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Questions are of ‘Mathematical Interest’

Curiosity driven research

‘Toy models’

(focus on key assumptions)

(number-crunching construction of Year 12 aggregate)

(bibliometric measures: ‘impact factors’)
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[NW08] (QUESTA 2008) BRAVO effect:

Balancing Reduces Asymptotic Variance of Outputs

M/M/1/K, Buffer of size K, Stationary

Arrivals are Poisson at rate λ,

Service times i.i.d. exponential at rate µ,

Ndep(0, t] E
(

Ndep(0, t]
)

=

{

λt if λ < µ,

µt if λ ≥ µ.

varNdep(0, t] ∼
{

λt if ρ < 1,

µt if ρ > 1.

DM/M/1/K := lim
t→∞

varNdep(0, t]

E
(

Ndep(0, t]
)

lim
K→∞

DM/M/1/K =

{

1 if 0 < ρ < ∞ except for
2
3 if ρ = 1.

(Q.1): WHY the discontinuity at ρ := λ/µ = 1 ?

(Q.2): Is there similar behaviour with s servers ?

(either s ≥ 2 or s ↑ or s → ∞)

[NW08] includes a graph for systems M/M/s/(K−s) (K ↑)

‘correct’ family is for systems M/M/s/
√
s (s ↑)
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Theoretical Physicist:

‘Examine a system at its critical point(s)’

Branching process: (biological processes)

Describe both sub- and super-critical behaviour

Transition regime when mean offspring ≈ 1

In GI/GI/s, ρ = 1 is critical point.

System ‘dull’ for ρ > 1.

GI/GI/s/K has critical point ρ = 1:

Demarcation point between two stable phases.

ρ = 1: critical pt. when arrival rate λ, service rate µ/s,

ρ = λ/[s · µ/s] = arrival rate

total service rate

Why
2

3
? Grimmett: ‘Magic’ constants

(ratio of ‘small’ integers)

As ρ ↑ 1, DGI/GI/1 → 2
(

1− 2

π

)

D... is second-order rate:
variance

mean
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For s-server system, have s servers each working at rate µ/s,

so system is ‘balanced’ when λ = s[µ/s] = µ. Write ρ = λ/µ

as in 1-server case, so ρ = 1 for ‘balance’.

Variance of Ndep has same asymptotics as for 1-server case

except for ρ ≈ 1:

In M/M/s/K with ρ = 1, when s,K → ∞ in such a way that

K/
√
s → η for some 0 < η ≤ ∞,

lim
s,K→∞

DM/M/s/K = 2
3 − L(η)

for a function L(η) → 0 as η → ∞ [e.g. fix s at some finite

integer ≥ 1).

When ρ = 1 − β/
√
s and s → ∞, there is non-trivial limit

behaviour but the limit f(η, β) say is no longer 2
3 .

Why K = O(
√
s ) ? ?

(1) This is ‘QED’ regime: ‘Quality and Efficiency Driven’

(high utilization of servers with low probability of any appre-

ciable waiting time) (Halfin & Whitt, c.1981)

(2) Find K, s → ∞ such that both

P
(s)
−

:= Pr{arriving customer has no wait}
1− P

(s)
−

= Pr{all servers busy}
have positive limits . . . (solution: K = O(

√
s ) ).

[ Re (Q.1): ρ = 1−β/
√
s: limit discty vanishes at finer scale.]
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(Q.2): We can find (expressions for) lims,K→∞ DM/M/s/K .

Let {πj} be the stationary distribution of the system-size pro-

cess

πj = Pr{Q(t) = j} (all t).

Q(t): birth–death process on state space {0, 1, . . . , s + K} =

{0, 1, . . . , J}.

We need formulae for second moments in terms of birth and

death rates . . .

[NW08] has an expansion for limt→∞ varNdep(0, t]
/

ENdep(0, t]

in M/M/1/K that comes from birth–death process expression

due to Ward Whitt.

[NW08]’s formula:

(1− πJ)(D − 1) = −2πJ

J
∑

i=0

Pi

(

1− πJ

πi
Pi

)

(∗)

where Pi = π0 + · · ·+ πi. [NB: RHS ≥ − 1
2 ]
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Limit relations (not given today) follow from (∗) via
(a) the sum equals

∫

As

gs(u) ps(du) for appropriate simple func-

tions gs, atomic measures ps and sets (intervals) As; look for

weak cgce of measures and uniform cgce of functions.

(b) stationary probabilities πi are like Poisson probabilities —

use local CLT for individual terms or CLT for Poisson dis-

tribution. EXCEPT: Need rate of convergence so use Berry–

Esseen CLT to get next order term, or for local CLT, use

Feller’s (1950/60/68) cgce of binomial probabilties to normal

density yielding uniform bounds on error terms.

(c) (∗) is discrete sum over increasing number of terms — use

cgce of discrete sums to limit as for a Riemann integral.
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CONSERVATION arguments.

Output = Arrivals – lost customers

(Q.3): Diffusion approximations ? ? ?

Xs(t) =
Qs(t)− s√

sρ
converges to a process-limit (s → ∞).

How do we use this to give D (or appropriate analogue) ? ?

[Recall: Ndep(·) consists of
(a) downwards-only

(b) jumps of unit size . . .

So, approximation needs to be rectifiable (Brownian paths

are not)]
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