A Spatially Structured Metapopulation Model with Environmental Influence

Andrew Smith

Australia New Zealand Applied Probability Workshop University of Queensland

July 10, 2013

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

AUSTRALIA

Populations that occupy geographically distinct locations.

- Individuals reside on patches and can migrate to other patches.
- When an individual migrates to an empty patch, they colonise it.
- Patches can become extinct when no individuals are left.
- If we only count the number of occupied patches, then the metapopulation could be modelled by a stochastic logistic model.
- However, we will be counting the number of individuals on each patch.

- Populations that occupy geographically distinct locations.
- Individuals reside on patches and can migrate to other patches.
- When an individual migrates to an empty patch, they colonise it.
- Patches can become extinct when no individuals are left.
- If we only count the number of occupied patches, then the metapopulation could be modelled by a stochastic logistic model.
- However, we will be counting the number of individuals on each patch.

- Populations that occupy geographically distinct locations.
- Individuals reside on patches and can migrate to other patches.
- When an individual migrates to an empty patch, they colonise it.
- Patches can become extinct when no individuals are left.
- If we only count the number of occupied patches, then the metapopulation could be modelled by a stochastic logistic model.
- However, we will be counting the number of individuals on each patch.

- Populations that occupy geographically distinct locations.
- Individuals reside on patches and can migrate to other patches.
- When an individual migrates to an empty patch, they colonise it.
- Patches can become extinct when no individuals are left.
- If we only count the number of occupied patches, then the metapopulation could be modelled by a stochastic logistic model.
- However, we will be counting the number of individuals on each patch.

- Populations that occupy geographically distinct locations.
- Individuals reside on patches and can migrate to other patches.
- When an individual migrates to an empty patch, they colonise it.
- Patches can become extinct when no individuals are left.
- If we only count the number of occupied patches, then the metapopulation could be modelled by a stochastic logistic model.
- However, we will be counting the number of individuals on each patch.

- Populations that occupy geographically distinct locations.
- Individuals reside on patches and can migrate to other patches.
- When an individual migrates to an empty patch, they colonise it.
- Patches can become extinct when no individuals are left.
- If we only count the number of occupied patches, then the metapopulation could be modelled by a stochastic logistic model.
- However, we will be counting the number of individuals on each patch.

Structured Metapopulation Models

- Our model is an example of Kingman's ¹ Markov population process.
- Define *J* to be the number of patches in the metapopulation and $n_i(t)$ as the number of individuals occupying patch *i* at time *t*.
- The Markov process (n(t), t ≥ 0) describing the state of the metapopulation takes values in

 $S_N = \{0,\ldots,N_1\} \times \cdots \times \{0,\ldots,N_J\}.$

• The only nonzero transition rates are given by

$$q(n, n + e_i) = n_i b_i \left(\frac{n_i}{N_i}\right),$$

$$q(n, n - e_i) = \phi_i n_i \lambda_{i0} + d_i n_i,$$

$$q(n, n - e_i + e_j) = \phi_i n_i \lambda_{ij} \frac{N_j - n_j}{N_i} \text{ for all } j \neq i.$$

¹ J. F. C. Kingman, Markov population processes, Journal of Applied Probability 6 (1969) 1–18.

- Our model is an example of Kingman's ¹ Markov population process.
- Define *J* to be the number of patches in the metapopulation and $n_i(t)$ as the number of individuals occupying patch *i* at time *t*.

The Markov process (n(t), t ≥ 0) describing the state of the metapopulation takes values in

 $S_N = \{0,\ldots,N_1\} \times \cdots \times \{0,\ldots,N_J\}.$

• The only nonzero transition rates are given by

$$q(n, n + e_i) = n_i b_i \left(\frac{n_i}{N_i}\right),$$

$$q(n, n - e_i) = \phi_i n_i \lambda_{i0} + d_i n_i,$$

$$q(n, n - e_i + e_j) = \phi_i n_i \lambda_{ij} \frac{N_j - n_j}{N_i} \text{ for all } j \neq i.$$

¹ J. F. C. Kingman, Markov population processes, Journal of Applied Probability 6 (1969) 1–18.

- Our model is an example of Kingman's ¹ Markov population process.
- Define *J* to be the number of patches in the metapopulation and $n_i(t)$ as the number of individuals occupying patch *i* at time *t*.
- The Markov process (n(t), t ≥ 0) describing the state of the metapopulation takes values in

$$S_N = \{0, \ldots, N_1\} \times \cdots \times \{0, \ldots, N_J\}.$$

The only nonzero transition rates are given by

$$\begin{aligned} q(n, n + e_i) &= n_i b_i \left(\frac{n_i}{N_i}\right), \\ q(n, n - e_i) &= \phi_i n_i \lambda_{i0} + d_i n_i, \\ q(n, n - e_i + e_j) &= \phi_i n_i \lambda_{ij} \frac{N_j - n_j}{N_i} \quad \text{for all } j \neq i. \end{aligned}$$

¹ J. F. C. Kingman, Markov population processes, Journal of Applied Probability 6 (1969) 1–18.

