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Experimental Design

I An experiment is a scientific procedure undertaken to make a
discovery, test a hypothesis or demonstrate a known fact

I Procedure
I Subjects
I Time(s) to observe experiment
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Statistical Criterion

I Given the log-likelihood

` = log(L(θ))

The Fisher information is

Ii,j = E
[(

∂`

∂θi

)(
∂`

∂θj

)]
I Related to the variance of parameter estimates
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Optimality Criterion

Many different optimality criteria that look at minimising the
variance of the parameter estimates.

E-Optimality: Maximise the smallest eigenvalue of I
Minimise variance of parameter estimate with
largest variance

A-Optimality: Maximise trace of I
Minimise average variance of parameter estimates

D-Optimality: Maximise determinant of I
Minimise the generalised variance of the parameter
estimates
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Frequentist Experimental Design

I Choose design that satisfies chosen criterion

I Locally optimal

I Require knowledge about the parameter in order to determine
the optimal design
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Frequentist Example

I Exponential lifetimes; F (t) = 1− exp(−tθ)

I(θ, t) =
t2 exp(−tθ)

1− exp(−tθ)

∂I
∂t

=
t exp(−tθ)(2− 2 exp(−tθ)− tθ)

(1− exp(−tθ))2

I Maximised when t ≈ 1.5936/θ
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Bayesian Optimal Experimental Design

I Allows incorporation of prior knowledge into design

I Choose a utility function that we wish to maximise

I Expected Kullback-Leibler divergence

U(d) =

∫∫
log

(
p(θ | y, d)

p(θ)

)
p(y, θ | d)dydθ

I Maximise our gain in information
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Optimal Experimental Design for Markov Chains

I Why Markov Chains?
I Open field of research

I Becker and Kersting [1983]
I Cook et al. [2008]
I Pagendam and Pollett [2010]
I Pagendam and Ross [2013]
I Pagendam and Pollett [2013]
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Dose-response challenge experiments

Chicken 1

Chicken 2

Chicken 3

Dose 1

Dose 2

Dose 3

Not Infected

Not Infected

Infected
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Dose-response relationship
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Dose-response relationship
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Group dose-response experiment with transmission

Chicken 1

Chicken 2

Chicken 3

Dose 1

Dose 2

Dose 3

Not Infected

Infected

Infected
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Dose-response relationship with transmission
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Dose-response relationship with transmission
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Modelling dose-response challenge experiments

I Conlan et al. [2011] first to account for transmission

I Two-stage process; dose-response and transmission

I Need to take into account latency period of dose-response

I Create SEIR model (Susceptible, Exposed, Infected, Removed)
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Optimal Design for some epidemic models

I Pagendam [2010] and Pagendam and Pollett [2013] looked at
optimal design for experimental epidemics

I Locally optimal design of the SIS epidemic

I Likelihood evaluation computationally expensive
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Recall: SIS epidemic

I State space is number of infected individuals (0, . . . , N)
I Transition rates are

I qi,i+1 = βi(N−i)
N

I qi,i−1 = µi

I Estimate parameters (ρ, α), where ρ = µ
β and α = β − µ

I Nice physical interpretation

David Price ANZAPW 2013



Optimal Experimental Design
Optimal Experimental Design for Markov Chains

Optimal Design for some Epidemic Models
References

An SIS epidemic, α = 3, ρ = 0.25
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An SIS epidemic, α = 3, ρ = 0.25
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An SIS epidemic, α = 3, ρ = 0.25
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An SIS epidemic, α = 3, ρ = 0.25
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Overestimating α
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Figure: Densities of MLE’s for (ρ, α). True values are (0.25, 3).
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Does Bayes have a problem?

I Kullback-Leibler divergence looks to maximise the difference
between the prior and posterior

I What if our posterior distribution for the ‘bad’ design is
“further away” than the posterior for the ‘good’ design?
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Example
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Example
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Example
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Example
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Figure: Example prior and two likelihood functions
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Figure: Discretised example prior and likelihood functions
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Figure: Discretised example prior and posterior distributions
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Figure: Discretised example prior and posterior distributions
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Warning!

I Kullback-Leibler divergence is not a “black box”!
I Check:

I Posterior
I Prior
I Design

I Care needs to be taken when using KLD for Bayesian Optimal
design
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Research Aims

I Investigate Kullback-Leibler divergence further

I Intractable likelihood for SEIR model

I Compare results of different design approaches for the SIS
epidemic

I Move on to developing the SEIR model and applying these
methods to that model
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Thank you

I Supervisors:
I Prof. Nigel Bean,
I Dr Joshua Ross, and
I Dr Jonathan Tuke

I Daniel Pagendam for correspondence.

I Everyone for listening!
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Gaussian Diffusion Approximation of the Likelihood

I Matrix exponentials computationally inefficient, especially as
population size grows

I Kurtz [1970]

I The expected value of the SIS process over time, follows the
deterministic trajectory.

I Σ is the covariance matrix, y is the observed number of
infected at the observation times, and m is the corresponding
mean number of infected at those times

I Very computationally efficient

L(θ;y | y0) =

(2π)−n/2|NΣ|−1/2 exp

(
−1

2
(y −Nm)

Σ−1

N
(y −Nm)T

)
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Likelihood for ‘bad’ design
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Likelihood for ‘good’ design
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