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Problem formulation

We consider the problem of estimating rare-event
probabilities of the form

ℓ = P(S(X) > γ), X = (X1, . . . , Xd),

where S : Rd → R and X1, . . . , Xd are random variables
with joint density f(x). Almost any high-dimensional
integration problem can be cast into this framework:
option pricing, insurance value at risk, ABC, Ising model
in physics, queuing models, counting problems in
operations research and CS.

Dichotomy: Frequently, one can easily simulate the rare
event, but it is not clear how one can use the simulated
data to estimate ℓ.
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Bird’s eye view of existing methods

importance sampling: state-dependent and
state-independent; no need to simulate the rare-event
under the original probability law in order to estimate
efficiently the probability of its occurrence.

adaptive importance sampling: cross entropy method

conditioning

splitting: splitting method typically yields exact or
approximate realizations of the rare-event

With the exception of splitting, all treat the problem of
simulating the rare-event and estimating the rare-event
probability as essentially separate problems.

Rare-event probability estimation and convex programming – p.3/29



Standard importance sampling

We propose to estimate the quantity ℓ using maximum
likelihood methods, where the data upon which the
likelihood function depends is generated from computer
simulation of the rare-event under the original
probability law.

To introduce the idea it is convenient to think of ℓ as a
normalization constant ℓs of the conditional density

fs(x) =
f(x)I{S(x) > γ}

ℓs
=

ws(x)

ℓs
.
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The typical importance sampling scheme

Let f1(x) = w1(x)/ℓ1 be another density whose
normalizing constant ℓ1 is known and
{x : f1(x) > 0} ⊇ {x : fs(x) > 0}.
Then, the natural estimator is

ℓ∗s =
1

n

n∑

j=1

f(Xj)I{S(Xj) > γ}
f1(Xj)

, X1, . . . ,Xn
iid∼ f1 .

For good performance we need the tails of f1 to be at
least as heavy as the tails of fs.

Frequently, the choice of f1 is dictated by asymptotic
analysis of ℓ(γ) as γ ↑ ∞.
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The typical importance sampling scheme

It is well known that the zero-variance importance
sampling density for estimating ℓs is the conditional pdf
fs. So we may try to use fs itself as an importance
sampling density.

We consider the estimator

ℓ̂s =
1

n

n∑

j=1

ws(Xj)

λ1f1(Xj) + λsws(Xj)/ℓ̂s︸ ︷︷ ︸
≈fs

, X1, . . . ,Xn
iid∼ f̄ ,

where the normalizing constant ℓs on the right is
replaced with ℓ̂s, giving rise to a nonlinear equation for
ℓ̂s.
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Comparison of estimators

Compare now the traditional importance sampling
estimator with the proposed solve-the-equation-type.

For the solve-the-equation-type the support and tail
restrictions on f1 are no longer necessary for good
performance.

The only requirement is that {x : f1(x)× fs(x) > 0} 6= ∅,
that is, the supports of f1 and fs overlap.

This is an example of using computer simulated data of
the rare-event to obtain an M-type estimator of ℓ. Next,
we try to generalize.
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Suppose we are given the sequence of densities

ft(x) =
wt(x)

ℓt
=

f(x)Ht(x)

ℓt
, t = 1, . . . , s ,

where f is a known density, {Ht} are known functions,
and ℓt are probabilities acting as normalizing constants
to {wt}.
We are interested in estimating ℓk′ = EfHk′(X) for some
k′.

We assume that for at least one ft, say f1, the
corresponding normalizing constant ℓ1 is known, and,
without loss of generality, equal to unity.

We call f1 a reference density.
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Connectivity

To proceed, suppose we are given a graph with s nodes
and an edge between nodes i and j if and only if

Ef I{Hi(X) > 0} × I{Hj(X) > 0} > 0. (1)

We assume that there exists a path between any two
nodes.

We call the condition (??) on the supports of {ft} Vardi’s
connectivity condition.

Assume we have the iid sample

Xt,1, . . . ,Xt,nt

iid∼ ft(x), t = 1, . . . , s .
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Connectivity

A B

C D
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Mixture model

Conceptually, same as sampling n = n1 + · · ·+ ns
variables with stratification from mixture

f̄(x) =
1

n

s∑

t=1

ntft(x) =

s∑

t=1

λtft(x), λt
def
= nt/n .