- Our model is an example of Kingman's ¹ Markov population process.
- Define *J* to be the number of patches in the metapopulation and $n_i(t)$ as the number of individuals occupying patch *i* at time *t*.
- The Markov process (n(t), t ≥ 0) describing the state of the metapopulation takes values in

 $\mathcal{S}_N = \{0, \ldots, N_1\} \times \cdots \times \{0, \ldots, N_J\}.$

• The only nonzero transition rates are given by

$$\begin{aligned} q(n, n + e_i) &= n_i b_i \left(\frac{n_i}{N_i}\right), \\ q(n, n - e_i) &= \phi_i n_i \lambda_{i0} + d_i n_i, \\ q(n, n - e_i + e_j) &= \phi_i n_i \lambda_{ij} \frac{N_j - n_j}{N_j} \quad \text{for all } j \neq i. \end{aligned}$$

¹ J. F. C. Kingman, Markov population processes, Journal of Applied Probability 6 (1969) 1–18.

Diagram

Model

Diagram

Assumptions

We assume

(1)
$$\frac{N_i}{N} \to M_i$$
 as $N \to \infty$, where $N = \sum_j N_j$.

(II) The birth function *b_i* is

- Lipschitz,
- strictly decreasing on [0, 1],
- $b_i(x) = 0$ for all $x \ge 1$ and
- xb_i(x) is strictly concave on [0, 1].

Assumptions

We assume

(I)
$$\frac{N_i}{N} \to M_i$$
 as $N \to \infty$, where $N = \sum_j N_j$.

(II) The birth function b_i is

- Lipschitz,
- strictly decreasing on [0, 1],
- $b_i(x) = 0$ for all $x \ge 1$ and
- *xb_i*(*x*) is strictly concave on [0, 1].

Deterministic Limit

Theorem

If $\lim_{N\to\infty} n(0)/N = x_0$, then, for every s > 0 and $\delta > 0$,

$$\lim_{N\to\infty} \Pr\left(\sup_{t\leq s} \left|\frac{n(t)}{N} - x(t,x_0)\right| > \delta\right) = 0.$$

where $x(t, x_0)$ is the solution to

$$\frac{dx(t)}{dt}=F(x),\quad x(0)=x_0,$$

with

$$\begin{aligned} \mathsf{F}_{i}(\mathbf{x}) &= \left(\mathsf{b}_{i} \left(\frac{\mathbf{x}_{i}}{\mathbf{M}_{i}} \right) - \mathsf{d}_{i} - \phi_{i} \right) \mathbf{x}_{i} \\ &+ \sum_{j \neq i} \left(\phi_{j} \mathbf{x}_{j} \lambda_{ji} + \left(\phi_{i} \mathbf{x}_{i} \lambda_{ij} \frac{\mathbf{x}_{j}}{\mathbf{M}_{j}} - \phi_{j} \mathbf{x}_{j} \lambda_{ji} \frac{\mathbf{x}_{i}}{\mathbf{M}_{i}} \right) \right), \end{aligned}$$

Andrew Smith (UQ)

Andrew Smith (UQ)

Metapopulation Models

July 10, 2013

Andrew Smith (UQ)

Metapopulation Models

July 10, 2013

Andrew Smith (UQ)

Andrew Smith (UQ)

- (A) For all *i* and *j*, $\lambda_{ij} = 0$ implies $\lambda_{ji} = 0$.
- (B) For all *i* and *j*, there is a finite sequence (a_k) such that $\lambda_{ia_1}\lambda_{a_1a_2}\ldots\lambda_{a_mj}\neq 0$.

- (A) For all *i* and *j*, $\lambda_{ij} = 0$ implies $\lambda_{ji} = 0$.
- (B) For all *i* and *j*, there is a finite sequence (a_k) such that $\lambda_{ia_1}\lambda_{a_1a_2}\ldots\lambda_{a_mj}\neq 0$.

Theorem

Assume (A) and (B) hold. If there exists a $y \in \mathbb{R}^{J}_{+} \setminus \{\mathbf{0}\}$ such that

$$(b_i(0) - d_i - \phi_i) y_i + \phi_i \sum_{j \neq i}^J \lambda_{ij} y_j \le \mathbf{0}, \quad \text{for all } i, \tag{1}$$

with an inequality for at least one *i*, the fixed point **0** is asymptotically stable. If there is no $y \in \mathbb{R}^{J}_{+} \setminus \{\mathbf{0}\}$ satisfying (1), then **0** is unstable.

- (A) For all *i* and *j*, $\lambda_{ij} = 0$ implies $\lambda_{ji} = 0$.
- (B) For all *i* and *j*, there is a finite sequence (a_k) such that $\lambda_{ia_1}\lambda_{a_1a_2}\ldots\lambda_{a_mj}\neq 0$.

Theorem

Assume (A) and (B) hold. If there exists a $y \in \mathbb{R}^{J}_{+} \setminus \{\mathbf{0}\}$ such that

$$(b_i(0) - d_i - \phi_i) y_i + \phi_i \sum_{j \neq i}^J \lambda_{ij} y_j \le \mathbf{0}, \quad \text{for all } i, \tag{1}$$

with an inequality for at least one *i*, the fixed point **0** is asymptotically stable. If there is no $y \in \mathbb{R}^{J}_{+} \setminus \{\mathbf{0}\}$ satisfying (1), then **0** is unstable.

If the metapopulation is small enough, it will go extinct.

- (A) For all *i* and *j*, $\lambda_{ij} = 0$ implies $\lambda_{ji} = 0$.
- (B) For all *i* and *j*, there is a finite sequence (a_k) such that $\lambda_{ia_1}\lambda_{a_1a_2}\ldots\lambda_{a_mj}\neq 0$.

