Fisher Information for a Partially-Observable Simple Birth Process

Ali Eshragh (Joint work with Nigel Bean and Joshua Ross)

School of Mathematical Sciences The University of Adelaide, Adelaide, 5005 Australia

Australia and New Zealand Applied Probability Workshop Brisbane, Australia 8-11 July, 2013

▲□ > < □ > < □</p>

Introduction Information

イロト イヨト イヨト イヨト

3

Definition and Notation

Let {X_t : t ∈ R₀⁺} denote a simple birth process (SBP) with parameter λ. Moreover, X₀^{a.s.} x₀.

Introduction Information

Definition and Notation

- Let {X_t : t ∈ R₀⁺} denote a simple birth process (SBP) with parameter λ. Moreover, X₀^{a.s.} x₀.
- It is Markovian with infinitesimal conditions

$$\Pr(X_{t+h} = j | X_t = i) = \begin{cases} \lambda ih + \mathcal{O}(h) & \text{for } j = i+1\\ 1 - \lambda ih + \mathcal{O}(h) & \text{for } j = i\\ \mathcal{O}(h) & \text{otherwise} \end{cases}$$

イロン イヨン イヨン イヨン

3

Introduction Information

Definition and Notation

- Let {X_t : t ∈ R₀⁺} denote a simple birth process (SBP) with parameter λ. Moreover, X₀^{a.s.} x₀.
- It is Markovian with infinitesimal conditions

$$\Pr(X_{t+h} = j | X_t = i) = \begin{cases} \lambda ih + \mathcal{O}(h) & \text{for } j = i+1\\ 1 - \lambda ih + \mathcal{O}(h) & \text{for } j = i\\ \mathcal{O}(h) & \text{otherwise} \end{cases}$$

• Transition probability $Pr(X_{s+t} = j | X_s = i) := p_{ij}(t)$:

$$p_{ij}(t) = egin{pmatrix} j-1\ i-1 \end{pmatrix} e^{-\lambda t i} (1-e^{-\lambda t})^{j-i} \, .$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction Information

・ロン ・回と ・ヨン・

æ

The Fisher Information

• Estimating the unknown parameter λ .

・ロト ・回ト ・ヨト ・ヨト

2

The Fisher Information

- Estimating the unknown parameter λ .
- Take the sample $X_{t_1}, X_{t_2}, \ldots, X_{t_n}$ at sampling times $0 < t_1 \le t_2 \le \ldots \le t_n$, respectively.

The Fisher Information

- Estimating the unknown parameter λ .
- Take the sample $X_{t_1}, X_{t_2}, \ldots, X_{t_n}$ at sampling times $0 < t_1 \le t_2 \le \ldots \le t_n$, respectively.
- Finding the volume of information obtained from the sample to estimate the unknown parameter λ .

イロン イヨン イヨン イヨン

The Fisher Information

- Estimating the unknown parameter λ .
- Take the sample $X_{t_1}, X_{t_2}, \ldots, X_{t_n}$ at sampling times $0 < t_1 \le t_2 \le \ldots \le t_n$, respectively.
- Finding the volume of information obtained from the sample to estimate the unknown parameter λ .

イロン イヨン イヨン イヨン

• A good tool to measure the volume of information gained from a sample is the **Fisher Information**.

The Fisher Information

- Estimating the unknown parameter λ .
- Take the sample $X_{t_1}, X_{t_2}, \ldots, X_{t_n}$ at sampling times $0 < t_1 \le t_2 \le \ldots \le t_n$, respectively.
- Finding the volume of information obtained from the sample to estimate the unknown parameter λ .
- A good tool to measure the volume of information gained from a sample is the **Fisher Information**.
- It can be shown that

$$\mathcal{FI}_{(X_{t_1},X_{t_2},\cdots,X_{t_n})}(\lambda) = \mathcal{E}_{\mathcal{L}}\left[\left(\frac{d}{d\lambda}\ln(\mathcal{L}(X_{t_1},X_{t_2},\ldots,X_{t_n};\lambda))\right)^2\right].$$