Let the pooled sample be denoted via

X1, . . . ,Xn,

where the first n1 samples are outcomes from f1, the
next n2 are samples from f2, and so on.

Define the vector of parameters

z = (z1, . . . , zn) = (− ln(1/λ1),− ln(ℓ2/λ2), . . . ,− ln(ℓs/λs)).
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Empirical Likelihood Estimator

Now consider the likelihood of the observed data
Xt,1, . . . ,Xt,nt

, t = 1, . . . , s as a function of z:

s∏

k=1

nk∏

j=1

fk(Xk,j) =

s∏

k=1

nk∏

j=1

wk(Xk,j)

λke−zk

=

s∏

k=1

nk∏

j=1

wk(Xk,j)

λke−zk f̄(Xk,j)
×

s∏

k=1

nk∏

j=1

f̄(Xk,j) .
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Empirical Likelihood Estimator

The last yields the partial log-likelihood as a function of z:

ln

s∏

k=1

nk∏

j=1

wk(Xk,j)

λke−zk f̄(Xk,j)
=

=

s∑

k=1

nk∑

j=1

ln(wk(Xk,j)/λk) + zk − ln(f̄(Xk,j))

= const.−
n∑

j=1

ln(f̄(Xj)) +

s∑

k=1

nkzk

= const.−
n∑

j=1

ln

(
s∑

k=1

wk(Xj) ezk

)
+ n

s∑

k=1

λkzk .
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Empirical Likelihood Estimator

Under the connectivity condition of Vardi and iid
assumption on the sample, it can be shown that the
maximum of the partial log-likelihood is the same as the
maximum of the complete likelihood.

In other words, the unique nonparametric maximum
likelihood estimate of z (and hence of ℓ) solves the
almost surely convex optimization program (with
z1 = lnλ1 fixed)

ẑ = argmin
z

D̂(z)

D̂(z)
def
=

n∑

j=1

ln

(
s∑

k=1

wk(Xj)ezk

)
−

s∑

k=1

nkzk ,
(2)
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Almost surely??

Define the matrix

Gi,j = Ef I{Hi(X) > 0} × I{Hj(X) > 0}

and its empirical counterpart

Ĝi,j =
1

n

∑

k

I{Hi(Xk) > 0} × I{Hj(Xk) > 0}

Under the connectivity condition, matrix G is irreducible,
that is if for any pair (i, j), we have Ĝk

i,j > 0 for some

k = 1, 2, . . . ,, and since Ĝ→ G almost surely, with
probability one the function D̂(z) is a strictly convex and
the maximum likelihood program has a unique solution.
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M-estimator & Method of Moments

To execute the optimization, we compute the (s− 1)× 1

gradient ∇D̂(z), which is a vector with components:

[∇D̂]t(z) =

n∑

j=1

wt(Xj)ezt

∑s
k=1wk(Xj)ezk

− nt, t = 2, . . . , s .

Using the prior information that ℓ1 = 1 or z1 = ln(λ1),
these estimating equations are equivalent to solving the
s− 1 dimensional system for the unknown z2, . . . , zs:

1

n

n∑

j=1

wt(Xj)eẑt

∑s
k=1wk(Xj)eẑk

= λt, t = 2, . . . , s .
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Moment-matching master equation

The last bit is equivalent to:

ℓ̂t =

n∑

j=1

At,j∑s
k=1Ak,j nk/ℓ̂k

, At,j = Ht(Xj), t = 2, . . . , s .

(3)

It is sometimes easier to directly minimize D̂, instead of
solving the nonlinear system.

The system can be solved using Jacobi/Gauss-Seidel
type iteration.

The process is similar to finding eigenvalues via power
iteration.
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Jacobi/Gauss-Seidel iteration algorithm

Require: Matrix A and initial starting point
ℓ = (ℓ1, . . . , ℓs) = (1, . . . , 1)
Set ε =∞ and ℓ∗ ← ℓ

while ε > 10−10 do
for i = 2, . . . , s do

ℓi ←
n∑

j=1

Ai,j∑s
k=1Ak,j nk/ℓ

∗
k

ε← maxi
|ℓi−ℓ∗i |

ℓi

Set ℓ∗ ← ℓ

return The vector of estimated probabilities ℓ̂← ℓ.
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Error estimates

Using the properties of maximum likelihood estimators,
one can derive the asymptotic covariance matrix of
(ℓ̂2, . . . , ℓ̂s).

