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Outline

• (I) Fluid Approximation Approach for stability of queueing models

• (II) Stability of multi-component processes

• (III) Stochastic sequences with a regenerative structure that may

depend both on the future and on the past

• (IV) Supremum of a random walk: the most likely way to exceed a high

level.

2



(I) The Fluid Approximation Approach

• (I.1) Stability and instability criteria in terms of fluid limits

• (I.2) Extension: Random fluid limits

• (I.3) Not always applicable: Example

• (I.4) Measure-valued fluid limits: Open problem
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(I.1) Fluid Limits

Assume that a dynamical behaviour of a stochastic system (queueing system or, more

generally, stochastic network) may be described by discrete-time Markov chain

Xn, n = 0, 1, 2, . . . taking values in state space (X ,BX ).
Assume further that | · | is some “(semi-)norm” and that

{x : |x| ≤ c} is a “compact set”, for any c > 0.

Say, X = Rd+ and |x| =
∑
xi is the L1-norm.

Denote by X
(x)
n a Markov chain that starts from initial value X

(x)
0 = x with |x| > 0.

Consider the following linear scaling, both in time and in space:

X
(x)

(t) =
X

(x)
[|x|t]

|x|
, t ≥ 0.

Clearly, |X(x)
(0)| = 1.

Here [t] is the biggest integer that does not exceed t.
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Definition

Let sequence x = xn be such that |xn| → ∞ as n→∞.

A fluid limit Z(t), t ≥ 0 is a stochastic process such that, for any t0 > 0, its restriction to

time interval [0, t0] is a weak limit of a sequence of random processes

{X(xn)
(t), 0 ≤ t ≤ t0}.

A collection of all fluid limits is a fluid model.
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Example. Single-server queue: exponential times {tn} with mean 1/λ, exponential

service times {σn} with mean 1/µ, drift a = 1/µ− 1/λ.

(“Exponential” assumptions are for simplicity).

Xn is a waiting time (or workload) at the nth arrival instant.
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Example. Two single-server queues in tandem, M/M/1→M/1.

Exponential interarrival times {tn} with mean 1/λ, exponential service times {σ1,n} with

mean 1/µ1 in queue 1 and exponential service times {σ2,n} with mean 1/µ2 in queue 2.

Assume λ < min(µ1, µ2).
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Remark. In these examples, a fluid limit is

• unique, up to the initial value,

• deterministic and

• piece-wise linear.

This is frequent in queueing and other stochastic networks.

For models with deterministic fluid limits, the following stability criterion is useful.
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Stability Criterion via Fluid Limits
(Rybko-Stolyar, Dai, Stolyar, ...)

Criterion.

Under some technical conditions, the following holds:

If there exists time T and number ε ∈ (0, 1) such that, for any fluid limit Z(t), we have

|Z(T )| ≤ 1− ε a.s.,

then the stochastic system is stable.

This means that the underlying Markov chain Xn, n = 0, 1, . . . is positive recurrent.

Under a further minorization condition, this implies convergence to a/the limiting

distribution in the total variation norm.

However, for models with random fluid limits, this criterion may never work because, for any

such limit, random variable supt |Z(t)| may have unbounded support.
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(I.2) Example of a random fluid limit

Assume that the system starts with N customers. Assume that, in addition, there is a

Poisson input stream with rate λ such that

µ1 + µ2 > λ > max(µ1, µ2).

Assume that a server “wins” and leaves the system if he does not find a customer to serve.
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Example

12



Assume now that if a second server does not find a customer to serve, he also leaves the

system.

If, say, the first server “wins” and leaves the system, then the second server has two

chances, either also to leave the system or to stay (since µ2 < λ). This is a simple

birth-and-death process, and probability to leave is µ2/λ.

Then we may conclude that the following may occur: either

• both servers leave the system, this occurs with probability

µ1

µ1 + µ2
· µ2

λ
+

µ2

µ1 + µ2
· µ1

λ
=

2µ1µ2

λ(µ1 + µ2)

• or only the first server leaves, this occurs with probability

µ1

µ1 + µ2
· 1− µ2

λ

• or only the the second server leaves, this occurs with probability

µ2

µ1 + µ2
· 1− µ1

λ
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When we turn to the fluid limit, we get:
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Stability criterion it terms of random fluid limits

Criterion for RFL.

Under some technical conditions, the following holds:

If, for any fluid limit Z , there exists stopping time TZ and number ε ∈ (0, 1) such that

(a) the family of stopping times {Tz} is uniformly integrable and,

for any fluid limit Z , E|Z(TZ)| ≤ 1− ε,

then the stochastic system is stable.

This means that the underlying Markov chain Xn, n = 0, 1, . . . is positive recurrent.
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Remark By Jensen’s inequality,

logEZ1(T ) > E logZ1(T )

if this is a non-degenerate random variable. Then the following is possible:

logEZ1(T ) > 0 > E logZ1(T ).

