
Parametersing Markovian epidemic models using
household level data

ANZAPW 2013

Andrew Black

School of Mathematical Sciences
University of Adelaide

9/07/2013



Household models

homogeneous population
of individuals

hetrogeneous population
of households

I Strong mixing within households.

I Weaker mixing between households.



Why do we like household models?

I Capture some realistic heterogeneity, but still simple to solve.

I Households are small, so must model dynamics stochastically.

I State space is small.

I Lots of data available.



Household data collection

Monitoring and tracking all a persons contacts is difficult.

Monitoring a household is much easier.

I FF100

If available, antivirals are given to whole households.

Challenge

Use all this data from within households to parametrise our models.



Within-household dynamics

time

generation time

serial interval

generation time: the interval of time between successive infection
events.



Within-household dynamics

time

generation time

serial interval

serial interval: the time between the onset of symptoms in an
index case and that of a secondary.



Observed events

I Chain of symptomatic events.

I Estimating recovery is more difficult.



Serial interval data
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I Most people just fit a parametric distribution to this and
consider that a job well done.

I To learn something interesting from this data we need to fit a
transmission model.



Stochastic SE (j)I (k)R model

Event Transition Rate

Infection (S ,E1)→ (S − 1,E1 + 1) β
S
∑k

1 Im
(N−1)

exposed progression, (En,En+1)→ (En − 1,En+1 + 1) jσEn

(n = 1, . . . , j − 1)

Start shedding (Ej , I1)→ (Ej − 1, I1 + 1) jσEj

Infection progression, (Im, Im+1)→ (Im − 1, Im+1 + 1) kγIm
(m = 1, . . . , k − 1)

Recovery Ik → Ik − 1 kγIk

Individual

level:

Within-household

transmission:



Calculating the serial interval

Dynamics of model,
dp(t)

dt
= p(t)Q (1)

where Q is the stochastic transition matrix.

I Initial condition: (I1 = 1,S = N − 1).

I Make the states which correspond to an serial interval event
absorbing.

I Integrate forward the dynamics.

p(t) = p(0) exp(Qt). (2)



Calculating the serial interval

The cdf of the serial interval is then,

F (t) =
1

c

∑
s∈B

ps(t), (3)

where c is the probability of infecting at least 1 person before
recovering.

How we evaluate the dynamics is important. There are two
methods we use:

I Expokit for calculating matrix exponentials.

I Lexicographic ordering, and forward substitution.



Basic results

The serial interval distribution depends on the household size.
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Antiviral efficacy model

The impact of antivirals was limited in the 2009 influenza
A(H1N1) pandemic.

We wanted to assess the impact of antivirals: were they not
effective or was the delay too large?

There has already been a lot of modelling for this problem. What
sets this apart?

Already have posteriors for β and serial interval data. Use Baysian
MCMC to estiamte γ and σ



Pandemic Influenza model - parameters
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Model with explicit household size

Generate some test data, now stratified by household size.
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Parameters: β = 2, γ = 1/2, σ = 1/4, j = k = 2.



Posterior distributions
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Complications

I Symptoms and infectiousness don’t coincide.

I Asymptomatic individuals.

I External infections.

I Potentially wasteful.
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