イロト イヨト イヨト イヨト

Introduction Information

The Fisher Information for the Simple Birth Process

Proposition (Becker and Kersting, 1983)

The **Fisher Information** for the simple birth process with the parameter λ , the initial value of x_0 and the sampling times of (t_1, t_2, \ldots, t_n) is as follows:

$$\mathcal{FI}_{(X_{t_1}, X_{t_2}, \cdots, X_{t_n})}(\lambda) = x_0 \sum_{i=1}^n \frac{(t_i - t_{i-1})^2}{e^{-\lambda t_{i-1}} - e^{-\lambda t_i}}.$$

Introduction The Fisher Information Numerical Results

イロト イヨト イヨト イヨト

æ

Definition and Notation

• Suppose that at each sampling time *t_i*, we can observe the population, **partially**.

Introduction The Fisher Information Numerical Results

イロト イヨト イヨト イヨト

- Suppose that at each sampling time *t_i*, we can observe the population, **partially**.
- Y_t is the sample observed at time t.

Introduction The Fisher Information Numerical Results

イロト イヨト イヨト イヨト

- Suppose that at each sampling time *t_i*, we can observe the population, **partially**.
- Y_t is the sample observed at time t.
- $(Y_t|X_t = x) \sim \text{Binomial}(\mathbf{x}, \mathbf{p}).$

Introduction The Fisher Information Numerical Results

イロト イヨト イヨト イヨト

- Suppose that at each sampling time *t_i*, we can observe the population, **partially**.
- Y_t is the sample observed at time t.
- $(Y_t|X_t = x) \sim \text{Binomial}(\mathbf{x}, \mathbf{p}).$
- We call the stochastic process {Y_t : t ∈ R₀⁺} the partially-observable simple birth process (POSBP) with parameters (λ, p).

Introduction The Fisher Information Numerical Results

・ロン ・回と ・ヨン ・ヨン

- Suppose that at each sampling time *t_i*, we can observe the population, **partially**.
- Y_t is the sample observed at time t.
- $(Y_t|X_t = x) \sim \text{Binomial}(\mathbf{x}, \mathbf{p}).$
- We call the stochastic process {Y_t : t ∈ R₀⁺} the partially-observable simple birth process (POSBP) with parameters (λ, p).
- $POSBP(\lambda, 1) \equiv SBP(\lambda)$.

Introduction The Fisher Information Numerical Results

< 口 > < 回 > < 回 > < 回 > < 回 > <

2

Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2013)

The POSBP $\{Y_t : t \in \mathbb{R}^+_0\}$ with parameters (λ, p) is **not** Markovian.

Introduction The Fisher Information Numerical Results

Markovian or non-Markovian?

Theorem (Bean, Elliott, Eshragh and Ross; 2013)

The POSBP $\{Y_t : t \in \mathbb{R}^+_0\}$ with parameters (λ, p) is not Markovian.

• However,

$$Pr(Y_{t_1} = y_{t_1}, Y_{t_2} = y_{t_2}, \dots, Y_{t_n} = y_{t_n} | X_{t_1} = x_{t_1}, X_{t_2} = x_{t_2}, \dots, X_{t_n} = x_{t_n})$$
$$= \prod_{i=1}^n Pr(Y_{t_i} = y_{t_i} | X_{t_i} = x_{t_i}).$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

2

Introduction The Fisher Information Numerical Results

 $(df(v_{+},v_{+},v_{+},\lambda))$

The Fisher Information for the POSBP

• The Fisher Information:

$$\mathcal{FI}_{(\mathbf{Y}_{t_1},\mathbf{Y}_{t_2},\cdots,\mathbf{Y}_{t_n})}(\lambda) = \sum_{\mathbf{y}_{t_1},\mathbf{y}_{t_2},\cdots,\mathbf{y}_{t_n}} \frac{\left(\frac{-\mathbf{y}_{t_1},\mathbf{y}_{t_2},\cdots,\mathbf{y}_{t_n},\mathbf{y}_{t_n}}{d\lambda}\right)^2}{\mathcal{L}(\mathbf{y}_{t_1},\mathbf{y}_{t_2},\cdots,\mathbf{y}_{t_n};\lambda)}.$$

