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Jacob and Nicolaus Bernoulli

Jacob Bernoulli (1654–1705)

In 1687 Jacob Bernoulli (1654–1705) became Professor of
Mathematics at the University of Basel, and remained in this
position until his death.
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Jacob and Nicolaus Bernoulli

• The title of Jacob Bernoulli’s work Ars Conjectandi (The Art
of Conjecturing) was an emulation of the Ars Cogitandi
(The Art of Thinking), of Blaise Pascal. Pascal’s writings
were a major influence on Bernoulli’s creation.

• Jacob Bernoulli was steeped in Calvinism. He was thus a
firm believer in predestination, as opposed to free will, and
hence in determinism in respect of “random" phenomena.
This coloured his view on the origins of statistical regularity
in nature, and led to its mathematical formalization, as
Jacob Bernoulli’s Theorem, the first version of the Law of
Large Numbers.

• Jacob Bernoulli’s Ars Conjectandi remained unfinished in
its final part, the Pars Quarta, the part which contains the
Theorem, at the time of his death.
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Jacob and Nicolaus Bernoulli

• Nicolaus Bernoulli (1687-1759) was Jacob’s nephew. With
Pierre Rémond de Montmort (1678-1719) and Abraham De
Moivre (1667-1754), he was the leading figure in “the great
leap forward in stochastics", the period from 1708 to the
first edition of De Moivre’s Doctrine of Chances in 1718.

• In early 1713, Nicolaus helped Montmort prepare the
second edition of his book Essay d’analyse sur les jeux
d’hasard, and returned to Basel in April, 1713, in time to
write a preface to Ars Conjectandi which appeared in
August 1713, a few months before Montmort’s book,
whose tricentenary we also celebrate.
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Jacob and Nicolaus Bernoulli

• In his preface to Ars Conjectandi in 1713, Nicolaus says of
the fourth part that Jacob intended to apply what he had
written in the earlier parts to civic, moral and economic
questions, but due to prolonged illness and untimely death,
Jacob left it incomplete. Describing himself as too young
and inexperienced to complete it, Nicolaus decided to let
the Ars Conjectandi be published in the form in which its
author left it.
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Jacob Bernoulli’s Theorem

In modern notation Bernoulli showed that, for fixed p, any given
small positive number ε, and any given large positive number c,

P(|X
n
− p| > ε) <

1
c + 1

for n ≥ n0(ε, c).
• Here X is the number of successes in n binomial trials

relating to sampling with replacement from a collection of
r + s items, of which r were “fertile" and s “sterile", so that
p = r/(r + s).
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Jacob Bernoulli’s Theorem

• Bernouilli’s conclusion was that n0(ε, c) could be taken as
the integer greater than or equal to:

(r + s) max
{

log c(s − 1)

log(r + 1)− log r

(
1 +

s
r + 1

)
− s

r + 1
,

log c(r − 1)

log(s + 1)− log s

(
1 +

r
s + 1

)
− r

s + 1

}
.

• Jacob Bernoulli’s concluding numerical example takes
r = 30 and s = 20, so p = 3/5, and ε = 1/50. With
c = 1000, he derived the (no doubt disappointing) result
n0(ε, c) = 25,550. A small step for Jacob Bernoulli, but a
very large step for stochastics.
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De Moivre
• De Moivre (1730) distinguished clearly between the

approach of Jacob Bernoulli in 1713 in finding an n
sufficiently large for specified precision, and of Nicolaus
Bernoulli of assessing precision for fixed n for the “futurum
probabilitate", alluding to the fact that the work was for a
general, and to be estimated, p, on which their bounds
depended.

• In the English translation of his 1733 paper, De Moivre
(1738) praised the work of the Bernoullis on the summing
of several terms of the binomial term (a + b)n when n is
large, but says

. . . yet some things were further required; for what
they have done is not so much an Approximation as
the determining of very wide limits, within which they
demonstrated that the sum of the terms was
contained.
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De Moivre
• De Moivre’s (1733) motivation was to approximate sums of

individual binomial probabilities when n is large, and the
probability of success in a single trial is p, that is when
X ∼ B(n,p). His initial focus was on the symmetric case
p = 1/2.

