Modelling Patient Flow in an Emergency Department

Mark Fackrell

Department of Mathematics and Statistics

The University of Melbourne

Motivation

- Eastern Health closes more beds
- Bed closures to cause 'ambulance delays'
- Hospital targets cost lives
- Girl 'waited for hours for emergency care'
- ACT meets elective surgery targets but fails on emergency waits

Public hospitals will be required by 2015 to ensure that 90% of all patients spend no more than 4 hours in the emergency department.

Currently (2012)

- 54% major metropolitan hospitals
- 63% major regional hospitals
- 67% large metropolitan hospitals
- 78% large regional hospitals

The Australian Triage Scale

ATS Category	Description	Treatment Acuity	% Adherence
1	Resuscitate	Immediate	100%
2	Emergency	10 minutes	80%
3	Urgent	30 minutes	75%
4	Semi-urgent	60 minutes	70%
5	Non-urgent	120 minutes	70%

The Emergency Department

For each six hour block (00-06, 06-12, 12-18, 18-24), and each day of the week, we assumed that the

- arrival rate to the bed queue is constant, ie. λ , and
- departure rate from the bed queue depends on the number of patients n waiting in the bed queue, ie. $\mu(n)$.

Data available from 1 January 2001 to 18 April 2005 (200,000 entries).

Parameters estimated using *spline regression*.

Modelling the Bed Queue

We model the bed queue (service centre) with a *continuous-time Markov chain*.

- C beds (servers)
- State space $S = \{0, 1, 2, \dots, C\}$
- λ Arrival rate
- n current number of beds occupied (number of customers being served)
- $\mu(n)$ Departure rate
- No queueing (ie. if the bed queue becomes full the emergency department goes on *bypass*.)

Transition rates

The transition rates for the Markov chain are

$$\alpha_{nn+1} = \begin{cases} \lambda, & 0 \le n \le C - 1 \\ 0, & n = C \end{cases}$$
$$\alpha_{nn-1} = \begin{cases} 0, & n = 0 \\ \mu(n), & 1 \le n \le C \end{cases}$$

The Markov chain stays in state n for a random time T_n and then moves to either state n + 1 or n - 1 with probabilities

$$P(n \to n+1) = \frac{\lambda}{\lambda + \mu(n)}, \qquad 0 \le n \le C - 1$$
$$P(n \to n-1) = \frac{\mu(n)}{\lambda + \mu(n)}, \qquad 1 \le n \le C$$

Time Until an Arrival or Departure

In state n let

- T_n^+ be the time until the next arrival, and
- T_n^- be the time until the next departure.

Note that $T_n^+ \sim \exp(\lambda)$ and $T_n^- \sim \exp(\mu(n))$.

We have that

$$T_n = \begin{cases} T_0^+, & n = 0\\ \min(T_n^+, T_n^-), & 1 \le n \le C - 1\\ T_C^-, & n = C \end{cases}$$

Density Function

The density function of T_n is

$$f_n(t) = \begin{cases} \lambda e^{-\lambda t}, & n = 0\\ (\lambda + \mu(n))e^{-(\lambda + \mu(n))t}, & 1 \le n \le C - 1\\ \mu(C)e^{-\mu(C)t}, & n = C \end{cases}$$

Probability of Reaching Capacity

- $p_n(t)$ probability of moving from n to C patients in the time interval [0, t]
- $p_n(t|x)$ probability of moving from n to C in [0, t] given that the first transition from n occurs at time x

$$p_{n}(t|x) = \begin{cases} 0, & n < C, x > t \\ \frac{\lambda}{\lambda + \mu(n)} p_{n+1}(t-x) & \\ + \frac{\mu(n)}{\lambda + \mu(n)} p_{n-1}(t-x) & , n < C, x \le t \\ 1, & n = C \end{cases}$$

Probability of Reaching Capacity

For $0 \le n \le C$

$$p_n(t) = \int_0^\infty p_n(t|x) f_n(x) dx.$$

Thus,

$$p_0(t) = \int_0^t p_1(t-x)\lambda e^{-\lambda x} dx$$

$$p_n(t) = \int_0^t \left[\lambda p_{n+1}(t-x) + \mu(n)p_{n-1}(t-x)\right] e^{(\lambda+\mu(n))t} dx$$
$$p_C(t) = 1$$

Laplace Transforms

Taking Laplace transforms gives

$$\widehat{P}_0(s) = \frac{\lambda}{s+\lambda} \widehat{P}_1(s)$$

$$\widehat{P}_{n}(s) = \frac{\lambda}{s+\lambda+\mu(n)}\widehat{P}_{n+1}(s) + \frac{\mu(n)}{s+\lambda+\mu(n)}\widehat{P}_{n-1}(s)$$
$$\widehat{P}_{C}(s) = \frac{1}{s}$$

To find $p_n(t)$ invert $\widehat{P}_n(s)$ numerically – Euler method, Abate and Whitt, 1995.

Probability of Ambulance Bypass

Probability of Bypass on Monday 12-18 (capacity of 20 cubicles)

The ED Capacity Prediction Tool

Model Validation

- To validate the model we used data observed from 19 April 2005 to 26 September 2006 (48,000 entries).
- Choose a threshold C.
- At the beginning of each 6 hour block calculate the probability of reaching capacity *C* using the model.
- Group the blocks into 10 bins of equal size N_i according to the probabilities.
- For each bin i, calculate the mean probability \overline{p}_i , and the variance of the probabilities V_i .

Model Validation

- For i = 1, 2, ..., 10, record the number of times capacity C is reached, O_i .
- Calculate the expected number of times capacity C is reached, $E_i = N_i \bar{p}_i$.
- The goodness-of-fit statistic is

$$G^{2} = \sum_{i=1}^{10} \frac{(O_{i} - E_{i})^{2}}{\operatorname{var}(O_{i})}$$

where $G^2 \sim \chi^2_{10}$ (Hosmer and Lemeshow, 1980) and

$$\operatorname{var}(O_i) \approx N_i \bar{p}_i (1 - \bar{p}_i) - N_i V_i.$$

Model Validation

Bin	N_i	O_i	E_i	$\frac{(O_i - E_i)^2}{\operatorname{var}(O_i)}$	
1	182	0	0.01	0.008	
2	182	0	0.10	0.105	
3	182	1	0.38	1.04	
4	182	2	1.03	0.91	
5	182	4	2.36	1.16	
6	182	8	4.92	1.98	
7	182	13	9.77	1.13	
8	182	25	19.21	1.95	
9	182	55	42.45	4.84	
10	182	110	106.70	0.25	
p-value $= 0.16$					

Future Work

- Apply and validate the model with more recent data.
- Analyse the data to see if the mandated government targets were met.
- Model patient flow through the entire emergency department.
- Determine strategies to improve the running of the emergency department based on stochastic models.

"More hospital beds to open at Lyell McEwin"

ABC News Website – 5 July, 2013

