathematical Sciences
The University of Adelaide, Adelaide, 5005 Australia
Australia and New Zealand Applied Probability Workshop
Brisbane, Australia
8-11 July, 2013

Definition and Notation

- Let $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$denote a simple birth process (SBP) with parameter λ. Moreover, $X_{0} \stackrel{\text { a.s. }}{=} x_{0}$.

Definition and Notation

- Let $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$denote a simple birth process (SBP) with parameter λ. Moreover, $X_{0} \stackrel{\text { a.s. }}{=} x_{0}$.
- It is Markovian with infinitesimal conditions

$$
\operatorname{Pr}\left(X_{t+h}=j \mid X_{t}=i\right)=\left\{\begin{array}{l}
\lambda i h+\mathcal{O}(h) \text { for } j=i+1 \\
1-\lambda i h+\mathcal{O}(h) \text { for } j=i \\
\mathcal{O}(h) \text { otherwise }
\end{array}\right.
$$

Definition and Notation

- Let $\left\{X_{t}: t \in \mathrm{R}_{0}^{+}\right\}$denote a simple birth process (SBP) with parameter λ. Moreover, $X_{0} \stackrel{\text { a.s. }}{=} x_{0}$.
- It is Markovian with infinitesimal conditions

$$
\operatorname{Pr}\left(X_{t+h}=j \mid X_{t}=i\right)=\left\{\begin{array}{l}
\lambda i h+\mathcal{O}(h) \text { for } j=i+1 \\
1-\lambda i h+\mathcal{O}(h) \text { for } j=i \\
\mathcal{O}(h) \text { otherwise }
\end{array}\right.
$$

- Transition probability $\operatorname{Pr}\left(X_{s+t}=j \mid X_{s}=i\right):=p_{i j}(t)$:

$$
p_{i j}(t)=\binom{j-1}{i-1} e^{-\lambda t i}\left(1-e^{-\lambda t}\right)^{j-i}
$$

The Fisher Information

- Estimating the unknown parameter λ.

The Fisher Information

- Estimating the unknown parameter λ.
- Take the sample $X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}$ at sampling times $0<t_{1} \leq t_{2} \leq \ldots \leq t_{n}$, respectively.

The Fisher Information

- Estimating the unknown parameter λ.
- Take the sample $X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}$ at sampling times $0<t_{1} \leq t_{2} \leq \ldots \leq t_{n}$, respectively.
- Finding the volume of information obtained from the sample to estimate the unknown parameter λ.

The Fisher Information

- Estimating the unknown parameter λ.
- Take the sample $X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}$ at sampling times $0<t_{1} \leq t_{2} \leq \ldots \leq t_{n}$, respectively.
- Finding the volume of information obtained from the sample to estimate the unknown parameter λ.
- A good tool to measure the volume of information gained from a sample is the Fisher Information.

The Fisher Information

- Estimating the unknown parameter λ.
- Take the sample $X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}$ at sampling times $0<t_{1} \leq t_{2} \leq \ldots \leq t_{n}$, respectively.
- Finding the volume of information obtained from the sample to estimate the unknown parameter λ.
- A good tool to measure the volume of information gained from a sample is the Fisher Information.
- It can be shown that

$$
\mathcal{F} \mathcal{I}_{\left(X_{t_{1}}, x_{t_{2}}, \cdots, X_{t_{n}}\right)}(\lambda)=E_{\mathcal{L}}\left[\left(\frac{d}{d \lambda} \ln \left(\mathcal{L}\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}} ; \lambda\right)\right)\right)^{2}\right]
$$

The Fisher Information for the Simple Birth Process

Proposition (Becker and Kersting, 1983)

The Fisher Information for the simple birth process with the parameter λ, the initial value of x_{0} and the sampling times of $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is as follows:

$$
\mathcal{F} \mathcal{I}_{\left(X_{t_{1}}, x_{t_{2}}, \cdots, x_{t_{n}}\right)}(\lambda)=x_{0} \sum_{i=1}^{n} \frac{\left(t_{i}-t_{i-1}\right)^{2}}{e^{-\lambda t_{i}-1}-e^{-\lambda t_{i}}}
$$

Definition and Notation

- Suppose that at each sampling time t_{i}, we can observe the population, partially.