Theorem

Assume (A) and (B) hold. If there exists a $y \in \mathbb{R}^{J}_{+} \setminus \{\mathbf{0}\}$ such that

$$(b_i(0) - d_i - \phi_i) y_i + \phi_i \sum_{j \neq i}^J \lambda_{ij} y_j \le \mathbf{0}, \quad \text{for all } i, \tag{1}$$

with an inequality for at least one *i*, the fixed point **0** is asymptotically stable. If there is no $y \in \mathbb{R}^{J}_{+} \setminus \{\mathbf{0}\}$ satisfying (1), then **0** is unstable.

If the metapopulation is small enough, it will go extinct. But what happens if it is unstable?

Andrew Smith (UQ)

Persistence

Theorem

Assume (A) and (B) hold. If there is no $y \in \mathbb{R}^J_+ \setminus \{\mathbf{0}\}$ satisfying

$$(b_i - d_i - \phi_i) y_i + \phi_i \sum_{j \neq i}^J \lambda_{ij} y_j \leq \mathbf{0}, \quad \text{for all } i,$$

then there exists at least one non-zero fixed point x^* and, for all x_0 such that $0 < x_0 \le x^*$, $x(t, x_0) \to x^*$.

Persistence

Theorem

Assume (A) and (B) hold. If there is no $y \in \mathbb{R}^J_+ \setminus \{\mathbf{0}\}$ satisfying

$$(b_i - d_i - \phi_i) y_i + \phi_i \sum_{j \neq i}^J \lambda_{ij} y_j \leq \mathbf{0}, \quad \text{for all } i,$$

then there exists at least one non-zero fixed point x^* and, for all x_0 such that $0 < x_0 \le x^*$, $x(t, x_0) \to x^*$.

As long as the population is not extinct to begin with, it will persist.

Persistence

Theorem

Assume (A) and (B) hold. If there is no $y \in \mathbb{R}^J_+ \setminus \{\mathbf{0}\}$ satisfying

$$(b_i - d_i - \phi_i) y_i + \phi_i \sum_{j \neq i}^J \lambda_{ij} y_j \leq \mathbf{0}, \quad \text{for all } i,$$

then there exists at least one non-zero fixed point x^* and, for all x_0 such that $0 < x_0 \le x^*$, $x(t, x_0) \to x^*$.

As long as the population is not extinct to begin with, it will persist. This theorem implies that the metapopulation will eventually be equal to or larger than x^* .

A Sufficient Condition

• We have determined a *sufficient* condition for survival.

• However, if **0** is stable, will the population necessarily go extinct?

• We introduce the following assumption

(C) The parameters ϕ_i , λ_{ij} and M_i satisfy $\phi_i \lambda_{ij} M_i = \phi_j \lambda_{ji} M_j$ for all i, j.

• The maximum migration rate to any other empty patch is the same.

A Sufficient Condition

- We have determined a *sufficient* condition for survival.
- However, if 0 is stable, will the population necessarily go extinct?
- We introduce the following assumption
 - (C) The parameters ϕ_i , λ_{ij} and M_i satisfy $\phi_i \lambda_{ij} M_i = \phi_i \lambda_{ji} M_j$ for all i, j.
- The maximum migration rate to any other empty patch is the same.
A Sufficient Condition

- We have determined a sufficient condition for survival.
- However, if 0 is stable, will the population necessarily go extinct?
- We introduce the following assumption

(C) The parameters ϕ_i , λ_{ij} and M_i satisfy $\phi_i \lambda_{ij} M_i = \phi_j \lambda_{ji} M_j$ for all i, j.

• The maximum migration rate to any other empty patch is the same.

A Sufficient Condition

- We have determined a sufficient condition for survival.
- However, if 0 is stable, will the population necessarily go extinct?
- We introduce the following assumption

(C) The parameters ϕ_i , λ_{ij} and M_i satisfy $\phi_i \lambda_{ij} M_i = \phi_j \lambda_{ji} M_j$ for all i, j.

• The maximum migration rate to any other empty patch is the same.

Extinction

Theorem

Assume (A)–(C) hold. If **0** is stable, then $x(t, x_0) \rightarrow \mathbf{0}$ for all x_0 .

The metapopulation will go extinct, regardless of its initial size.

Extinction

Theorem

Assume (A)–(C) hold. If **0** is stable, then $x(t, x_0) \rightarrow \mathbf{0}$ for all x_0 .

The metapopulation will go extinct, regardless of its initial size.

(C) The parameters ϕ_i , λ_{ij} and M_i satisfy $\phi_i \lambda_{ij} M_i = \phi_j \lambda_{ji} M_j$ for all i, j.

Persistence

Theorem

Assume (A)–(C) hold. If **0** is unstable, then there is a unique non-zero fixed point x^* and $x(t, x_0) \rightarrow x^*$ for all $x_0 \neq \mathbf{0}$.

The metapopulation will persist at the level x^* provided it is not initially extinct.

(C) The parameters ϕ_i , λ_{ij} and M_i satisfy $\phi_i \lambda_{ij} M_i = \phi_j \lambda_{ji} M_j$ for all i, j.

Other Behaviour

- Under assumption (C), the picture is complete.
- But is the picture the same when (C) doesn't hold?
- Is the persistence of the population purely dependent on the whether the extinction condition is satisfied?
- The Allee effect is when the initial population size determines whether the population will go extinct or persist.
- If the population is large enough, it will persist. Otherwise, it will go extinct.

Other Behaviour

- Under assumption (C), the picture is complete.
- But is the picture the same when (C) doesn't hold?
- Is the persistence of the population purely dependent on the whether the extinction condition is satisfied?
- The Allee effect is when the initial population size determines whether the population will go extinct or persist.
- If the population is large enough, it will persist. Otherwise, it will go extinct.

