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Background

Metapopulations

Populations that occupy geographically distinct locations.
Individuals reside on patches and can migrate to other patches.
When an individual migrates to an empty patch, they colonise it.
Patches can become extinct when no individuals are left.
If we only count the number of occupied patches, then the
metapopulation could be modelled by a stochastic logistic model.
However, we will be counting the number of individuals on each
patch.
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Background

Structured Metapopulation Models
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Model

Our Model

Our model is an example of Kingman’s 1 Markov population
process.
Define J to be the number of patches in the metapopulation and
ni(t) as the number of individuals occupying patch i at time t .
The Markov process (n(t), t ≥ 0) describing the state of the
metapopulation takes values in
SN = {0, . . . ,N1} × · · · × {0, . . . ,NJ}.
The only nonzero transition rates are given by

q(n,n + ei) = nibi

(
ni

Ni

)
,

q(n,n − ei) = φiniλi0 + dini ,

q(n,n − ei + ej) = φiniλij
Nj − nj

Nj
for all j 6= i .

1
J. F. C. Kingman, Markov population processes, Journal of Applied Probability 6 (1969) 1–18.
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Model

Diagram

Patch i Patch jnibi

(
ni
Ni

)
φiniλi0 + dini

φiniλij
Nj−nj

Nj

φjnjλji
Ni−ni

Ni

Andrew Smith (UQ) Metapopulation Models July 10, 2013



Model

Diagram

Patch i Patch jnibi

(
ni
Ni

)
φiniλi0 + dini

φiniλij
Nj−nj

Nj

φjnjλji
Ni−ni

Ni

Andrew Smith (UQ) Metapopulation Models July 10, 2013



Approximation

Assumptions

We assume

(I) Ni
N → Mi as N →∞, where N =

∑
j Nj .

(II) The birth function bi is

Lipschitz,

strictly decreasing on [0,1],

bi (x) = 0 for all x ≥ 1 and

xbi (x) is strictly concave on [0,1].
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Approximation

Deterministic Limit

Theorem
If limN→∞ n(0)/N = x0, then, for every s > 0 and δ > 0,

lim
N→∞

Pr

(
sup
t≤s

∣∣∣∣n(t)N
− x(t , x0)

∣∣∣∣ > δ

)
= 0.

where x(t , x0) is the solution to

dx(t)
dt

= F (x), x(0) = x0,

with

Fi(x) =
(

bi

(
xi

Mi

)
− di − φi

)
xi

+
∑
j 6=i

(
φjxjλji +

(
φixiλij

xj

Mj
− φjxjλji

xi

Mi

))
,
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Approximation

Stochastic to Deterministic
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Approximation
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Approximation
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Approximation

Stochastic to Deterministic
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Approximation
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Approximation
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Equilibrium Behaviour

Extinction

(A) For all i and j , λij = 0 implies λji = 0.

(B) For all i and j , there is a finite sequence (ak ) such that λia1λa1a2 . . . λam j 6= 0.

Theorem

Assume (A) and (B) hold. If there exists a y ∈ RJ
+\{0} such that

(bi(0)− di − φi) yi + φi

J∑
j 6=i

λijyj ≤ 0, for all i, (1)

with an inequality for at least one i, the fixed point 0 is asymptotically stable. If there is
no y ∈ RJ

+\{0} satisfying (1), then 0 is unstable.

If the metapopulation is small enough, it will go extinct.
But what happens if it is unstable?
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Equilibrium Behaviour

Persistence

Theorem

Assume (A) and (B) hold. If there is no y ∈ RJ
+\{0} satisfying

(bi − di − φi) yi + φi

J∑
j 6=i

λijyj ≤ 0, for all i ,

then there exists at least one non-zero fixed point x∗ and, for all x0
such that 0 < x0 ≤ x∗, x(t , x0)→ x∗.

As long as the population is not extinct to begin with, it will persist.
This theorem implies that the metapopulation will eventually be equal

to or larger than x∗.
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Equilibrium Behaviour

A Sufficient Condition

We have determined a sufficient condition for survival.
However, if 0 is stable, will the population necessarily go extinct?
We introduce the following assumption

(C) The parameters φi , λij and Mi satisfy φiλijMi = φjλjiMj for all i , j .

The maximum migration rate to any other empty patch is the
same.
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Equilibrium Behaviour

Extinction

Theorem

Assume (A)–(C) hold. If 0 is stable, then x(t , x0)→ 0 for all x0.

The metapopulation will go extinct, regardless of its initial size.

(C) The parameters φi , λij and Mi satisfy φiλijMi = φjλjiMj for all i , j .

Andrew Smith (UQ) Metapopulation Models July 10, 2013



Equilibrium Behaviour

Extinction

Theorem

Assume (A)–(C) hold. If 0 is stable, then x(t , x0)→ 0 for all x0.

The metapopulation will go extinct, regardless of its initial size.

(C) The parameters φi , λij and Mi satisfy φiλijMi = φjλjiMj for all i , j .