• De Moivre’s results provide a strikingly simple, good, and
easy-to-apply approximation to binomial sums, in terms of
an integral of the normal density curve. His (1733) theorem
may be stated as follows in modern terms. For any s > 0
and 0 < p = 1− q < 1, the sum of the binomial terms∑(

n
x

)
pxqn−x

over the range |x − np| ≤ s
√

npq, approaches as n→∞,
the limit

1√
2π

∫ s

−s
e−z2/2dz.
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De Moivre

• The focus of De Moivre’s application of his result, the limit
aspect of Jacob Bernoulli’s Theorem, also revolves
conceptually around the mathematical formalization of
statistical regularity, the empirical phenomenon that De
Moivre attributed to
. . . that Order which naturally results from ORIGINAL
DESIGN.

• De Moivre’s (1733) result already contained an
approximate answer, via the normal distribution to
estimating precision of the relative frequency X/n as an
estimate of an unknown p, for given n; or of determining n
for given precision (the inverse problem), in frequentist
fashion, using the inequality p(1− p) ≤ 1/4.
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Laplace, the Inversion Problem and the
Centenary
• In a paper of 1774, the young Pierre Simon de Laplace

(1749-1827) saw that Bayes’ Theorem provides a means
to solution of Jacob Bernoulli’s inversion problem.

• Laplace considered binomial trials with success probability
x in each trial, assuming x has uniform prior distribution on
(0,1), and calculated the posterior distribution of the
success probability random variable Θ after observing p
successes and q failures. Its density is:

θp(1− θ)q∫ 1
0 θ

p(1− θ)qdθ
=

(p + q + 1)!

p!q!
θp(1− θ)q

and Laplace proved that for any given w > 0, δ > 0

P(|Θ− p
p + q

| < w) > 1− δ

for large p,q.
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Laplace, the Inversion Problem and the
Centenary

• This is a Bayesian analogue of Jacob Bernoulli’s Theorem,
the beginning of Bayesian estimation theory of success
probability of binomial trials and of Bayesian-type LLN and
Central Limit theorems. Early in the paper Laplace took the
mean

p + 1
p + q + 1

of the posterior distribution as his total predictive
probability on the basis of observing p and q, and this is
what we now call the Bayes estimator.
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Laplace, the Inversion Problem and the
Centenary

• The first (1812) and the second (1814) edition of Laplace’s
Théorie analytique des probabilités span the centenary
year of Bernoulli’s Theorem. The (1814) edition is an
outstanding epoch in the development of probability theory.

• Laplace’s (1814), Chapitre III, is frequentist in approach,
contains De Moivre’s Theorem, and in fact adds a
continuity correction term (p. 277):

P(|X − np| ≤ t
√

npq) ≈ 1√
2π

∫ t

−t
e−u2/2du +

e−t2/2√
2πnpq

.

Laplace remarked that this is an approximation to O(n−1),
provided that np is an integer.
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Laplace, the Inversion Problem and the
Centenary

• On p.282 Laplace inverted this expression to give an
interval for p centred on p̂ = X/n, but the ends of the
interval still depend on the unknown p, which Laplace
replaces by p̂, since n is large. This gives an interval of
random length, in fact a confidence interval in modern
terminology, for p.

• In Laplace’s (1814) Notice historique sur le Calcul des
Probabilités, both Bernoullis, Montmort, De Moivre and
Stirling receive due credit. In particular a paragraph refers
to De Moivre’s Theorem, in both its contexts, that is as
facilitating a proof of Jacob Bernoulli’s Theorem; and as:

. . . an elegant and simple expression that the
difference between these two ratios will be contained
within the given limits.
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Laplace, the Inversion Problem and the
Centenary

• Subsequently to Laplace (1814), while the name and
statement of Jacob Bernoulli’s Theorem persist, it figures
in essence as a frequentist corollary to De Moivre’s
Theorem; or in its Bayesian version, following the Bayesian
(predictive) analogue of De Moivre’s Theorem, originating
in Laplace (1814), Chapitre VI.

• Finally, Laplace (1814) considered sums of independent
integer-valued but not necessarily identically distributed
random variables, using their generating functions, and
obtained a Central Limit Theorem. The idea of
inhomogeneous sums and averages leads directly into
subsequent French (Poisson) and Russian (Chebyshev)
directions.
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Poisson’s Law
• The major work in probability of Siméon Denis Poisson

(1781-1840) was his book of 1837 Recherches sur la
probabilité. It is largely a treatise in the tradition of, and a
sequel to, that of his great predecessor Laplace’s (1814)
Théorie analytique in its emphasis on the large sample
behaviour of averages.