Definition and Notation

- Suppose that at each sampling time t_{i}, we can observe the population, partially.
- $\mathbf{Y}_{\mathbf{t}}$ is the sample observed at time t.

Definition and Notation

- Suppose that at each sampling time t_{i}, we can observe the population, partially.
- $\mathbf{Y}_{\mathbf{t}}$ is the sample observed at time t.
- $\left(Y_{t} \mid X_{t}=x\right) \sim \operatorname{Binomial}(\mathbf{x}, \mathbf{p})$.

Definition and Notation

- Suppose that at each sampling time t_{i}, we can observe the population, partially.
- $\mathbf{Y}_{\mathbf{t}}$ is the sample observed at time t.
- $\left(Y_{t} \mid X_{t}=x\right) \sim \operatorname{Binomial}(\mathbf{x}, \mathbf{p})$.
- We call the stochastic process $\left\{Y_{t}: t \in \mathrm{R}_{0}^{+}\right\}$the partially-observable simple birth process (POSBP) with parameters (λ, p).

Definition and Notation

- Suppose that at each sampling time t_{i}, we can observe the population, partially.
- $\mathbf{Y}_{\mathbf{t}}$ is the sample observed at time t.
- $\left(Y_{t} \mid X_{t}=x\right) \sim \operatorname{Binomial}(\mathbf{x}, \mathbf{p})$.
- We call the stochastic process $\left\{Y_{t}: t \in \mathrm{R}_{0}^{+}\right\}$the partially-observable simple birth process (POSBP) with parameters (λ, p).
- $\operatorname{PosBP}(\lambda, 1) \equiv \operatorname{SBP}(\lambda)$.

Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2013)
 The POSBP $\left\{Y_{t}: t \in \mathrm{R}_{0}^{+}\right\}$with parameters (λ, p) is not Markovian.

Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2013)

The POSBP $\left\{Y_{t}: t \in \mathrm{R}_{0}^{+}\right\}$with parameters (λ, p) is not Markovian.

- However,

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}}, Y_{t_{2}}\right. & \left.=y_{t_{2}}, \ldots, Y_{t_{n}}=y_{t_{n}} \mid X_{t_{1}}=x_{t_{1}}, X_{t_{2}}=x_{t_{2}}, \ldots, X_{t_{n}}=x_{t_{n}}\right) \\
& =\prod_{i=1}^{n} \operatorname{Pr}\left(Y_{t_{i}}=y_{t_{i}} \mid X_{t_{i}}=x_{t_{i}}\right)
\end{aligned}
$$

The Fisher Information for the POSBP

- The Fisher Information:

$$
\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}, Y_{t_{2}}, \ldots, Y_{t_{n}}\right)}(\lambda)=\sum_{y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}}} \frac{\left(\frac{d \mathcal{L}\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}} ; \lambda\right)}{d \lambda}\right)^{2}}{\mathcal{L}\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}} ; \lambda\right)} .
$$

The Fisher Information for the POSBP

- The Fisher Information:

$$
\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}, Y_{t_{2}}, \cdots, Y_{t_{n}}\right)}(\lambda)=\sum_{y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}}} \frac{\left(\frac{d \mathcal{L}\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}} ; \lambda\right)}{d \lambda}\right)^{2}}{\mathcal{L}\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}} ; \lambda\right)}
$$

- Here, the likelihood function $\mathcal{L}\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}} ; \lambda\right)$ is equal to

$$
\sum_{x_{t_{1}}, \ldots, x_{t_{n}}} \prod_{i=1}^{n}\binom{x_{t_{i}}}{y_{t_{i}}} p^{y_{i}} q^{x_{t_{i}}-y_{t_{i}}}\binom{x_{t_{i}}-1}{x_{t_{i-1}}-1} v_{i-1, i}^{x_{t_{i}-1}}\left(1-v_{i-1, i}\right)^{x_{t_{i}}-x_{t_{i-1}}}
$$

where $v_{i-1, i}:=e^{-\lambda\left(t_{i}-t_{i-1}\right)}$.