Andrew Smith (UQ) Metapopulation Models July 10, 2013



Equilibrium Behaviour

Persistence

Theorem

Assume (A)–(C) hold. If 0 is unstable, then there is a unique non-zero
fixed point x∗ and x(t , x0)→ x∗ for all x0 6= 0.

The metapopulation will persist at the level x∗ provided it is not initially
extinct.

(C) The parameters φi , λij and Mi satisfy φiλijMi = φjλjiMj for all i , j .
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Equilibrium Behaviour

Other Behaviour

Under assumption (C), the picture is complete.
But is the picture the same when (C) doesn’t hold?
Is the persistence of the population purely dependent on the
whether the extinction condition is satisfied?
The Allee effect is when the initial population size determines
whether the population will go extinct or persist.
If the population is large enough, it will persist. Otherwise, it will
go extinct.
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Equilibrium Behaviour

Demonstrating the Allee Effect
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Equilibrium Behaviour

Demonstrating the Allee Effect

Andrew Smith (UQ) Metapopulation Models July 10, 2013


FixedPtSmallEpsilonX.mp4
Media File (video/mp4)


FixedPtSmallEpsilonY.mp4
Media File (video/mp4)



Environmental Influence

Influence due to the Environment

Previously, we assumed that the birth, death and migration rates
were constant with respect to time.
However, is this a reasonable assumption? Is it reasonable over a
long period of time?
What happens if the environment changes?

Breeding seasons,
Migration paths cut,
Catastrophes,
And various others.

Some influences are deterministic and can be accounted for with
a similar functional law of large numbers.
But others are stochastic.
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Environmental Influence

Model

To account for this, we let our parameters depend on a variable that
models the environment.
Define C(t) to be the configuration we are in at time t and assume there
are only K configurations.
As before, ni (t) is the number of individuals on patch i . The process
(C(t),n(t)) has state space {1, . . . ,K} × SN and the following transition
rates:

q ((C,n) , (C,n) + (0,ei )) = b(C)
i

ni

Ni
(Ni − ni ),

q ((C,n) , (C,n) + (0,−ei )) = φ
(C)
i niλ

(C)
i0 + d (C)

i ni ,

q ((C,n) , (C,n) + (0,−ei + ej )) = φ
(C)
i niλ

(C)
ij

Nj − nj

Nj
∀ j 6= i ,

q ((C,n) , (C,n) + (li ,0)) = gi (C,n/N) , for i = 1, . . . , k .

We can use the results of Franz et al (2012) to approximate the
trajectory of YN(t) := (C(t),n(t)/N).
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Approximation

Piecewise-Deterministic Trajectory

Theorem

Assume g is smooth. Then if, limN→∞ YN(0)→ y0, then a.s. YN(t)→ Y (t), in
Skorokhod topology, where Y (t) is given by

Y (t) = y0 +
K∑

i=1

(
li ,0T )Πi

(∫ t

0
gi (Y (s)) ds

)
+

∫ t

0
V (Y (s))ds, (2)

Πi (·) are Poisson processes with unit rates and V has elements

V1(c, x) = 0,

V1+i (c, x) = F (c)
i (x) =

(
b(c)

i − d (c)
i − φ(c)i

)
xi −

b(c)
i

Mi
x2

i

+
∑
j 6=i

(
φ
(c)
j xjλji +

(
φ
(c)
i xiλ

(c)
ij

xj

Mj
− φ(c)j xjλ

(c)
ji

xi

Mi

))
.
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Equilibrium Behaviour

Equilibrium Behaviour

As the environment changes, what happens to the metapopulation
as t gets large?
The metapopulation size is deterministic until a configuration
transition.
Let τi be the time between the (i − 1)th and i th jump between
configurations (noting that τ0 = 0), N(t) be the number of jumps at
time t and Jc = ∇F (c)(0). Then

x(t) = exp

JC(t)

t −
N(t)∑
i=1

τi

 x
(
τN(t)

)
−
∫ t

τN(t)

exp
(
JC(t) (t − s)

)
F̃ (C(s))(x(s))ds.

It is known that exp
(
JC(t) (t − s)

)
is positive

and under
Assumption (C), F̃ (c)(x) ≥ 0.

Andrew Smith (UQ) Metapopulation Models July 10, 2013



Equilibrium Behaviour

Equilibrium Behaviour

As the environment changes, what happens to the metapopulation
as t gets large?
The metapopulation size is deterministic until a configuration
transition.
Let τi be the time between the (i − 1)th and i th jump between
configurations (noting that τ0 = 0), N(t) be the number of jumps at
time t and Jc = ∇F (c)(0). Then

x(t) = exp

JC(t)

t −
N(t)∑
i=1

τi

 x
(
τN(t)

)
−
∫ t

τN(t)

exp
(
JC(t) (t − s)

)
F̃ (C(s))(x(s))ds.

It is known that exp
(
JC(t) (t − s)

)
is positive

and under
Assumption (C), F̃ (c)(x) ≥ 0.