Demonstrating the Allee Effect

Demonstrating the Allee Effect

Influence due to the Environment

- Previously, we assumed that the birth, death and migration rates were constant with respect to time.
- However, is this a reasonable assumption? Is it reasonable over a long period of time?
- What happens if the environment changes?
 - Breeding seasons,
 - Migration paths cut,
 - Catastrophes,
 - And various others.
- Some influences are deterministic and can be accounted for with a similar functional law of large numbers.
- But others are stochastic.

Influence due to the Environment

- Previously, we assumed that the birth, death and migration rates were constant with respect to time.
- However, is this a reasonable assumption? Is it reasonable over a long period of time?
- What happens if the environment changes?
 - Breeding seasons,
 - Migration paths cut,
 - Catastrophes,
 - And various others.
- Some influences are deterministic and can be accounted for with a similar functional law of large numbers.
- But others are stochastic.

Influence due to the Environment

- Previously, we assumed that the birth, death and migration rates were constant with respect to time.
- However, is this a reasonable assumption? Is it reasonable over a long period of time?
- What happens if the environment changes?
 - Breeding seasons,
 - Migration paths cut,
 - Catastrophes,
 - And various others.
- Some influences are deterministic and can be accounted for with a similar functional law of large numbers.
- But others are stochastic.

- To account for this, we let our parameters depend on a variable that models the environment.
- Define *C*(*t*) to be the configuration we are in at time *t* and assume there are only *K* configurations.
- As before, $n_i(t)$ is the number of individuals on patch *i*. The process (C(t), n(t)) has state space $\{1, \ldots, K\} \times S_N$ and the following transition rates:

$$q((C, n), (C, n) + (0, e_i)) = b_i^{(C)} \frac{n_i}{N_i} (N_i - n_i),$$

$$q((C, n), (C, n) + (0, -e_i)) = \phi_i^{(C)} n_i \lambda_{i0}^{(C)} + d_i^{(C)} n_i,$$

$$f((C, n), (C, n) + (0, -e_i + e_j)) = \phi_i^{(C)} n_i \lambda_{ij}^{(C)} \frac{N_j - n_j}{N_j} \quad \forall j \neq i,$$

- To account for this, we let our parameters depend on a variable that models the environment.
- Define *C*(*t*) to be the configuration we are in at time *t* and assume there are only *K* configurations.
- As before, $n_i(t)$ is the number of individuals on patch *i*. The process (C(t), n(t)) has state space $\{1, \ldots, K\} \times S_N$ and the following transition rates:

$$q((C, n), (C, n) + (0, e_i)) = b_i^{(C)} \frac{n_i}{N_i} (N_i - n_i),$$

$$q((C, n), (C, n) + (0, -e_i)) = \phi_i^{(C)} n_i \lambda_{i0}^{(C)} + d_i^{(C)} n_i,$$

$$((C, n), (C, n) + (0, -e_i + e_j)) = \phi_i^{(C)} n_i \lambda_{ij}^{(C)} \frac{N_j - n_j}{N_j} \quad \forall j \neq i,$$

- To account for this, we let our parameters depend on a variable that models the environment.
- Define *C*(*t*) to be the configuration we are in at time *t* and assume there are only *K* configurations.
- As before, $n_i(t)$ is the number of individuals on patch *i*. The process (C(t), n(t)) has state space $\{1, \ldots, K\} \times S_N$ and the following transition rates:

$$q((C, n), (C, n) + (0, e_i)) = b_i^{(C)} \frac{n_i}{N_i} (N_i - n_i),$$

$$q((C, n), (C, n) + (0, -e_i)) = \phi_i^{(C)} n_i \lambda_{i0}^{(C)} + d_i^{(C)} n_i,$$

$$q((C, n), (C, n) + (0, -e_i + e_j)) = \phi_i^{(C)} n_i \lambda_{ij}^{(C)} \frac{N_j - n_j}{N_j} \quad \forall j \neq i,$$

- To account for this, we let our parameters depend on a variable that models the environment.
- Define *C*(*t*) to be the configuration we are in at time *t* and assume there are only *K* configurations.
- As before, $n_i(t)$ is the number of individuals on patch *i*. The process (C(t), n(t)) has state space $\{1, \ldots, K\} \times S_N$ and the following transition rates:

$$q((C, n), (C, n) + (0, e_i)) = b_i^{(C)} \frac{n_i}{N_i} (N_i - n_i),$$

$$q((C, n), (C, n) + (0, -e_i)) = \phi_i^{(C)} n_i \lambda_{i0}^{(C)} + d_i^{(C)} n_i,$$

$$q((C, n), (C, n) + (0, -e_i + e_j)) = \phi_i^{(C)} n_i \lambda_{ij}^{(C)} \frac{N_j - n_j}{N_j} \quad \forall j \neq i,$$

$$q((C, n), (C, n) + (l_i, \mathbf{0})) = g_i (C, n/N), \text{ for } i = 1, \dots, k.$$