• The term Loi des grands nombres [Law of Large Numbers]
appears for the first time in the history of probability on p. 7
of Poisson (1837), within the statement

Things of every kind of nature are subject to a
universal law which one may well call the Law of Large
Numbers. It consists in that if one observes large
numbers of events of the same nature depending on
causes which are constant and causes which vary
irregularly, . . . , one finds that the proportions of
occurrence are almost constant . . .

Slide 16



Poisson’s Law
• The LLN which is now called Poisson’s Law of Large

Numbers, has probability of success in the i th trial fixed, at
pi , i = 1,2, . . . ,n. Poisson showed that

P(|X
n
− p̄(n)| > ε) < Q

for sufficiently large n, using Laplace’s Central Limit
Theorem for sums of non-identically distributed random
variables. The special case where pi = p, i = 1,2, . . .
gives Jacob Bernoulli’s Theorem, so Poisson’s LLN is a
genuine generalization.

• Inasmuch as p̄(n) itself need not even converge as n→∞,
Poisson’s LLN displays as a primary aspect loss of
variability of proportions X/n as n→∞, rather than a
tendency to stability, which Jacob Bernoulli’s Theorem
established under the restriction pi = p.
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Chebyshev’s Thesis

• The 1845 thesis of Pafnutiy Lvovich Chebyshev
(1821-1894) at Moscow University was entitled An Essay
in Elementary Analysis of the Theory of Probabilities.

• Much of the thesis was in fact devoted to producing tables
(correct to seven decimal places) by summation of what
are in effect tail probabilities of the standard normal
distribution.

• Laplace’s (1814) Chapitre VI, on predictive probability,
starting with uniform prior on (0,1) was adapted by
Chebyshev to his “discrete" circumstances. Chebyshev’s
examples were also motivated by Laplace (1814).

• Jacob Bernoulli’s Theorem was mentioned at the end of
Chebyshev’s (1845) thesis, where he proceeded to obtain
an approximation to the binomial probability using bounds
for x! in place of Stirling’s approximation.

Slide 18



Chebyshev’s Thesis

• Such careful bounding arguments (rather than
approximate asymptotic expressions) are characteristic of
Chebyshev’s work, and of the Russian probabilistic
tradition which came after him. This is very much in the
spirit of the bounds in Jacob Bernoulli’s Theorem.

• Poisson’s (1837) Recherches sur la probabilité came to
Chebyshev’s attention after the publication of Chebyshev
(1845). In his Section 1 Chebyshev (1846) says of
Poisson’s LLN:

All the same, no matter how ingenious the method
utilized by the splendid geometer, it does not provide
bounds on the error in this approximate analysis, and,
in consequence of this lack of degree of error, the
derivation lacks appropriate rigour.
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Chebyshev’s Thesis
• For the inhomogeneous case, Chebyshev (1846) repeated

his bounds for homogeneous Bernoulli trials which he dealt
with in Chebyshev (1845).

• His final result, where, as usual, X stands for the number
of successes in n trials, pi is the probability of success in
the i th trial, and p =

∑n
i=1 pi
n .

P(|X
n
− p| ≥ z) ≤ Q

if

n ≥ max
{( log[Q z

1−p

√
1−p−z

p+z ]

log H

)
,

( log[Q z
p

√
p−z

1−p+z ]

log H1

)}
where

H =

(
p

p + z

)p+z( 1 − p
1 − p − z

)1−p−z

, H1 =

(
p

p − z

)p−z( 1 − p
1 − p + z

)1−p+z

.
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Chebyshev’s Thesis

Structurally, these are very similar to Jacob Bernoulli’s
expressions in his Theorem, so it is relevant to compare what
they give in his numerical example when z = 1/50, p = 30/50,
Q = 1/1001.

The answer is n ≥ 12241.293. Compare this with Bernoulli’s
answer of 25,550.
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The Bienaymé-Chebyshev Inequality

• Irenée Jules Bienaymé (1796-1878) was influenced by the
demographic content of Laplace’s Théorie analytique. He
became a fervent devotee of Laplace’s work in all its
statistical manifestations.