Introduction The Fisher Information Numerical Results

(日) (同) (E) (E) (E)

The Fisher Information for the POSBP

• The Fisher Information:

.

$$\mathcal{FI}_{(Y_{t_1},Y_{t_2},\cdots,Y_{t_n})}(\lambda) = \sum_{y_{t_1},y_{t_2},\dots,y_{t_n}} \frac{\left(\frac{d\mathcal{L}(y_{t_1},y_{t_2},\dots,y_{t_n};\lambda)}{d\lambda}\right)^2}{\mathcal{L}(y_{t_1},y_{t_2},\dots,y_{t_n};\lambda)}.$$

• Here, the likelihood function $\mathcal{L}(y_{t_1}, y_{t_2}, \dots, y_{t_n}; \lambda)$ is equal to

 $\sum_{\mathsf{x}_{t_1},\ldots,\mathsf{x}_{t_n}} \prod_{i=1}^n \binom{\mathsf{x}_{t_i}}{\mathsf{y}_{t_i}} p^{\mathsf{y}_i} q^{\mathsf{x}_{t_i}-\mathsf{y}_{t_i}} \binom{\mathsf{x}_{t_i}-1}{\mathsf{x}_{t_{i-1}}-1} v_{i-1,i}^{\mathsf{x}_{t_{i-1}}} (1-v_{i-1,i})^{\mathsf{x}_{t_i}-\mathsf{x}_{t_{i-1}}},$

where $v_{i-1,i} := e^{-\lambda(t_i - t_{i-1})}$.

Introduction The Fisher Information Numerical Results

The Fisher Information for the POSBP

• The Fisher Information:

$$\mathcal{FI}_{(Y_{t_1},Y_{t_2},\cdots,Y_{t_n})}(\lambda) = \sum_{y_{t_1},y_{t_2},\dots,y_{t_n}} \frac{\left(\frac{d\mathcal{L}(y_{t_1},y_{t_2},\dots,y_{t_n};\lambda)}{d\lambda}\right)^2}{\mathcal{L}(y_{t_1},y_{t_2},\dots,y_{t_n};\lambda)}.$$

• Here, the likelihood function $\mathcal{L}(y_{t_1}, y_{t_2}, \dots, y_{t_n}; \lambda)$ is equal to

$$\sum_{x_{t_1},\ldots,x_{t_n}}\prod_{i=1}^n \binom{x_{t_i}}{y_{t_i}} p^{y_i} q^{x_{t_i}-y_{t_i}} \binom{x_{t_i}-1}{x_{t_{i-1}}-1} v_{i-1,i}^{x_{t_{i-1}}} (1-v_{i-1,i})^{x_{t_i}-x_{t_{i-1}}},$$

where $v_{i-1,i} := e^{-\lambda(t_i - t_{i-1})}$.

• By exploiting Chebyshev's inequality, we have

$$\Pr\left(E[Z] - 12\sqrt{Var(Z)} \le Z \le E[Z] + 12\sqrt{Var(Z)}\right) \ge 1 - \frac{1}{12^2} = 99.3\%.$$

Introduction The Fisher Information Numerical Results

Results for $x_0 = 1$, $\lambda = 2$, n = 2 and $t_2 = 1$

• The Fisher Information vs. t_1 and p

・ロト ・回ト ・ヨト

- 🔹 🖻

Introduction The Fisher Information Numerical Results

Results for $x_0 = 1$, $\lambda = 2$, n = 2 and $t_2 = 1$

• The Fisher Information vs. t_1

イロト イヨト イヨト イヨト

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

・ロン ・回 と ・ ヨ と ・ ヨ と

3

The Chain Rule

• The likelihood function

 $\mathcal{L}(y_{t_1}, y_{t_2}|\lambda) = \Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda) \Pr(Y_{t_1} = y_{t_1}|\lambda).$

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

æ

The Chain Rule

• The likelihood function

$$\mathcal{L}(y_{t_1}, y_{t_2}|\lambda) = \Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda) \Pr(Y_{t_1} = y_{t_1}|\lambda).$$