- To account for this, we let our parameters depend on a variable that models the environment.
- Define *C*(*t*) to be the configuration we are in at time *t* and assume there are only *K* configurations.
- As before, $n_i(t)$ is the number of individuals on patch *i*. The process (C(t), n(t)) has state space $\{1, \ldots, K\} \times S_N$ and the following transition rates:

$$q((C, n), (C, n) + (0, e_i)) = b_i^{(C)} \frac{n_i}{N_i} (N_i - n_i),$$

$$q((C, n), (C, n) + (0, -e_i)) = \phi_i^{(C)} n_i \lambda_{i0}^{(C)} + d_i^{(C)} n_i,$$

$$q((C, n), (C, n) + (0, -e_i + e_j)) = \phi_i^{(C)} n_i \lambda_{ij}^{(C)} \frac{N_j - n_j}{N_j} \quad \forall j \neq i,$$

$$q((C, n), (C, n) + (l_i, \mathbf{0})) = g_i (C, n/N), \text{ for } i = 1, \dots, k.$$

Theorem

Assume g is smooth. Then if, $\lim_{N\to\infty} Y_N(0) \to y_0$, then a.s. $Y_N(t) \to Y(t)$, in Skorokhod topology, where Y(t) is given by

$$Y(t) = y_0 + \sum_{i=1}^{K} \left(I_i, \mathbf{0}^T \right) \prod_i \left(\int_0^t g_i \left(Y(s) \right) ds \right) + \int_0^t V(Y(s)) ds, \qquad (2)$$

$$\begin{split} V_{1}(c,x) &= 0, \\ V_{1+i}(c,x) &= F_{i}^{(c)}(x) = \left(b_{i}^{(c)} - d_{i}^{(c)} - \phi_{i}^{(c)} \right) x_{i} - \frac{b_{i}^{(c)}}{M_{i}} x_{i}^{2} \\ &+ \sum_{j \neq i} \left(\phi_{j}^{(c)} x_{j} \lambda_{ji} + \left(\phi_{i}^{(c)} x_{i} \lambda_{ij}^{(c)} \frac{x_{j}}{M_{j}} - \phi_{j}^{(c)} x_{j} \lambda_{ji}^{(c)} \frac{x_{i}}{M_{i}} \right) \right). \end{split}$$

Theorem

Assume g is smooth. Then if, $\lim_{N\to\infty} Y_N(0) \to y_0$, then a.s. $Y_N(t) \to Y(t)$, in Skorokhod topology, where Y(t) is given by

$$Y(t) = y_0 + \sum_{i=1}^{K} \left(I_i, \mathbf{0}^T \right) \prod_i \left(\int_0^t g_i \left(Y(s) \right) ds \right) + \int_0^t V(Y(s)) ds, \qquad (2)$$

$$\begin{split} V_{1}(c,x) &= 0, \\ V_{1+i}(c,x) &= F_{i}^{(c)}(x) = \left(b_{i}^{(c)} - d_{i}^{(c)} - \phi_{i}^{(c)} \right) x_{i} - \frac{b_{i}^{(c)}}{M_{i}} x_{i}^{2} \\ &+ \sum_{j \neq i} \left(\phi_{j}^{(c)} x_{j} \lambda_{ji} + \left(\phi_{i}^{(c)} x_{i} \lambda_{ij}^{(c)} \frac{x_{j}}{M_{j}} - \phi_{j}^{(c)} x_{j} \lambda_{ji}^{(c)} \frac{x_{i}}{M_{i}} \right) \right). \end{split}$$

Theorem

Assume g is smooth. Then if, $\lim_{N\to\infty} Y_N(0) \to y_0$, then a.s. $Y_N(t) \to Y(t)$, in Skorokhod topology, where Y(t) is given by

$$Y(t) = \mathbf{y}_0 + \sum_{i=1}^{K} (l_i, \mathbf{0}^T) \Pi_i \left(\int_0^t g_i(Y(s)) \, ds \right) + \int_0^t V(Y(s)) \, ds, \qquad (2)$$

$$\begin{split} V_{1}(c,x) &= 0, \\ V_{1+i}(c,x) &= F_{i}^{(c)}(x) = \left(b_{i}^{(c)} - d_{i}^{(c)} - \phi_{i}^{(c)} \right) x_{i} - \frac{b_{i}^{(c)}}{M_{i}} x_{i}^{2} \\ &+ \sum_{j \neq i} \left(\phi_{j}^{(c)} x_{j} \lambda_{ji} + \left(\phi_{i}^{(c)} x_{i} \lambda_{ji}^{(c)} \frac{x_{j}}{M_{j}} - \phi_{j}^{(c)} x_{j} \lambda_{ji}^{(c)} \frac{x_{i}}{M_{i}} \right) \right). \end{split}$$

Theorem

Assume g is smooth. Then if, $\lim_{N\to\infty} Y_N(0) \to y_0$, then a.s. $Y_N(t) \to Y(t)$, in Skorokhod topology, where Y(t) is given by

$$Y(t) = y_0 + \sum_{i=1}^{K} \left(I_i, \mathbf{0}^T \right) \prod_i \left(\int_0^t g_i \left(Y(s) \right) ds \right) + \int_0^t V(Y(s)) ds, \qquad (2)$$

$$\begin{split} V_{1}(c,x) &= 0, \\ V_{1+i}(c,x) &= F_{i}^{(c)}(x) = \left(b_{i}^{(c)} - d_{i}^{(c)} - \phi_{i}^{(c)} \right) x_{i} - \frac{b_{i}^{(c)}}{M_{i}} x_{i}^{2} \\ &+ \sum_{j \neq i} \left(\phi_{j}^{(c)} x_{j} \lambda_{ji} + \left(\phi_{i}^{(c)} x_{i} \lambda_{ij}^{(c)} \frac{x_{j}}{M_{j}} - \phi_{j}^{(c)} x_{j} \lambda_{ji}^{(c)} \frac{x_{i}}{M_{i}} \right) \right). \end{split}$$