• Bienaymé thought that Poisson’s law did not exist as a
separate entity from Jacob Bernoulli’s Theorem. He did not
understand that in Poisson’s Law a fixed probability of
success, pi is associated with the i-th trial. This
misunderstanding led him to develop various
generalizations of Jacob Bernoulli’s sampling scheme, and
so Jacob Bernoulli’s theorem.
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The Bienaymé-Chebyshev Inequality

• In (1853) Bienaymé showed mathematically that for the
sample mean X̄ of independently and identically distributed
random variables whose mean is µ and variance is σ2, so
EX̄ = µ, VarX̄ = σ2/n, then for any t > 0,

Pr((X̄ − µ)2 ≥ t2σ2) ≤ 1/(t2n) .

• The proof which Bienaymé used is the simple one that we
use in the classroom today. When EX 2 <∞ and µ = EX ,
for any ε > 0,

Pr(|X − µ| ≥ ε) ≤ (VarX )/ε2.

This is commonly referred to in probability theory as
Chebyshev’s Inequality, and less commonly as the
Bienaymé-Chebyshev Inequality.
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The Bienaymé-Chebyshev Inequality

• If the Xi , i = 1,2, . . . are independent, but not necessarily
identically, distributed, and Sn = X1 + X2 + · · ·+ Xn, we
similarly obtain

Pr(|Sn − ESn| ≥ ε) ≤ (Σn
i=1VarXi)/ε

2.

This inequality was obtained by Chebyshev (1867) for
discrete random variables and published simultaneously in
French and Russian. Bienaymé (1853) was reprinted
immediately preceding the French version in Liouville’s
journal.
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The Bienaymé-Chebyshev Inequality

In 1874 Chebyshev wrote

The simple and rigorous demonstration of
Bernoulli’s law to be found in my note entitled: Des
valeurs moyennes, is only one of the results easily
deduced from the method of M. Bienaymé , which led
him, himself, to demonstrate a theorem on
probabilities, from which Bernoulli’s law follows
immediately . . .
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The Bienaymé-Chebyshev Inequality

• Actually, not only the limit theorem aspect of Jacob
Bernoulli’s Theorem is covered by the
Bienaymé-Chebyshev Inequality, but also the inversion
aspect, by using p(1− p) ≤ 1/4 to allow for unspecified p.
The result is exact, but for Jacob Bernoulli’s example the
conclusion is weak.
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Sample Size in Jacob Bernoulli’s Example
• The normal approximation to the binomial in the manner of

De Moivre can be used to determine n for specified
precision if p is known. For Bernoulli’s example where
r = 30, s = 20, p = 3/5, c = 1000, and ε = 1/50 the result
is n0(ε, c) ≥ 6498.

• To effect “approximate" inversion if we do not know the
value of p, to get the specified accuracy of the estimate of
p presuming that n would still be large, we could use De
Moivre’s Theorem and the “worst case" bound
p(1− p) ≤ 1/4, to obtain

n ≥
z2

0
4ε2

= 0.25(3.290527)2(50)2 = 6767.23 ≥ 6767

where P(|Z | ≤ z0) = 0.999001. The now commonly used
substitution of the estimate p̂ from a preliminary
performance of the binomial experiment in place of p in
p(1− p) would improve the inversion result.
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Sample Size in Jacob Bernoulli’s Example

• In the tradition of Chebyshev, Markov (1899) had
developed a method using continued fractions to obtain
tight bounds for binomial probabilities when p is known and
n is also prespecified. In looking for smallest n for given p
and given precision, he began with an approximate n
(n = 6498 for Jacob Bernoulli’s example) and then
examined bounds on precision for n in the vicinity. For this
example he decided n was at most 6520.

• Recall that if p 6= 1/2 one problem with the normal
approximation to the bionomial is that the asymmetry
about the mean is not reflected. Thus,

c
c + 1

< P(|X
n
−p| ≤ ε) = P(X ≤ np +nε)−P(X < np−nε)

involves binomial tails of differing probability size.
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Sample Size in Jacob Bernoulli’s Example

For this classical example when p = 0.6, we seek the smallest
n to satisfy

0.9990009999 =
1000
1001

< P(X ≤ 0.62n)− P(X < 0.58n)

where X ∼ B(n,0.6).