Accordingly,

$$\log (\mathcal{L}(y_{t_1}, y_{t_2}|\lambda)) = \log (\Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda)) + \log (\Pr(Y_{t_1} = y_{t_1}|\lambda)).$$

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

・ロン ・回と ・ヨン・

æ

The Chain Rule

• The likelihood function

$$\mathcal{L}(y_{t_1}, y_{t_2}|\lambda) = \Pr(Y_{t_2} = y_{t_2}|Y_{t_1} = y_{t_1}, \lambda) \Pr(Y_{t_1} = y_{t_1}|\lambda).$$

Accordingly,

$$\begin{split} \log \left(\mathcal{L}(y_{t_1}, y_{t_2} | \lambda) \right) &= \log \left(\Pr(Y_{t_2} = y_{t_2} | Y_{t_1} = y_{t_1}, \lambda) \right) \\ &+ \log \left(\Pr(Y_{t_1} = y_{t_1} | \lambda) \right). \end{split}$$

• The Fisher Information:

$$\mathcal{FI}_{(Y_{t_1},Y_{t_2})}(\lambda) = \mathcal{FI}_{(Y_{t_2}|Y_{t_1})}(\lambda) + \mathcal{FI}_{(Y_{t_1})}(\lambda)$$

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

イロト イヨト イヨト イヨト

Delayed Geometric Distribution

Definition

A discrete random variable V has the "**Delayed Geometric**" distribution with parameters $\alpha \in [0, 1)$ and $\beta \in (0, 1)$, denoted by **DG**(α, β), if its **probability mass function** (**p.m.f.**) is

$$P_V(v) = \begin{cases} \alpha & \text{for } v = 0\\ (1-\alpha)\beta(1-\beta)^{\nu-1} & \text{for } v = 1, 2, \dots \end{cases}$$

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

Delayed Geometric Distribution

Definition

A discrete random variable V has the "**Delayed Geometric**" distribution with parameters $\alpha \in [0, 1)$ and $\beta \in (0, 1)$, denoted by $DG(\alpha, \beta)$, if its probability mass function (p.m.f.) is

$$P_V(v) = \begin{cases} \alpha & \text{for } v = 0\\ (1 - \alpha)\beta(1 - \beta)^{\nu - 1} & \text{for } v = 1, 2, \dots \end{cases}$$

Remark

The $DG(\beta, \beta)$ and $DG(0, \beta)$ distributions reduce, respectively, to the **Geometric distribution-failure model** and -success model both with parameter β .

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

イロン イヨン イヨン イヨン

Delayed Negative Binomial Distribution

Definition

Suppose V_1, \dots, V_r are **i.i.d.** random variables with common $DG(\alpha, \beta)$ distribution. If $W := \sum_{i=1}^{r} V_i$, then W has "**Delayed Negative Binomial**" distribution with parameters \mathbf{r} , α and β , denoted by $DNB(\mathbf{r}, \alpha, \beta)$.

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

Delayed Negative Binomial Distribution

Definition

Suppose V_1, \dots, V_r are **i.i.d.** random variables with common $DG(\alpha, \beta)$ distribution. If $W := \sum_{i=1}^{r} V_i$, then W has "**Delayed Negative Binomial**" distribution with parameters \mathbf{r} , α and β , denoted by $DNB(\mathbf{r}, \alpha, \beta)$.

Proposition (Bean, Eshragh and Ross; 2013)

If W follows the DNB(r, α, β) distribution, then its **p.m.f.** is

$$P_{W}(w) = \begin{cases} \alpha^{r} \quad \text{for } w = 0\\ \sum_{\xi=1}^{\min\{r,w\}} {w-1 \choose \xi-1} \beta^{\xi} (1-\beta)^{w-\xi} {r \choose \xi} (1-\alpha)^{\xi} \alpha^{r-\xi} \quad \text{for } w \ge 1 \end{cases}$$

The Distribution of Y_t

Theorem (Bean, Eshragh and Ross; 2013)