First, define the s× s matrix O# with entries

O#
i,j =

∫
fi(x)fj(x)∑s
k=1 λkfk(x)

dx = Ef̄

[
wi(X)/ℓi wj(X)/ℓj(∑s

k=1wk(X)λk/ℓk
)2

]

= Ef̄

[
I{Si(X) > γ}/ℓi I{Sj(X) > γ}/ℓj(∑s

k=1 I{Sk(X) > γ}λk/ℓk
)2

]
,

i, j = 1, . . . , s .

This matrix has an obvious plug-in estimator.
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Conclusions and Future work

Next, define the matrices (with the specified dimension)

J =

(
0

I(s−1)×(s−1)

)
, s× (s− 1)

O = J⊤O#J, (s− 1)× (s− 1) (lower right submatrix of O#)

Λ = diag(λ2, . . . , λs), (s− 1)× (s− 1)

L = diag(ℓ2, . . . , ℓs), (s− 1)× (s− 1) .
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Asymptotic distribution

Then, we have for large n ↑ ∞ and fixed λi =
ni

n1+···+ns
> 0

(and assuming ℓ1 = 1)

√
nJ⊤(ℓ̂− ℓ)

d→ N
(
0, L(O−1 − Λ)−1L

)
.
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Example

Consider the estimation of the rare-event probability

ℓ2 = P(eX1 + · · ·+ eXd > γ),

which is the normalizing constant of the density

f2(x) =
f(x) I{S2(x) > γ}

ℓ2
, x = (x1, . . . , xd),

where S2(x) = ex1 + · · ·+ exd, and f is the density of the
multivariate normal distribution with mean µ and covariance
matrix Σ = (Σi,j) with

Σi,j√
Σi,iΣj,j

= ̺, for all i 6= j ,
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Reference density

Estimate ℓ2 via the M-estimator with s = 2 and reference
density ((X1, . . . , Xd) ∼ N(µ,Σ))

f1(x) =
f(x)

∑d
j=1 I{exi > γ}

ℓ1
, ℓ1

def
=

d∑

j=1

P
(
eXi > γ

)
.

Sampling iid copies from the reference density using
the mixture representation

f1(x) =

d∑

j=1

P(Xj > ln γ)

ℓ1

f(x)I{xj > ln γ}
P(Xj > ln γ)

.
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Reference density

The reference density has the property that ℓ2 ↓ ℓ1 as
γ ↑ ∞, which makes is possible to show that the
M-estimator has vanishing relative error properties.

Note, however, that the reference density cannot be
used as an importance sampling pdf in a traditional
scheme due to its support.

Moreover, the behavior of the reference density does
not capture the effect of the correlation coefficient ̺.
The parameter ̺ does not appear anywhere.

This illustrates the advantages of the proposed method.

Rare-event probability estimation and convex programming – p.24/29



Moment-matching master equation

ℓ2 =

n∑

j=1

w2(Xj)

n1w1(Xj)/ℓ1 + n2w2(Xj)/ℓ2

=
p0

0n1

ℓ1
+ n2

ℓ2

+
p1

n1

ℓ1
+ n2

ℓ2

+
p2

2n1

ℓ1
+ n2

ℓ2

+ · · ·+ pd
dn1

ℓ1
+ n2

ℓ2

,

where pk is the number of Xj ’s, which yield∑d
i=1 I{xi > ln γ} = k.

Hence, our estimator ℓ̂2 solves the equation:

p0 +
p1

ℓ2
n1

n2 ℓ1
+ 1

+
p2

ℓ2
2n1

n2 ℓ1
+ 1

+ · · ·+ pd

ℓ2
dn1

n2 ℓ1
+ 1

= n2 .
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Numerical results

Empirical performance of M-estimator and ISVE algorithms
for various values of the threshold parameter
γ = 5× 10c+3, c = 1, . . . , 14 with ̺ = 0.999. Both algorithms
use a sample size of n = n1 + n2 = 5× 105.

relative error % WNRV
γ asym. approx. M-estim. ISVE estim. M-estim. ISVE M-estim. ISVE