Using R, n = 6491 on the right hand side gives 0.9990126,
while n = 6490 gives 0.9989679, so the minimal n which will do
is 6491.
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The Bicentenary in St. Petersburg

In a letter from Markov to Chuprov, 15 January, 1913, Markov
wrote

Firstly, do you know: the year 1913 is the two
hundredth anniversary of the law of large numbers
(Ars Conjectandi, 1713), and don’t you think that this
anniversary should be commemorated in some way or
other? Personally I propose to put out a new edition of
my book, substantially expanded.
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The Bicentenary in St. Petersburg

Then in a letter to Chuprov, (31 January, 1913), Markov wrote

. . . Besides you and me, it was proposed to bring
in Professor A.V. Vasiliev . . . Then it was proposed to
translate only the fourth chapter of Ars Conjectandi;
the translation will be done by the mathematician Ya.V.
Uspensky, who knows the Latin language well, and it
should appear in 1913. All of this should be scheduled
for 1913 and a portrait of J. Bernoulli will be attached
to all the publications.
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The Bicentenary in St. Petersburg

• The respective topics presented were: Vasiliev: Some
questions of the theory of probabilities up to the theorem of
Bernoulli; Markov: The Law of Large Numbers considered
as a collection of mathematical theorems; Chuprov: The
Law of Large Numbers in contemporary science.

• The early part of Markov’s talk contrasted Jacob Bernoulli’s
exact results with the approximate procedures of De
Moivre and Laplace, which use the limit normal integral
structure to determine probabilities. Markov mentions
Laplace’s second degree correction, and also comments
on the proof of Jacob Bernoulli’s Theorem in its limit aspect
by way of the DeMoivre-Laplace “second limit theorem".
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The Bicentenary in St. Petersburg

• Markov went on to discuss Poisson’s LLN as an
approximate procedure “ . . . not bounding the error in an
appropriate way", and continues with Chebyshev’s (1846)
proof in Crelle’s journal. He then summarizes the
Bienaymé - Chebyshev interaction in regard to the
Inequality and its application; and the evolution of the
method of moments.
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The Bicentenary in St. Petersburg

Markov concluded his talk as follows, in a story which has
become familiar.

. . . I return to Jacob Bernoulli. His biographers
recall that, following the example of Archimedes he
requested that on his tombstone the logarithmic spiral
be inscribed with the epitaph “Eadem mutato resurgo".
. . . It also expresses Bernoulli’s hope for resurrection
and eternal life. . . . More than two hundred years have
passed since Bernoulli’s death but he lives and will live
in his theorem.
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Markov (1913) and Markov’s Theorems

Andrei A. Markov (1856–1922)
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The Bicentenary edition

• The translation from Latin into Russian by J.V. Uspensky
was published in 1913, edited, and with a Foreword, by
Markov.

• To celebrate the bicentenary, Markov published in 1913 the
3rd substantially expanded edition of his celebrated
monograph Ischislenie Veroiatnostei [Calculus of
Probabilities]. The title page is headed

K 200 lietnemu iubileiu zakona bol’shkh chisel.
[To the 200th-year jubilee of the law of large numbers.]

with the title Ischislenie Veroiatnostei below it.
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The Bicentenary edition

• For the portrait of Jacob Benoulli following the title page,
Markov expressed his gratitude to the chief librarian of
Basel University, Dr. Carl Christoph Bernoulli.

• In this 3rd Bicentenary edition, Chapter III (pp. 51-112), is
titled The Law of Large Numbers.

• Of specific interest to us is what has come to be known as
Markov’s Inequality: for a non-negative random variable U
and positive number u

P(U ≥ u) ≤ E(U)

u

which occurs as a Lemma on p. 61-63. It is then used to
prove the Bienaymé-Chebyshev Inequality, on pp. 63-65, in
what has become the standard modern manner, inherent
already in Bienaymé’s (1853) proof.
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Markov’s Theorems

• Section 16 (of Chapter III) is entitled The Possibility of
Further Extensions. On p. 76 Markov asserted that

Var(Sn)

n2 → 0 as n→∞

is sufficient for the WLLN to hold, for arbitrary summands
{X1,X2, . . .}.

• Thus the assumption of independence is dropped,
although the assumption of finite individual variances is
retained. In the Russian literature, for example in
Bernstein’s (1927) textbook, this is called Markov’s
Theorem. We shall call it Markov’s Theorem 1.
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Markov’s Theorems

• Amongst the innovations in this 3rd edition was an
advanced version of the WLLN which came to be known
also as Markov’s Theorem, and which we shall call
Markov’s Theorem 2:

Sn

n
− E

(
Sn

n

)
p→ 0

where Sn =
∑n

i=1 Xi and the {Xi , i = 1,2, . . .} are
independent and satisfy E(|Xi |1+δ) < C <∞ for some
constants δ > 0 and C. The case δ = 1 came to be known
in Russian-language literature as Chebyshev’s Theorem.