Consider the **POSBP** { Y_t , $t \ge 0$ } with **parameters** (λ , p) and the **initial population size** $x_0 \ge 1$. For any real value t > 0, the random variable Y_t follows the **DNB**(x_0 , $(1 - p)\beta_t$, β_t) distribution where

$$eta_{\mathbf{t}} := rac{\mathbf{e}^{-\lambda \mathbf{t}}}{\mathbf{p} + (\mathbf{1} - \mathbf{p})\mathbf{e}^{-\lambda \mathbf{t}}} \, .$$

イロト イヨト イヨト イヨト

The Distribution of Y_t

Theorem (Bean, Eshragh and Ross; 2013)

Consider the **POSBP** { Y_t , $t \ge 0$ } with **parameters** (λ, p) and the **initial population size** $x_0 \ge 1$. For any real value t > 0, the random variable Y_t follows the **DNB** $(x_0, (1 - p)\beta_t, \beta_t)$ distribution where

$$eta_{\mathbf{t}} := rac{\mathbf{e}^{-\lambda \mathbf{t}}}{\mathbf{p} + (\mathbf{1} - \mathbf{p})\mathbf{e}^{-\lambda \mathbf{t}}}$$

Corollary (Bean, Eshragh and Ross; 2013)

Consider the **POSBP** { Y_t , $t \ge 0$ } with **parameters** (λ , p) and the **initial population size** $x_0 = 1$. For any real value t > 0, the random variable Y_t follows the **DG**($(1 - \mathbf{p})\beta_t, \beta_t$) distribution.

イロン イビン イヨン イヨン

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

イロト イヨト イヨト イヨト

The Fisher Information for a Single Observation

Proposition (Bean, Eshragh and Ross; 2013)

Consider the **POSBP** { Y_t , $t \ge 0$ } with **parameters** (λ , p) and the **initial population size** $x_0 = 1$. The Fisher Information of a single observation Y_{t_1} for parameter λ is equal to

$$\mathcal{FI}_{\mathbf{Y}_1}(\lambda) = rac{pt_1^2 \left(p + (1-p)(1-e^{-\lambda t_1})e^{-\lambda t_1}
ight)}{(1-e^{-\lambda t_1})(p+(1-p)e^{-\lambda t_1})^2}$$

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

イロト イヨト イヨト イヨト

э

The Distribution of $(Y2|Y1 = y_{t_1})$

Theorem (Bean, Eshragh and Ross; 2013)

Consider the POSBP $\{Y_t, t \ge 0\}$ with parameters (λ, p) and the initial population size $x_0 = 1$. Then

 $\mathbf{W}_1 \stackrel{d}{=} (\mathbf{Y}_{t_2} | \mathbf{Y}_{t_1} = \mathbf{y}_{t_1}) + \mathbf{V}_1$

where $(Y_{t_2}|Y_{t_1} = y_{t_1})$ and V_1 are mutually independent and $W_1 \sim DNB(y_{t_1} + 1, (1-p)\beta^\circ, \beta^\circ)$ and $V_1 \sim DG((1-p)\beta_{t2-t1}, \beta_{t2-t1})$.

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

イロト イヨト イヨト イヨト

æ

The Distribution of $(Y2|Y1 = y_{t_1})$

Theorem (Bean, Eshragh and Ross; 2013)

Consider the POSBP $\{Y_t, t \ge 0\}$ with parameters (λ, p) and the initial population size $x_0 = 1$. Then

 $\mathbf{W}_1 \stackrel{d}{=} (\mathbf{Y}_{t_2} | \mathbf{Y}_{t_1} = \mathbf{y}_{t_1}) + \mathbf{V}_1$

where $(Y_{t_2}|Y_{t_1} = y_{t_1})$ and V_1 are mutually independent and $W_1 \sim DNB(y_{t_1} + 1, (1 - p)\beta^\circ, \beta^\circ)$ and $V_1 \sim DG((1 - p)\beta_{t_2-t_1}, \beta_{t_2-t_1})$. Moreover,

$$(\mathbf{Y}_{t_2}|\mathbf{Y}_{t_1} = \mathbf{y}_{t_1}) \stackrel{d}{=} \mathbf{W}_2 + \mathbf{V}_2$$

where $W_2 \sim DNB(y_{t_1}, (1-p)\beta^{\circ}, \beta^{\circ})$ and $V_2 \sim DG((pe^{\lambda(t_2-t_1)} + 1 - p)\beta^{\circ}, \beta^{\circ})$ are two independent random variables.