- As the environment changes, what happens to the metapopulation as *t* gets large?
- The metapopulation size is deterministic until a configuration transition.
- Let τ_i be the time between the (i 1)th and *i*th jump between configurations (noting that $\tau_0 = 0$), N(t) be the number of jumps at time *t* and $J_c = \nabla F^{(c)}(0)$. Then

$$\begin{aligned} x(t) = \exp\left(J_{C(t)}\left(t - \sum_{i=1}^{N(t)} \tau_i\right)\right) x\left(\tau_{N(t)}\right) \\ - \int_{\tau_{N(t)}}^{t} \exp\left(J_{C(t)}\left(t - s\right)\right) \tilde{F}^{(C(s))}(x(s)) ds \end{aligned}$$

• It is known that $\exp \left(J_{C(t)}\left(t-s\right)\right)$ is positive

- As the environment changes, what happens to the metapopulation as *t* gets large?
- The metapopulation size is deterministic until a configuration transition.
- Let τ_i be the time between the (i 1)th and *i*th jump between configurations (noting that $\tau_0 = 0$), N(t) be the number of jumps at time *t* and $J_c = \nabla F^{(c)}(0)$. Then

$$\begin{aligned} x(t) = \exp\left(J_{C(t)}\left(t - \sum_{i=1}^{N(t)} \tau_i\right)\right) x\left(\tau_{N(t)}\right) \\ - \int_{\tau_{N(t)}}^{t} \exp\left(J_{C(t)}\left(t - s\right)\right) \tilde{F}^{(C(s))}(x(s)) ds \end{aligned}$$

• It is known that $\exp (J_{C(t)}(t-s))$ is positive

- As the environment changes, what happens to the metapopulation as *t* gets large?
- The metapopulation size is deterministic until a configuration transition.
- Let τ_i be the time between the (i 1)th and *i*th jump between configurations (noting that $\tau_0 = 0$), N(t) be the number of jumps at time *t* and $J_c = \nabla F^{(c)}(0)$. Then

$$\begin{aligned} \mathbf{x}(t) = \exp\left(J_{C(t)}\left(t - \sum_{i=1}^{N(t)} \tau_i\right)\right) \mathbf{x}\left(\tau_{N(t)}\right) \\ - \int_{\tau_{N(t)}}^{t} \exp\left(J_{C(t)}\left(t - s\right)\right) \tilde{F}^{(C(s))}(\mathbf{x}(s)) ds. \end{aligned}$$

• It is known that $\exp (J_{C(t)}(t-s))$ is positive

- As the environment changes, what happens to the metapopulation as *t* gets large?
- The metapopulation size is deterministic until a configuration transition.
- Let τ_i be the time between the (i 1)th and *i*th jump between configurations (noting that $\tau_0 = 0$), N(t) be the number of jumps at time *t* and $J_c = \nabla F^{(c)}(0)$. Then

$$\begin{aligned} \mathbf{x}(t) = \exp\left(J_{C(t)}\left(t - \sum_{i=1}^{N(t)} \tau_i\right)\right) \mathbf{x}\left(\tau_{N(t)}\right) \\ - \int_{\tau_{N(t)}}^{t} \exp\left(J_{C(t)}\left(t - s\right)\right) \tilde{F}^{(C(s))}(\mathbf{x}(s)) ds \end{aligned}$$

• It is known that $\exp \left(J_{\mathcal{C}(t)} \left(t - s \right) \right)$ is positive

- As the environment changes, what happens to the metapopulation as *t* gets large?
- The metapopulation size is deterministic until a configuration transition.
- Let τ_i be the time between the (i 1)th and *i*th jump between configurations (noting that $\tau_0 = 0$), N(t) be the number of jumps at time *t* and $J_c = \nabla F^{(c)}(0)$. Then

$$\begin{aligned} \mathbf{x}(t) = \exp\left(J_{C(t)}\left(t - \sum_{i=1}^{N(t)} \tau_i\right)\right) \mathbf{x}\left(\tau_{N(t)}\right) \\ - \int_{\tau_{N(t)}}^{t} \exp\left(J_{C(t)}\left(t - s\right)\right) \tilde{F}^{(C(s))}(\mathbf{x}(s)) ds \end{aligned}$$

• It is known that $\exp (J_{C(t)}(t-s))$ is positive and under Assumption (C), $\tilde{F}^{(c)}(x) \ge 0$.

- As the environment changes, what happens to the metapopulation as *t* gets large?
- The metapopulation size is deterministic until a configuration transition.
- Let τ_i be the time between the (i 1)th and *i*th jump between configurations (noting that $\tau_0 = 0$), N(t) be the number of jumps at time *t* and $J_c = \nabla F^{(c)}(0)$. Then

$$\begin{aligned} \mathbf{x}(t) &= \exp\left(J_{C(t)}\left(t - \sum_{i=1}^{N(t)} \tau_i\right)\right) \mathbf{x}\left(\tau_{N(t)}\right) \\ &- \int_{\tau_{N(t)}}^{t} \exp\left(J_{C(t)}\left(t - s\right)\right) \tilde{F}^{(C(s))}(\mathbf{x}(s)) ds. \end{aligned}$$

• It is known that $\exp (J_{C(t)}(t-s))$ is positive and under Assumption (C), $\tilde{F}^{(c)}(x) \ge 0$.