Significant difference between conditions for positive recurrence and for recurrence
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(I.3) Example of a model whole stability condition depends on
a whole distribution of a service time
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Consider a polling system with 2 stations and a single server that consequently visits the

stations and serve customers there. Customers arrive at station k = 1, 2 in a Poisson

stream of intensity λk. Service times at station k form an i.i.d. sequence with a general

distribution Bk with a positive finite mean bk. It takes an exponential time with mean γ for

the server to travel from station 1 to station 2 and also from station 2 to station 1. The

server follows the exhaustive policy at station 2 and an adaptive limited policy at station 1.

In more detail, the server works in “cycles”, and each cycle starts when the server arrives

at station 2.

If the server finds customers there, he starts to serve them one-by-one (including new

arrivals) until he empties the queue. Then he travels to station 1 (during an exponential

time), serves min(1, q) customers at station 1 if there are q customers there, and then

travels (for another exponential time) to station 2. This is a standard cycle.

If, upon his arrival to station 2, the server finds it empty, the new cycle is modified: the

server is allowed to serve m extra customers at station 1. More precisely, now he starts

the cycle with his travel to station 1, serves min(1 +m, q) customers there and then

travels back to station 2. Here m is a fixed non-negative integer.
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Theorem The underlying Markov chain is positive recurrent if and only if inequality

ρ+ 2γλ1 < 1 +mV (1− ρ),

where ρ = λ1b1 + λ2b2 and V a positive constant which is a (known) function of

Ee−λ2σ1 .

Here σ1 is a typical service time at queue 1.
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(I.4) Measure-valued fluid limits
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(2) Multi-component processes

We assume that {Xn} is semi-Markov:

it can be “markovized”, (Xn, Yn) is Markov.

We look for conditions for {Xn} to be stable.

Here Yn may tend to “infinity” or the pair may be stable (in a certain sense). Also, Yn may

be “null-recurrent”.
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(II.1) Example: tandem queue

Assume µ1 < λ < µ2.

Let Xn be the waiting time of customer n in front of queue 2, and Yn its waiting time in

front of queue 1.

Here Yn →∞ and Xn converges to the stationary waiting time in a single-server queue

with “inter-arrival” times {σ1,n} and service times {σ2,n}.

Other examples: I. Adan and G. Weiss
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(II.2) Yn is a driving sequence

We assume that Yn is a Markov chain itself, with a positive recurrent atom.

Two examples: with drift condition and with monotone condition.
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(II.3) Open problem: stability of a multiple-access model with harvesting

Jeongho Jeon, Anthony Ephremides

http : //arxiv.org/abs/1112.5995

24



Remarks
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(III) Stochastic sequences with a regenerative structure that
may depend both on the future and on the past
Convergence of functionals of stochastic recursions.

Examples:

• Random walk with positive drift

• Contact process in discrete time

• Infinite bin model

• Continious-space version of infinite bin model

• Harris ergodic Markov chain

See S Foss and S Zachary, Stochastic sequences with a regenerative structure that may

depend both on the future and on the past

http://arxiv.org/abs/1212.1475

(to appear in Adv Appl Probab)

for general statements and more “advanced” examples.
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(IV) Supremum of a random walk: the most likely way to
exceed a high level

Let S0 = 0, Sn =
∑n

1 ξi where {ξi} are i.i.d.

Let M = supn≥0 Sn and assume M is finite a.s.

Asymptotics for P(M > x), as x→∞
(ONLY ASYMPTOTICS!)
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There are 5 cases, two “heavy-tailed” and three “light-tailed”.

• (HT1) (“Classical HT”): E|ξ| <∞, Eξ < 0, and Eecξ =∞, for any c > 0.

The principle of a single big jump.

• (HT2) E|ξ| =∞. The principle of a single big jump, but for non-linear trajectory.

• (LT1) (“Classical LT”): E|ξ| <∞, Eξ < 0, then

γ := sup{c ≥ 0 : Eecξ ≤ 1} > 0 and, further, Eeγξ = 1 and

b := Eξeγξ <∞. Solidarity property.

• (LT2) (“S-gamma LT”): E|ξ| <∞, Eξ < 0, then

γ := sup{c ≥ 0 : Eecξ ≤ 1} > 0 and Eeγξ < 1. The principle of a single big

jump, but at fixed times.

• (LT3) (Intermediate): E|ξ| <∞, Eξ < 0, then

γ := sup{c ≥ 0 : Eecξ ≤ 1} > 0 and, further, Eeγξ = 1 and

b := Eξeγξ =∞. Conditional “compound Poisson”.
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Open problem: Continuous spetrum...

Similar results may be (and some of them have been) obtained in queueing networks

(tandem queues, multi-server queues, etc.).

Open problems: Asymptotics for the stationary sojourn time in a generalized Jackson

network in cases (HT1, HT2, LT2, LT3).
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ADVERT:
SECOND EDITION of

S Foss, D Korshunov and S Zachary

An Introduction to Heavy-Tailed and Subexponential Distributions,

Springer, June 2013

with new Sections and many exercises

30