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

イロト イヨト イヨト イヨト

Bounds for the General Form of the Fisher Information

Theorem

If Z_1, \dots, Z_n are independent random variables from distributions with common unknown parameter γ and $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}$ is a real-value function, then

$$\mathcal{FI}_{g(Z_1,\cdots,Z_n)}(\gamma) \leq \sum_{i=1}^n \mathcal{FI}_{Z_i}(\gamma).$$

Furthermore, equality occurs if and only if g is a sufficient estimator for γ .

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

Bounds for the General Form of the Fisher Information

Theorem

If Z_1, \dots, Z_n are independent random variables from distributions with common unknown parameter γ and $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}$ is a real-value function, then

$$\mathcal{FI}_{g(Z_1,\cdots,Z_n)}(\gamma) \leq \sum_{i=1}^n \mathcal{FI}_{Z_i}(\gamma).$$

Furthermore, equality occurs if and only if g is a sufficient estimator for γ .

• Also, the Carmer-Rao lower bound implies that

$$\mathcal{FI}_{g(Z_1,\cdots,Z_n)}(\gamma) \geq \frac{\left(\frac{\partial \mathsf{E}\left[g(Z_1,\cdots,Z_n)\right]}{\partial \gamma}\right)^2}{\operatorname{Var}\left(g(Z_1,\cdots,Z_n)\right)}.$$

Ali Eshragh (Joint work with Nigel Bean and Joshua Ross)

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

Results for $x_0 = 1$, $\lambda = 2$, n = 2 and $t_2 = 1$

• The Fisher Information (blue) and its Approximation (red) vs. t_1

Ali Eshragh (Joint work with Nigel Bean and Joshua Ross) Fisher Information for a POSBP

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

イロト イヨト イヨト イヨト

æ

Bounds for the Fisher Information

• By exploiting the last two theorems, we found a **lower** and an **upper** bounds for Fisher Information.

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

イロト イヨト イヨト イヨト

Bounds for the Fisher Information

• By exploiting the last two theorems, we found a **lower** and an **upper** bounds for Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)

The approximation function for the Fisher Information **lies within** the lower and upper bounds found for the Fisher Information.

The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

<ロ> <同> <同> < 同> < 同> < 同><<

Bounds for the Fisher Information

• By exploiting the last two theorems, we found a **lower** and an **upper** bounds for Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)

The approximation function for the Fisher Information **lies within** the lower and upper bounds found for the Fisher Information.

Theorem (Bean, Eshragh and Ross; 2013)

The lower and upper bounds for the Fisher Information **approach** together as λ tends to infinity.

Results for $x_0 = 1$, $\lambda = 6$, n = 2 and $t_2 = 1$

• Lower (brown) and Upper (green) Bounds for The Fisher Information and its Approximation (red) vs. *t*₁

Simple Birth Process Partially-Observable Simple Birth Process Approximation Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence

Results for $x_0 = 1$, $\lambda = 10$, n = 2 and $t_2 = 1$

• Lower (brown) and Upper (green) Bounds for The Fisher Information and its Approximation (red) vs. *t*₁

Ali Eshragh (Joint work with Nigel Bean and Joshua Ross) Fisher Information for a POSBP

Further Developments

• Developing analogous approximation for higher values of n.

イロト イヨト イヨト イヨト

æ

Further Developments

- Developing analogous approximation for higher values of n.
- Finding the Fisher Information to estimate parameter p along with λ, both together.

イロト イヨト イヨト イヨト

Simple Birth Process Partially-Observable Simple Birth Process Approximation	The Conditional Fisher Information The Delayed Negative Binomial Distribution Distributions Convergence
--	--

Thank you ··· Questions?

・ロン ・四 と ・ ヨ と ・ ヨ と

æ