- If the linear process converges to **0**, then $x(t) \rightarrow \mathbf{0}$.
- Let us consider linear process, *z*(*t*):

$$z(t) = f(t) \left(\prod_{i=1}^{N(t)} \exp\left(J_{c_{i-1}}\tau_i\right)\right) x_0,$$

where

$$f(t) = \exp\left(J_{\mathcal{C}_{\mathcal{N}(t)}}\left(t - \sum_{i=1}^{\mathcal{N}(t)} \tau_i\right)\right).$$

• Define r_i as the largest real part of $\sigma(J_i)$. If $\phi_i^{(c)}\lambda_{ij}^{(c)} = \rho_c \,\forall i, j$, then

$$\mathbb{P}\left(|z(t)| < \varepsilon\right) \geq \mathbb{P}\left(N(t)\sum_{i=1}^{K} r_i \frac{N_i(t)}{N(t)} \frac{1}{N_i(t)} \sum_{j=1}^{N_i(t)} \tau_{ij} < \log\left(\frac{\varepsilon}{c|M|}\right)\right).$$

- If the linear process converges to **0**, then $x(t) \rightarrow \mathbf{0}$.
- Let us consider linear process, *z*(*t*):

$$z(t) = f(t) \left(\prod_{i=1}^{N(t)} \exp \left(J_{C_{i-1}} \tau_i \right) \right) x_0,$$

where

$$f(t) = \exp\left(J_{\mathcal{C}_{\mathcal{N}(t)}}\left(t - \sum_{i=1}^{\mathcal{N}(t)} \tau_i\right)\right).$$

• Define r_i as the largest real part of $\sigma(J_i)$. If $\phi_i^{(c)}\lambda_{ij}^{(c)} = \rho_c \,\forall i, j$, then

$$\mathbb{P}\left(|z(t)| < \varepsilon\right) \geq \mathbb{P}\left(N(t)\sum_{i=1}^{K} r_i \frac{N_i(t)}{N(t)} \frac{1}{N_i(t)} \sum_{j=1}^{N_i(t)} \tau_{ij} < \log\left(\frac{\varepsilon}{c|M|}\right)\right).$$

- If the linear process converges to **0**, then $x(t) \rightarrow \mathbf{0}$.
- Let us consider linear process, *z*(*t*):

$$z(t) = f(t) \left(\prod_{i=1}^{N(t)} \exp \left(J_{c_{i-1}} \tau_i \right) \right) x_0,$$

where

$$f(t) = \exp\left(J_{c_{N(t)}}\left(t - \sum_{i=1}^{N(t)} \tau_i\right)\right).$$

• Define r_i as the largest real part of $\sigma(J_i)$. If $\phi_i^{(c)}\lambda_{ij}^{(c)} = \rho_c \forall i, j$, then

$$\mathbb{P}\left(|\boldsymbol{z}(t)| < \varepsilon\right) \geq \mathbb{P}\left(N(t)\sum_{i=1}^{K} r_i \frac{N_i(t)}{N(t)} \frac{1}{N_i(t)} \sum_{j=1}^{N_i(t)} \tau_{ij} < \log\left(\frac{\varepsilon}{c |\boldsymbol{M}|}\right)\right).$$

- If the linear process converges to **0**, then $x(t) \rightarrow \mathbf{0}$.
- Let us consider linear process, *z*(*t*):

$$z(t) = f(t) \left(\prod_{i=1}^{N(t)} \exp\left(J_{C_{i-1}}\tau_i\right) \right) x_0,$$

where

$$|f(t)| = \left| \exp \left(J_{C_{N(t)}} \left(t - \sum_{i=1}^{N(t)} \tau_i \right) \right) \right| \leq c.$$

• Define r_i as the largest real part of $\sigma(J_i)$. If $\phi_i^{(c)}\lambda_{ij}^{(c)} = \rho_c \forall i, j$, then

$$\mathbb{P}\left(|\boldsymbol{z}(t)| < \varepsilon\right) \geq \mathbb{P}\left(N(t)\sum_{i=1}^{K} r_i \frac{N_i(t)}{N(t)} \frac{1}{N_i(t)} \sum_{j=1}^{N_i(t)} \tau_{ij} < \log\left(\frac{\varepsilon}{\boldsymbol{c} |\boldsymbol{M}|}\right)\right).$$

- If the linear process converges to **0**, then $x(t) \rightarrow \mathbf{0}$.
- Let us consider linear process, *z*(*t*):

$$z(t) = f(t) \left(\prod_{i=1}^{N(t)} \exp\left(J_{C_{i-1}}\tau_i\right) \right) x_0,$$

where

$$|f(t)| = \left| \exp \left(J_{C_{N(t)}} \left(t - \sum_{i=1}^{N(t)} \tau_i \right) \right) \right| \leq c.$$

• Define r_i as the largest real part of $\sigma(J_i)$. If $\phi_i^{(c)}\lambda_{ij}^{(c)} = \rho_c \forall i, j$, then

$$\mathbb{P}\left(|\boldsymbol{z}(t)| < \varepsilon\right) \geq \mathbb{P}\left(N(t)\sum_{i=1}^{K} r_i \frac{N_i(t)}{N(t)} \frac{1}{N_i(t)} \sum_{j=1}^{N_i(t)} \tau_{ij} < \log\left(\frac{\varepsilon}{c |M|}\right)\right),$$

where $N_i(t)$ is the number of visits for configuration *i* at time *t*.