The Fisher Information for the POSBP

- The Fisher Information:

$$
\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}, Y_{t_{2}}, \ldots, Y_{t_{n}}\right)}(\lambda)=\sum_{y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}}} \frac{\left(\frac{d \mathcal{L}\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}} ; \lambda\right)}{d \lambda}\right)^{2}}{\mathcal{L}\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}} ; \lambda\right)} .
$$

- Here, the likelihood function $\mathcal{L}\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n}} ; \lambda\right)$ is equal to

$$
\sum_{x_{t_{1}}, \ldots, x_{t_{n}}} \prod_{i=1}^{n}\binom{x_{t_{i}}}{y_{t_{i}}} p^{y_{i}} q^{x_{t_{i}}-y_{t_{i}}}\binom{x_{t_{i}}-1}{x_{t_{i-1}}-1} v_{i-1, i}^{x_{t_{i}-1}}\left(1-v_{i-1, i}\right)^{x_{t_{i}}-x_{t_{i-1}}}
$$

where $v_{i-1, i}:=e^{-\lambda\left(t_{i}-t_{i-1}\right)}$.

- By exploiting Chebyshev's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}(E[Z]-12 \sqrt{\operatorname{Var}(Z)} \leq Z \leq E[Z]+12 \sqrt{\operatorname{Var}(Z)}) & \geq 1-\frac{1}{12^{2}} \\
& =99.3 \%
\end{aligned}
$$

Simple Birth Process Partially-Observable Simple Birth Process Approximation

Results for $x_{0}=1, \lambda=2, n=2$ and $t_{2}=1$

- The Fisher Information vs. t_{1} and p

Simple Birth Process

Results for $x_{0}=1, \lambda=2, n=2$ and $t_{2}=1$

- The Fisher Information vs. t_{1}

Ali Eshragh (Joint work with Nigel Bean and Joshua Ross) \quad Fisher Information for a POSBP

The Chain Rule

- The likelihood function

$$
\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} \mid \lambda\right)=\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right) \operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right) .
$$

The Chain Rule

- The likelihood function

$$
\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} \mid \lambda\right)=\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right) \operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right)
$$

- Accordingly,

$$
\begin{aligned}
\log \left(\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} \mid \lambda\right)\right)= & \log \left(\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right)\right) \\
& +\log \left(\operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right)\right)
\end{aligned}
$$

The Chain Rule

- The likelihood function

$$
\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} \mid \lambda\right)=\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right) \operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right) .
$$

- Accordingly,

$$
\begin{aligned}
\log \left(\mathcal{L}\left(y_{t_{1}}, y_{t_{2}} \mid \lambda\right)\right)= & \log \left(\operatorname{Pr}\left(Y_{t_{2}}=y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}, \lambda\right)\right) \\
& +\log \left(\operatorname{Pr}\left(Y_{t_{1}}=y_{t_{1}} \mid \lambda\right)\right)
\end{aligned}
$$

- The Fisher Information:

$$
\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}, Y_{t_{2}}\right)}(\lambda)=\mathcal{F} \mathcal{I}_{\left(Y_{t_{2}} \mid Y_{\left.t_{1}\right)}\right)}(\lambda)+\mathcal{F} \mathcal{I}_{\left(Y_{t_{1}}\right)}(\lambda) .
$$

Delayed Geometric Distribution

Definition

A discrete random variable V has the "Delayed Geometric" distribution with parameters $\alpha \in[\mathbf{0}, \mathbf{1})$ and $\beta \in(\mathbf{0}, \mathbf{1})$, denoted by $\mathrm{DG}(\alpha, \beta)$, if its probability mass function (p.m.f.) is

$$
P_{V}(v)=\left\{\begin{array}{l}
\alpha \quad \text { for } v=0 \\
(1-\alpha) \beta(1-\beta)^{v-1} \quad \text { for } v=1,2, \ldots
\end{array}\right.
$$