5 × 10
4

0.000355 0.000409 0.000406 0.23 1.71 0.00044 15248

5 × 10
5

1.794 × 10
−5

2.212 × 10
−5

2.177 × 10
−5 0.23 3.09 0.00043 50267

5 × 10
6

5.586 × 10
−7

7.156 × 10
−7

6.807 × 10
−7 0.23 5.32 0.00042 1.4 × 10

5

5 × 10
7

1.057 × 10
−8

1.384 × 10
−8

1.444 × 10
−8 0.23 11.74 0.00042 7.2 × 10

5

5 × 10
8

1.205 × 10
−10

1.590 × 10
−10

1.254 × 10
−10 0.23 2.35 0.00042 29064

5 × 10
9

8.230 × 10
−13

1.086 × 10
−12

3.781 × 10
−12 0.23 76.90 0.00040 3.13 × 10

7

5 × 10
10

3.347 × 10
−15

4.372 × 10
−15

3.346 × 10
−15 0.22 0.10 0.00040 56.12

5 × 10
11

8.087 × 10
−18

1.046 × 10
−17

8.083 × 10
−18 0.22 0.024 0.00039 2.99

5 × 10
12

1.158 × 10
−20

1.483 × 10
−20

1.158 × 10
−20 0.22 0.0018 0.00039 0.016

5 × 10
13

9.827 × 10
−24

1.245 × 10
−23

1.641 × 10
−23 0.22 40.12 0.00039 8.38 × 10

6

5 × 10
14

4.930 × 10
−27

6.170 × 10
−27

5.028 × 10
−27 0.22 1.94 0.00039 19790

5 × 10
15

1.462 × 10
−30

1.804 × 10
−30

1.462 × 10
−30 0.22 0.00037 0.00038 0.00073

5 × 10
16

2.562 × 10
−34

3.123 × 10
−34

2.563 × 10
−34 0.22 0.00020 0.00038 0.00020

5 × 10
17

2.651 × 10
−38

3.198 × 10
−38

2.652 × 10
−38 0.22 0.00010 0.00037 5.21 × 10

−5
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Effect of correlation on estimate

Effect of the correlation parameter ̺ = 1− 0.5c, c = 1, . . . , 10 on the rare-event probability.

The circles represent the MCIS estimates and the dots lying on the line represent the ISVE

estimates. The line itself is the asymptotic approximation of the rare-event probability. Both

M-estim. and ISVE use a sample size of n = n1 + n2 = 5× 106.

1 2 3 4 5 6 7 8 9 10

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

×
1
0
−
3
0

− log2(1 − ρ)

ISVE

MCIS

Rare-event probability estimation and convex programming – p.27/29



Effect of correlation on probability

Empirical performance of M-estim. and ISVE algorithms for
various values of the threshold parameter γ = 5× 1015 with
̺ = 1− 0.5c c = 1, . . . , 10. The asymptotic approximation
here is ≈ 1.462× 10−30. Both M-estim. and ISVE use a
sample size of n = n1 + n2 = 5× 106.

relative error % WNRV
̺ M-estim. ISVE estim. M-estim. ISVE M-estim. ISVE

1 − 0.5
1

1.4624 × 10
−30

1.4624 × 10
−30 0.063 3.58 × 10

−14 0.00027 5.89 × 10
−22

1 − 0.5
2

1.4629 × 10
−30

1.4624 × 10
−30 0.063 1.00 × 10

−5 0.00027 4.64 × 10
−5

1 − 0.5
3

1.4758 × 10
−30

1.4624 × 10
−30 0.063 0.00018 0.00028 0.015

1 − 0.5
4

1.5318 × 10
−30

1.4624 × 10
−30 0.064 9.54 × 10

−5 0.00029 0.0042

1 − 0.5
5

1.6194 × 10
−30

1.4624 × 10
−30 0.066 0.00011 0.00031 0.0053

1 − 0.5
6

1.6958 × 10
−30

1.4624 × 10
−30 0.068 0.00021 0.00032 0.019

1 − 0.5
7

1.7489 × 10
−30

1.4743 × 10
−30 0.069 0.78 0.00033 2.8 × 10

5

1 − 0.5
8

1.7788 × 10
−30

1.4624 × 10
−30 0.069 0.00010 0.00033 0.0050

1 − 0.5
9

1.7959 × 10
−30

1.4624 × 10
−30 0.070 0.00011 0.00034 0.0054

1 − 0.5
10

1.8054 × 10
−30

1.4624 × 10
−30 0.070 0.00010 0.00034 0.0048
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Conclusions and Future work

Apply to counting problems and Bayesian model choice
problems.

Finding λ using optimal design of experiments theory?!

Splitting is an example where the moment-matching
system of equations is exactly solvable.

Thank you!
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