- If the linear process converges to **0**, then $x(t) \rightarrow \mathbf{0}$.
- Let us consider linear process, *z*(*t*):

$$z(t) = f(t) \left(\prod_{i=1}^{N(t)} \exp\left(J_{C_{i-1}}\tau_i\right) \right) x_0,$$

where

$$|f(t)| = \left| \exp \left(J_{C_{N(t)}} \left(t - \sum_{i=1}^{N(t)} \tau_i \right) \right) \right| \leq c.$$

• Define r_i as the largest real part of $\sigma(J_i)$. If $\phi_i^{(c)}\lambda_{ij}^{(c)} = \rho_c \forall i, j$, then

$$\mathbb{P}\left(|\boldsymbol{z}(t)| < \varepsilon\right) \geq \mathbb{P}\left(N(t)\sum_{i=1}^{K} r_i \frac{N_i(t)}{N(t)} \frac{1}{N_i(t)} \sum_{j=1}^{N_i(t)} \tau_{ij} < \log\left(\frac{\varepsilon}{c |M|}\right)\right),$$

where τ_{ij} is the length of the *j*th visit to the *i*th configuration.

- If the linear process converges to **0**, then $x(t) \rightarrow \mathbf{0}$.
- Let us consider linear process, *z*(*t*):

$$z(t) = f(t) \left(\prod_{i=1}^{N(t)} \exp\left(J_{C_{i-1}}\tau_i\right) \right) x_0,$$

where

$$|f(t)| = \left| \exp \left(J_{C_{N(t)}} \left(t - \sum_{i=1}^{N(t)} \tau_i \right) \right) \right| \leq c.$$

• Define r_i as the largest real part of $\sigma(J_i)$. If $\phi_i^{(c)}\lambda_{ij}^{(c)} = \rho_c \forall i, j$, then

$$\mathbb{P}\left(|z(t)| < \varepsilon\right) \geq \mathbb{P}\left(N(t)\sum_{i=1}^{K} r_i \frac{N_i(t)}{N(t)} \frac{1}{N_i(t)} \sum_{j=1}^{N_i(t)} \tau_{ij} < \log\left(\frac{\varepsilon}{c |M|}\right)\right).$$

• Define $\eta_i := \lim_{t \to \infty} N_i(t) / N(t) > 0$ and assume, for a given *i* that each τ_{ij} is i.i.d. Then $\frac{1}{n} \sum_{j=1}^n \tau_{ij} \to \mathbb{E}\tau_{ij} = \left(\sum_{j=1}^k g_j(i)\right)^{-1}$.

Theorem

Assume the metapopulation has K configurations and $\phi_i^{(c)} \lambda_{ii}^{(c)} = \rho_c \ \forall i, j$. Then for any $\varepsilon > 0$

$$\sum_{i=1}^{K} r_i \eta_i \left(\sum_{j=1}^{k} g_j(i) \right)^{-1} < 0 \implies \lim_{t \to \infty} \mathbb{P}\left(|x(t)| > \varepsilon \right) \to 0.$$

• Define $\eta_i := \lim_{t\to\infty} N_i(t)/N(t) > 0$ and assume, for a given *i* that each τ_{ij} is i.i.d. Then $\frac{1}{n} \sum_{j=1}^n \tau_{ij} \to \mathbb{E}\tau_{ij} = \left(\sum_{j=1}^k g_j(i)\right)^{-1}$.

Theorem

Assume the metapopulation has K configurations and $\phi_i^{(c)}\lambda_{ij}^{(c)} = \rho_c \ \forall i, j.$ Then for any $\varepsilon > 0$

$$\sum_{i=1}^{K} r_i \eta_i \left(\sum_{j=1}^{k} g_j(i) \right)^{-1} < 0 \implies \lim_{t \to \infty} \mathbb{P}\left(|x(t)| > \varepsilon \right) \to 0.$$

 $r_1 = 13.07, r_2 = -29.35, \mathbb{E}\tau_{1j} = 1/5, \mathbb{E}\tau_{2j} = 1/9$

Andrew Smith (UQ)

 $r_1 = 27.01, r_2 = -14.11, \mathbb{E}\tau_{1j} = 1/4, \mathbb{E}\tau_{2j} = 1/2$

Andrew Smith (UQ)

 $r_1 = 16.83, r_2 = -25.70, \mathbb{E}\tau_{1j} = 1/11, \mathbb{E}\tau_{2j} = 1/8$

Andrew Smith (UQ)

 $r_1 = 10.63, r_2 = -5.60, \mathbb{E}\tau_{1j} = 1/5, \mathbb{E}\tau_{2j} = 1/10$

Andrew Smith (UQ)

 $r_1 = 23.10, r_2 = -13.74, \mathbb{E}\tau_{1j} = 1, \mathbb{E}\tau_{2j} = 1/8$

Andrew Smith (UQ)

 $r_1 = 27.06, r_2 = -22.60, \mathbb{E}\tau_{1j} = 1, \mathbb{E}\tau_{2j} = 1/5$

Andrew Smith (UQ)

Summary

I have:

- Derived a metapopulation model that is structured spatially and accounts for with-in patch dynamics.
- Approximated the stochastic metapopulation by a dynamical system, and determined conditions for extinction and persistence.
- Introduced stochastic environmental influence.
- Approximated the stochastic environmental influence by a piecewise deterministic Markov process (PDMP).
- Determined conditions for extinction under a strict symmetry condition.

In the future, I plan to:

- Determine explicitly when the Allee effect occurs for an arbitrarily sized metapopulation.
- Weaken the symmetry assumptions for the original process and the PDMP.
- Determine when the PDMP will persist.

- The ARC Centre of Excellence for MASCOS
- My supervisors & fellow postgraduate students

Questions?

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

