Modelling Patient Flow in an

Emergency Department

Mark Fackrell

Department of Mathematics and Statistics
The University of Melbourne

Motivation

- Eastern Health closes more beds
- Bed closures to cause 'ambulance delays’
- Hospital targets cost lives
- Girl 'waited for hours for emergency care'
- ACT meets elective surgery targets but fails on emergency waits

Modelling patient flow in an emergency department

Motivation

Public hospitals will be required by 2015 to ensure that 90% of all patients spend no more than 4 hours in the emergency department.

Currently (2012)

- 54% - major metropolitan hospitals
- 63% - major regional hospitals
- 67% - large metropolitan hospitals
- 78\% - large regional hospitals

Modelling patient flow in an emergency department

The Australian Triage Scale

ATS Category	Description	Treatment Acuity	\% Adherence
1	Resuscitate	Immediate	100%
2	Emergency	10 minutes	80%
3	Urgent	30 minutes	75%
4	Semi-urgent	60 minutes	70%
5	Non-urgent	120 minutes	70%

Modelling patient flow in an emergency department

The Emergency Department

Modelling patient flow in an emergency department

Modelling the Bed Queue

For each six hour block (00-06, 06-12, 12-18, 18-24), and each day of the week, we assumed that the

- arrival rate to the bed queue is constant, ie. λ, and
- departure rate from the bed queue depends on the number of patients n waiting in the bed queue, ie. $\mu(n)$.

Data available from 1 January 2001 to 18 April 2005 (200,000 entries).

Parameters estimated using spline regression.

Modelling patient flow in an emergency department

Modelling the Bed Queue

We model the bed queue (service centre) with a continuous-time Markov chain.

- C beds (servers)
- State space $S=\{0,1,2, \ldots, C\}$
- λ - Arrival rate
- n - current number of beds occupied (number of customers being served)
- $\mu(n)$ - Departure rate
- No queueing (ie. if the bed queue becomes full the emergency department goes on bypass.)

Modelling patient flow in an emergency department

Transition rates

The transition rates for the Markov chain are

$$
\begin{aligned}
& \alpha_{n n+1}= \begin{cases}\lambda, & 0 \leq n \leq C-1 \\
0, & n=C\end{cases} \\
& \alpha_{n n-1}=\left\{\begin{array}{cc}
0, & n=0 \\
\mu(n), & 1 \leq n \leq C
\end{array}\right.
\end{aligned}
$$

Modelling patient flow in an emergency department

Transition Probabilities

The Markov chain stays in state n for a random time T_{n} and then moves to either state $n+1$ or $n-1$ with probabilities

$$
\begin{array}{ll}
P(n \rightarrow n+1)=\frac{\lambda}{\lambda+\mu(n)}, & 0 \leq n \leq C-1 \\
P(n \rightarrow n-1)=\frac{\mu(n)}{\lambda+\mu(n)}, & 1 \leq n \leq C
\end{array}
$$

Modelling patient flow in an emergency department

Time Until an Arrival or Departure

In state n let

- T_{n}^{+}be the time until the next arrival, and
- T_{n}^{-}be the time until the next departure.

Note that $T_{n}^{+} \sim \exp (\lambda)$ and $T_{n}^{-} \sim \exp (\mu(n))$.
We have that

$$
T_{n}=\left\{\begin{array}{cl}
T_{0}^{+}, & n=0 \\
\min \left(T_{n}^{+}, T_{n}^{-}\right), & 1 \leq n \leq C-1 \\
T_{C}^{-}, & n=C
\end{array}\right.
$$

Modelling patient flow in an emergency department

Density Function

The density function of T_{n} is

$$
f_{n}(t)=\left\{\begin{array}{cl}
\lambda e^{-\lambda t}, & n=0 \\
(\lambda+\mu(n)) e^{-(\lambda+\mu(n)) t}, & 1 \leq n \leq C-1 \\
\mu(C) e^{-\mu(C) t}, & n=C
\end{array}\right.
$$