Delayed Geometric Distribution

Definition

A discrete random variable V has the "Delayed Geometric" distribution with parameters $\alpha \in[\mathbf{0}, \mathbf{1})$ and $\beta \in(\mathbf{0}, \mathbf{1})$, denoted by $\mathrm{DG}(\alpha, \beta)$, if its probability mass function (p.m.f.) is

$$
P_{V}(v)=\left\{\begin{array}{l}
\alpha \quad \text { for } v=0 \\
(1-\alpha) \beta(1-\beta)^{v-1} \quad \text { for } v=1,2, \ldots
\end{array}\right.
$$

Remark

The $D G(\beta, \beta)$ and $D G(0, \beta)$ distributions reduce, respectively, to the Geometric distribution-failure model and -success model both with parameter $\boldsymbol{\beta}$.

Delayed Negative Binomial Distribution

Definition

Suppose V_{1}, \cdots, V_{r} are i.i.d. random variables with common $\mathrm{DG}(\alpha, \beta)$ distribution. If $\mathbf{W}:=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{r}} \mathbf{V}_{\mathbf{i}}$, then W has "Delayed Negative Binomial" distribution with parameters $\mathbf{r}, \boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, denoted by DNB(r, $\boldsymbol{\alpha}, \boldsymbol{\beta})$.

Delayed Negative Binomial Distribution

Definition

Suppose V_{1}, \cdots, V_{r} are i.i.d. random variables with common $\mathrm{DG}(\alpha, \beta)$ distribution. If $\mathbf{W}:=\sum_{\mathbf{i}=1}^{\mathbf{r}} \mathbf{V}_{\mathbf{i}}$, then W has "Delayed Negative Binomial" distribution with parameters $\mathbf{r}, \boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, denoted by DNB $(\mathbf{r}, \boldsymbol{\alpha}, \boldsymbol{\beta})$.

Proposition (Bean, Eshragh and Ross; 2013)

If W follows the $\operatorname{DNB}(r, \alpha, \beta)$ distribution, then its p.m.f. is
$P_{w}(w)=\left\{\begin{array}{l}\alpha^{r} \quad \text { for } w=0 \\ \sum_{\xi=1}^{\min \{r, w\}}\binom{w-1}{\xi-1} \beta^{\xi}(1-\beta)^{w-\xi}\binom{r}{\xi}(1-\alpha)^{\xi} \alpha^{r-\xi} \quad \text { for } w \geq 1\end{array}\right.$

The Distribution of Y_{t}

Theorem (Bean, Eshragh and Ross; 2013)
Consider the POSBP $\left\{Y_{t}, t \geq 0\right\}$ with parameters (λ, p) and the initial population size $x_{0} \geq 1$. For any real value $t>0$, the random variable Y_{t} follows the $\operatorname{DNB}\left(\mathbf{x}_{0},(\mathbf{1}-\mathbf{p}) \boldsymbol{\beta}_{\mathbf{t}}, \boldsymbol{\beta}_{\mathbf{t}}\right)$ distribution where

$$
\beta_{\mathbf{t}}:=\frac{\mathbf{e}^{-\lambda \mathbf{t}}}{\mathbf{p}+(\mathbf{1}-\mathbf{p}) \mathbf{e}^{-\lambda \mathbf{t}}}
$$

The Distribution of Y_{t}

Theorem (Bean, Eshragh and Ross; 2013)
Consider the POSBP $\left\{Y_{t}, t \geq 0\right\}$ with parameters (λ, p) and the initial population size $x_{0} \geq 1$. For any real value $t>0$, the random variable Y_{t} follows the $\mathbf{D N B}\left(\mathbf{x}_{\mathbf{0}},(\mathbf{1}-\mathbf{p}) \boldsymbol{\beta}_{\mathbf{t}}, \boldsymbol{\beta}_{\mathbf{t}}\right)$ distribution where

$$
\beta_{\mathbf{t}}:=\frac{\mathbf{e}^{-\lambda \mathbf{t}}}{\mathbf{p}+(\mathbf{1}-\mathbf{p}) \mathbf{e}^{-\lambda \mathbf{t}}} .
$$