• Markov’s Theorem 2 thus dispenses with the need for finite
variance of summands Xi , but retains their independence.
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Markov’s Theorems
• Markov’s publications of 1914 strongly reflect his

background reading activity in preparation for the
Bicentenary. In particular, in a paper entitled O zadache
Yakova Bernoulli [On the problem of Jacob Bernoulli], in
place of what Markov calls the approximate formula of De
Moivre,

1√
π

∫ ∞
z

e−z2
dz for P(X > np + z

√
2npq)

he derived the expression

1√
π

∫ ∞
z

e−z2
dz +

(1− 2z2)(p − q)e−z2

6
√

2npqπ

which Markov calls Chebyshev’s formula. This paper of
Markov’s clearly motivated Uspensky (1937) in his
English-language monograph to ultimately resolve the
issue.
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Bernstein’s monograph (1927)

• Markov died in 1922 well after the Bolshevik seizure of
power, and it was through the 4th (1924, posthumous)
edition of Ischislenie Veroiatnestei that his results were
publicized and extended, in the first instance in the Soviet
Union due to the monograph S.N. Bernstein (1927).

• The third part of Bernstein’s book was titled The Law of
Large Numbers and consisted of three chapters: Chapter
1: Chebyshev’s inequality and its consequences. Chapter
2: Refinement of Chebyshev’s Inequaliity. and Chapter 3:
Extension of the Law of Large Numbers to dependent
quantitities. Chapter 3 began with Markov’s Theorem 1.
Markov’s Theorem 2 was mentioned, and a proof was
included in the second edition, Bernstein (1934).
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Bernstein’s monograph (1927)

• Bernstein (1924) returned to the problem of accuracy of
the normal approximation to the binomial via bounds. He
showed that there exists an α (|α| ≤ 1) such that
P = Σx

(n
x

)
pxqn−x summed over x satisfying

|x − np − t2

6 (q − p)| < t
√

npq + α is

1√
2π

∫ t

−t
e−u2/2du + 2θe−(2npq)1/3

where |θ| < 1 for any n, t , provided that

npq ≥ max(t2/16,365).

The tool used, perhaps for the first time ever, was what
came to be known as Bernstein’s Inequality.
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Bernstein’s monograph (1927)

• Bernstein’s Inequality reads

P(V > v) ≤ e−vεE(eV ε)

for any ε > 0, which follows from Markov’s Inequality
P(U > u) ≤ E(U)/u.

If E(eV ε) <∞, the bound is particularly effective for a
non-negative random variable V such as the binomial,
since the bound may be tightened by manipulating ε.
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Uspensky’s monograph (1937)

• The entire issue of normal approximation to the binomial
was resolved into an ultimate exact form by Uspensky
(1937) who showed that P taken over the usual range
t1
√

npq ≤ x − np ≤ t2
√

npq for any real numbers t1 < t2,
can be expressed as

1√
2π

∫ t2

t1
e−u2/2du +

(1/2− θ1)e−t2
1/2 + (1/2− θ2)e−t2

2/2√
2πnpq

+
(q − p){(1− t2

2 )e−t2
2/2 − (1− t2

1 )e−t2
1/2}

6
√

2πnpq
+ Ω,

where θ1 and θ2 have explicit expressions and |Ω| is
suitably bounded.
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Uspensky’s monograph (1937)

• The symmetric case follows by putting t2 = −t1 = t so the
“Chebyshev" term vanishes. When both np and t

√
npq are

integers, θ1 = θ2 = 0, reducing the correction term to
Laplace’s e−t2/2/

√
2πnpq. But in any case, bounds which

are within O(n−1) of the true value are thus available.
• Uspensky’s (1937) book carried Markov’s theory to the

English-speaking countries. Uspensky (1937) cited Markov
(1924) and Bernstein (1927) in his two-chapter discussion
of the LLN. Markov’s Theorem 2 was stated and proved.