Modelling patient flow in an emergency department

Probability of Reaching Capacity

- $p_{n}(t)$ - probability of moving from n to C patients in the time interval $[0, t]$
- $p_{n}(t \mid x)$ - probability of moving from n to C in $[0, t]$ given that the first transition from n occurs at time x

$$
p_{n}(t \mid x)=\left\{\begin{array}{cl}
0, & n<C, x>t \\
\frac{\lambda}{\lambda+\mu(n)} p_{n+1}(t-x) \\
+\frac{\mu(n)}{\lambda+\mu(n)} p_{n-1}(t-x) & n<C, x \leq t \\
1, & n=C
\end{array}\right.
$$

Modelling patient flow in an emergency department

Probability of Reaching Capacity

For $0 \leq n \leq C$

$$
p_{n}(t)=\int_{0}^{\infty} p_{n}(t \mid x) f_{n}(x) d x
$$

Thus,
$p_{0}(t)=\int_{0}^{t} p_{1}(t-x) \lambda e^{-\lambda x} d x$
$p_{n}(t)=\int_{0}^{t}\left[\lambda p_{n+1}(t-x)+\mu(n) p_{n-1}(t-x)\right] e^{(\lambda+\mu(n)) t} d x$
$p_{C}(t)=1$

Modelling patient flow in an emergency department

Laplace Transforms

Taking Laplace transforms gives

$$
\begin{aligned}
& \widehat{P}_{0}(s)=\frac{\lambda}{s+\lambda} \widehat{P}_{1}(s) \\
& \widehat{P}_{n}(s)=\frac{\lambda}{s+\lambda+\mu(n)} \widehat{P}_{n+1}(s)+\frac{\mu(n)}{s+\lambda+\mu(n)} \widehat{P}_{n-1}(s) \\
& \widehat{P}_{C}(s)=\frac{1}{s}
\end{aligned}
$$

To find $p_{n}(t)$ invert $\widehat{P}_{n}(s)$ numerically - Euler method, Abate and Whitt, 1995.

Modelling patient flow in an emergency department

Probability of Ambulance Bypass

Modelling patient flow in an emergency department

The ED Capacity Prediction Tool

Modelling patient flow in an emergency department

Model Validation

- To validate the model we used data observed from 19 April 2005 to 26 September 2006 (48,000 entries).
- Choose a threshold C.
- At the beginning of each 6 hour block calculate the probability of reaching capacity C using the model.
- Group the blocks into 10 bins of equal size N_{i} according to the probabilities.
- For each bin i, calculate the mean probability \bar{p}_{i}, and the variance of the probabilities V_{i}.

Modelling patient flow in an emergency department

Model Validation

- For $i=1,2, \ldots, 10$, record the number of times capacity C is reached, O_{i}.
- Calculate the expected number of times capacity C is reached, $E_{i}=N_{i} \bar{p}_{i}$.
- The goodness-of-fit statistic is

$$
G^{2}=\sum_{i=1}^{10} \frac{\left(O_{i}-E_{i}\right)^{2}}{\operatorname{var}\left(O_{i}\right)}
$$

where $G^{2} \sim \chi_{10}^{2}$ (Hosmer and Lemeshow, 1980) and

$$
\operatorname{var}\left(O_{i}\right) \approx N_{i} \bar{p}_{i}\left(1-\bar{p}_{i}\right)-N_{i} V_{i} .
$$

Modelling patient flow in an emergency department

Model Validation

Bin	N_{i}	O_{i}	E_{i}	$\frac{\left(O_{i}-E_{i}\right)^{2}}{\operatorname{var}\left(O_{i}\right)}$
1	182	0	0.01	0.008
2	182	0	0.10	0.105
3	182	1	0.38	1.04
4	182	2	1.03	0.91
5	182	4	2.36	1.16
6	182	8	4.92	1.98
7	182	13	9.77	1.13
8	182	25	19.21	1.95
9	182	55	42.45	4.84
10	182	110	106.70	0.25

$$
p \text {-value }=0.16
$$

Modelling patient flow in an emergency department

Future Work

- Apply and validate the model with more recent data.
- Analyse the data to see if the mandated government targets were met.
- Model patient flow through the entire emergency department.
- Determine strategies to improve the running of the emergency department based on stochastic models.

Modelling patient flow in an emergency department

Headlines You'll Never See

"More hospital beds to open at Lyell McEwin"

ABC News Website - 5 July, 2013

Modelling patient flow in an emergency department