Andrew Smith (UQ) Metapopulation Models July 10, 2013



Equilibrium Behaviour

Equilibrium Behaviour

As the environment changes, what happens to the metapopulation
as t gets large?
The metapopulation size is deterministic until a configuration
transition.
Let τi be the time between the (i − 1)th and i th jump between
configurations (noting that τ0 = 0), N(t) be the number of jumps at
time t and Jc = ∇F (c)(0). Then

x(t) = exp

JC(t)

t −
N(t)∑
i=1

τi

 x
(
τN(t)

)
−
∫ t

τN(t)

exp
(
JC(t) (t − s)

)
F̃ (C(s))(x(s))ds.

It is known that exp
(
JC(t) (t − s)

)
is positive

and under
Assumption (C), F̃ (c)(x) ≥ 0.

Andrew Smith (UQ) Metapopulation Models July 10, 2013



Equilibrium Behaviour

Equilibrium Behaviour

As the environment changes, what happens to the metapopulation
as t gets large?
The metapopulation size is deterministic until a configuration
transition.
Let τi be the time between the (i − 1)th and i th jump between
configurations (noting that τ0 = 0), N(t) be the number of jumps at
time t and Jc = ∇F (c)(0). Then

x(t) = exp

JC(t)

t −
N(t)∑
i=1

τi

 x
(
τN(t)

)
−
∫ t

τN(t)

exp
(
JC(t) (t − s)

)
F̃ (C(s))(x(s))ds.

It is known that exp
(
JC(t) (t − s)

)
is positive

and under
Assumption (C), F̃ (c)(x) ≥ 0.

Andrew Smith (UQ) Metapopulation Models July 10, 2013



Equilibrium Behaviour

Equilibrium Behaviour

As the environment changes, what happens to the metapopulation
as t gets large?
The metapopulation size is deterministic until a configuration
transition.
Let τi be the time between the (i − 1)th and i th jump between
configurations (noting that τ0 = 0), N(t) be the number of jumps at
time t and Jc = ∇F (c)(0). Then

x(t) = exp

JC(t)

t −
N(t)∑
i=1

τi

 x
(
τN(t)

)
−
∫ t

τN(t)

exp
(
JC(t) (t − s)

)
F̃ (C(s))(x(s))ds.

It is known that exp
(
JC(t) (t − s)

)
is positive and under

Assumption (C), F̃ (c)(x) ≥ 0.
Andrew Smith (UQ) Metapopulation Models July 10, 2013



Equilibrium Behaviour

Equilibrium Behaviour

As the environment changes, what happens to the metapopulation
as t gets large?
The metapopulation size is deterministic until a configuration
transition.
Let τi be the time between the (i − 1)th and i th jump between
configurations (noting that τ0 = 0), N(t) be the number of jumps at
time t and Jc = ∇F (c)(0). Then

x(t) = exp

JC(t)

t −
N(t)∑
i=1

τi

 x
(
τN(t)

)
−
∫ t

τN(t)

exp
(
JC(t) (t − s)

)
F̃ (C(s))(x(s))ds.

It is known that exp
(
JC(t) (t − s)

)
is positive and under

Assumption (C), F̃ (c)(x) ≥ 0.
Andrew Smith (UQ) Metapopulation Models July 10, 2013



Equilibrium Behaviour

Linear Process

If the linear process converges to 0, then x(t)→ 0.
Let us consider linear process, z(t):

z(t) = f (t)

N(t)∏
i=1

exp
(
Jci−1τi

) x0,

where

f (t) = exp

JcN(t)

t −
N(t)∑
i=1

τi

 .

Define ri as the largest real part of σ(Ji). If φ(c)i λ
(c)
ij = ρc ∀i , j , then

P (|z(t)| < ε) ≥ P

N(t)
K∑

i=1

ri
Ni(t)
N(t)

1
Ni(t)

Ni (t)∑
j=1

τij < log
(

ε

c |M|

) .

where Ni(t) is the number of visits for configuration i at time t .
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Equilibrium Behaviour

Linear Process

Define ηi := limt→∞Ni(t)/N(t) > 0 and assume, for a given i that

each τij is i.i.d. Then 1
n
∑n

j=1 τij → Eτij =
(∑k

j=1 gj(i)
)−1

.

Theorem

Assume the metapopulation has K configurations and
φ
(c)
i λ

(c)
ij = ρc ∀i , j . Then for any ε > 0

K∑
i=1

riηi

 k∑
j=1

gj(i)

−1

< 0 =⇒ lim
t→∞

P (|x(t)| > ε)→ 0.
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Equilibrium Behaviour

Examples
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Summary

I have:
Derived a metapopulation model that is structured spatially and
accounts for with-in patch dynamics.
Approximated the stochastic metapopulation by a dynamical
system, and determined conditions for extinction and persistence.
Introduced stochastic environmental influence.
Approximated the stochastic environmental influence by a
piecewise deterministic Markov process (PDMP).
Determined conditions for extinction under a strict symmetry
condition.
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Future Work

In the future, I plan to:
Determine explicitly when the Allee effect occurs for an arbitrarily
sized metapopulation.

Weaken the symmetry assumptions for the original process and
the PDMP.

Determine when the PDMP will persist.
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