Corollary (Bean, Eshragh and Ross; 2013)

Consider the POSBP $\left\{Y_{t}, t \geq 0\right\}$ with parameters (λ, p) and the initial population size $x_{0}=1$. For any real value $t>0$, the random variable Y_{t} follows the $\mathbf{D G}\left((\mathbf{1}-\mathbf{p}) \boldsymbol{\beta}_{\mathbf{t}}, \boldsymbol{\beta}_{\mathbf{t}}\right)$ distribution.

The Fisher Information for a Single Observation

Proposition (Bean, Eshragh and Ross; 2013)

Consider the POSBP $\left\{Y_{t}, t \geq 0\right\}$ with parameters (λ, p) and the initial population size $x_{0}=1$. The Fisher Information of a single observation $Y_{t_{1}}$ for parameter λ is equal to

$$
\mathcal{F I}_{\mathbf{Y}_{1}}(\lambda)=\frac{p t_{1}^{2}\left(p+(1-p)\left(1-e^{-\lambda t_{1}}\right) e^{-\lambda t_{1}}\right)}{\left(1-e^{-\lambda t_{1}}\right)\left(p+(1-p) e^{-\lambda t_{1}}\right)^{2}}
$$

The Distribution of $\left(Y 2 \mid Y 1=y_{t_{1}}\right)$

Theorem (Bean, Eshragh and Ross; 2013)

Consider the POSBP $\left\{Y_{t}, t \geq 0\right\}$ with parameters (λ, p) and the initial population size $x_{0}=1$. Then

$$
\mathbf{W}_{1} \stackrel{\mathbf{d}}{=}\left(\mathbf{Y}_{\mathbf{t}_{2}} \mid \mathbf{Y}_{\mathbf{t}_{1}}=\mathbf{y}_{\mathrm{t}_{1}}\right)+\mathbf{V}_{1}
$$

where $\left(Y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}\right)$ and V_{1} are mutually independent and $W_{1} \sim D N B\left(y_{t_{1}}+1,(1-p) \beta^{\circ}, \beta^{\circ}\right)$ and $V_{1} \sim D G\left((1-p) \beta_{t 2-t 1}, \beta_{t 2-t 1}\right)$.

The Distribution of $\left(Y 2 \mid Y 1=y_{t_{1}}\right)$

Theorem (Bean, Eshragh and Ross; 2013)

Consider the POSBP $\left\{Y_{t}, t \geq 0\right\}$ with parameters (λ, p) and the initial population size $x_{0}=1$. Then

$$
\mathbf{W}_{1} \stackrel{d}{=}\left(\mathbf{Y}_{\mathbf{t}_{2}} \mid \mathbf{Y}_{\mathbf{t}_{1}}=\mathbf{y}_{\mathrm{t}_{1}}\right)+\mathbf{V}_{1}
$$

where $\left(Y_{t_{2}} \mid Y_{t_{1}}=y_{t_{1}}\right)$ and V_{1} are mutually independent and $W_{1} \sim D N B\left(y_{t_{1}}+1,(1-p) \beta^{\circ}, \beta^{\circ}\right)$ and $V_{1} \sim D G\left((1-p) \beta_{t 2-t 1}, \beta_{t 2-t 1}\right)$.
Moreover,

$$
\left(\mathbf{Y}_{\mathbf{t}_{2}} \mid \mathbf{Y}_{\mathbf{t}_{1}}=\mathbf{y}_{\mathbf{t}_{1}}\right) \stackrel{\mathbf{d}}{=} \mathbf{W}_{2}+\mathbf{V}_{2}
$$

where $W_{2} \sim D N B\left(y_{t_{1}},(1-p) \beta^{\circ}, \beta^{\circ}\right)$ and
$V_{2} \sim D G\left(\left(p e^{\lambda\left(t_{2}-t_{1}\right)}+1-p\right) \beta^{\circ}, \beta^{\circ}\right)$ are two independent random variables.