• The ideas in the proof of Markov’s Theorem 2 were used to
prove the now famous “Khinchin’s Theorem", an ultimate
form of the WLLN.
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Uspensky’s monograph (1937)

• For independent identically distributed (iid), Khinchin
(Khintchine (1929)) showed that the existence of a finite
mean, µ = EXi , is sufficient for the Weak Law of Large
Numbers. Finally, Uspensky (1937), proved the Strong Law
of Large Numbers (SLLN) for the setting of Bernoulli’s
Theorem, and called this strengthening “Cantelli’s
Theorem".
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Bernstein’s monograph (1934)

• Bernstein (1934), in his third part has an additional
Chapter 4: Statistical probabilities, average values and the
coefficient of dispersion. It begins with a precise Bayesian
inversion of Jacob Bernoulli’s Theorem, proved under a
certain condition on the prior distribution of the number of
“successes", X , in n trials. The methodology uses
Markov’s Inequality applied to P

(
(Θ− X

n )4 > w4
∣∣Θ) and, in

the classical case of a uniform prior distribution over (0,1)
of the success probability Θ, gives for any w > 0

P
(
|Θ− X

n
| < w

∣∣X = m
)
> 1− 3(n0 + 1)

16nw4n0

for n > n0 and m = 0,1, . . . ,n. This apparently little-known
result can be seen to be a precise version of Laplace’s
theorem.
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Bernstein’s monograph (1934)

• Bernstein (1934) also had four new appendices. The fourth
of these is titled A Theorem Inverse to Laplace’s Theorem.
This is the Bayesian inverse of De Moivre’s Theorem, with
an arbitrary prior density, and convergence to the standard
normal integral as m,n→∞ provided that m/n behaves
appropriately. A version of this theorem is now called the
Bernstein-von Mises Theorem.
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Necessary and Sufficient Conditions.

• The expression
Sn

n
− E

(
Sn

n

)
p→ 0

is the classical form of what is now called the WLLN. We
have confined ourselves to sufficient conditions for this
result to hold, where Sn =

∑n
i=1 Xi and the

{Xi , i = 1,2, . . .} are independent and not necessarily
identically distributed.

• In particular, in the tradition of Jacob Bernoulli’s Theorem
as limit theorem, we have focused on the case of
“Bernoulli" summands where
P(Xi = 1) = pi = 1− P(Xi = 0).
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Necessary and Sufficient Conditions.

• From the 1920s attention had turned to necessary and
sufficient conditions for the WLLN for independent
summands. Kolmogorov in 1928 obtained the first such
condition for “triangular arrays", and there were
generalizations by Feller in 1937 and Gnedenko in 1944.
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Necessary and Sufficient Conditions.

• In another paper (Khintchine (1936)) on the WLLN in
Cantelli’s journal, Giorn. Ist. Ital. Attuari, Khintchine turned
his attention to necessary and sufficient conditions for the
existence of a sequence {dn} of positive numbers such
that

Sn

dn

p→ 1 as n→∞

where the (iid) summands Xi are non-negative.
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Necessary and Sufficient Conditions.

• Two new features in the consideration of limit theory for iid
summands make their appearance in Khinchin’s several
papers in Cantelli’s journal: a focus on the asymptotic
structure of the tails of the distribution function, and the
expression of this structure in terms of what was later
realized to be regularly varying functions.

Putting F (x) = P(Xi ≤ x) and ν(x) =
∫ x

0 (1− F (u))du,
Khinchin’s necessary and sufficient condition for the WLLN
is x(1−F (x)

ν(x) → 0 as x →∞. This is equivalent to ν(x) being
a slowly varying function at infinity. In this event, dn can be
taken as the unique solution of nν(dn) = dn.
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Necessary and Sufficient Conditions.

• Khinchin’s Theorem itself was generalized by Feller (see
for example Feller (1966) Section VII.7) in the spirit of
Khintchine (1936) for iid, but not necessarily nonnegative,
summands.

• Petrov’s (1995) book gives necessary and sufficient
conditions for the existence of a sequence of constants
{bn} such that Sn/an − bn → 0 for any given sequence of
positive constants {an} such that an →∞, where the
independent summands Xi are not necessarily identically
distributed.

• There is a little-known necessary and sufficient condition
for the WLLN, due to Gnedenko, for arbitrarily dependent
not necessarily identically distributed random variables
(Gnedenko’s (1963) textbook).
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Conclusion.

There is much more to say, and more is said in this year’s
special issue of the appropriately named journal, Bernoulli.

This is a good time and place to stop.
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The precise reference is :
Seneta, E. (2013)  A Tricentenary history of the Law of Large Numbers.  Bernoulli 19(4), 1088-1121.