Bounds for the General Form of the Fisher Information

Theorem

If Z_{1}, \cdots, Z_{n} are independent random variables from distributions with common unknown parameter γ and $\mathbf{g}: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}$ is a real-value function, then

$$
\mathcal{F} \mathcal{I}_{\mathrm{g}\left(\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{n}}\right)}(\gamma) \leq \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathcal{F} \mathcal{I}_{\mathrm{Z}_{\mathrm{i}}}(\gamma)
$$

Furthermore, equality occurs if and only if g is a sufficient estimator for γ.

Bounds for the General Form of the Fisher Information

Theorem

If Z_{1}, \cdots, Z_{n} are independent random variables from distributions with common unknown parameter γ and $\mathbf{g}: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}$ is a real-value function, then

$$
\mathcal{F} \mathcal{I}_{\mathrm{g}\left(\mathrm{Z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}\right)}(\gamma) \leq \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathcal{F} \mathcal{I}_{\mathrm{Z}_{\mathrm{i}}}(\gamma)
$$

Furthermore, equality occurs if and only if g is a sufficient estimator for γ.

- Also, the Carmer-Rao lower bound implies that

$$
\mathcal{F} \mathcal{I}_{\mathrm{g}\left(\mathrm{Z}_{1}, \ldots, \mathrm{z}_{n}\right)}(\gamma) \geq \frac{\left(\frac{\partial \mathrm{E}\left[\mathrm{~g}\left(\mathrm{Z}_{1}, \cdots, \mathrm{Z}_{\mathrm{n}}\right)\right]}{\partial \gamma}\right)^{2}}{\operatorname{Var}\left(\mathrm{~g}\left(\mathrm{Z}_{1}, \cdots, \mathrm{Z}_{n}\right)\right)}
$$

Simple Birth Process Partially-Observable Simple Birth Process Approximation

The Conditional Fisher Information
The Delayed Negative Binomial Distribution Distributions
Convergence

Results for $x_{0}=1, \lambda=2, n=2$ and $t_{2}=1$

- The Fisher Information (blue) and its Approximation (red) vs. t_{1}

Bounds for the Fisher Information

- By exploiting the last two theorems, we found a lower and an upper bounds for Fisher Information.

Bounds for the Fisher Information

- By exploiting the last two theorems, we found a lower and an upper bounds for Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)
 The approximation function for the Fisher Information lies within the lower and upper bounds found for the Fisher Information.

Bounds for the Fisher Information

- By exploiting the last two theorems, we found a lower and an upper bounds for Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)
The approximation function for the Fisher Information lies within the lower and upper bounds found for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)

The lower and upper bounds for the Fisher Information approach together as λ tends to infinity.

Simple Birth Process Partially-Observable Simple Birth Process Approximation

The Conditional Fisher Information
The Delayed Negative Binomial Distribution Distributions
Convergence

Results for $x_{0}=1, \lambda=6, n=2$ and $t_{2}=1$

- Lower (brown) and Upper (green) Bounds for The Fisher Information and its Approximation (red) vs. t_{1}

Results for $x_{0}=1, \lambda=10, n=2$ and $t_{2}=1$

- Lower (brown) and Upper (green) Bounds for The Fisher Information and its Approximation (red) vs. t_{1}

Further Developments

- Developing analogous approximation for higher values of n.

Further Developments

- Developing analogous approximation for higher values of n.
- Finding the Fisher Information to estimate parameter palong with λ, both together.

The Conditional Fisher Information
The Delayed Negative Binomial Distribution Distributions
Convergence

End

Thank you ... Questions?

Ali Eshragh (Joint work with Nigel Bean and Joshua Ross) Fisher Information for a POSBP

