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Introduction

> XIJ X; are the lifetime of an individual /unit and,
max(X1,..., X") and max(X1, Xz, ..., X,) represent the
lifetime of population/system.
All random variables are assumed to be non-negative.

X,-,Xl-l, ..., X" are identically distributed.
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> XIJ X; are the lifetime of an individual /unit and,
max(X1,..., X") and max(X1, Xz, ..., X,) represent the
lifetime of population/system.
All random variables are assumed to be non-negative.
X,-,Xl-l, ..., X" are identically distributed.

»Xp XD X2 .. XM o My =E[max(XE,..., X))
X, X} X2 ... X! = M, =E[max(X},...,XD)]
X, X! X2 ... X" o M,=E[max(X},...,X")

» We wish to compare E[max(Xi, Xa,...,X,)] to
M; = E[max(X1,....XM)],i=1,...,n.
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Introduction

» Question: Is it better to mix or go with a single type?

» Obviously, if one type dominates all others, then choosing
that type only is optimum.

» Question: What if all types are similar (no dominant type); i.e.

E[max(Xi, ..., X" = ... =E[max(X},...,X")]?
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Assume all random variables are independent.

» It is easy to show (direct consequence of the
arithmetic-geometric mean inequality) that

E[max(Xy, . .., Xp)] > E[max(X?, ..., X")].

In fact, the same arithmetic-geometric mean inequality shows
that

1 n
E[max(X, ..., Xp)] > =Y E[max(X},..., X)].
n
i=1

In other words, mixing is advantageous.
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Introduction

Assume all random variables are independent.

» It is easy to show (direct consequence of the
arithmetic-geometric mean inequality) that

E[max(Xy, . .., Xp)] > E[max(X?, ..., X")].

In fact, the same arithmetic-geometric mean inequality shows
that

1 n
E[max(X, ..., Xp)] > =Y E[max(X},..., X)].
n
i=1

In other words, mixing is advantageous.
> If M; = E[max(X},...,X")], i=1,...,n, we call mixing
factor

0_ E[max(Xi, ..., Xy)]
 max(My, ..., M,)
We show that when M; = M, 6 <2—1/n< 2.
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Existing literature

» An extensive literature exists on E[max(X1,...,X,)] in the iid
case — see David and Nagaraja (2003). However, very little
work exists for the non-identically distributed case.
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Existing literature

» An extensive literature exists on E[max(X1,...,X,)] in the iid
case — see David and Nagaraja (2003). However, very little
work exists for the non-identically distributed case.

» Arnold and Groeneveld (1979) obtain upper and lower bounds
on E[max(Xi,...,X,)] even when Xi, ..., X, are not
independent and not identically distributed, but in terms of
E[X1] and var(X;), not My, ..., M,.

This generalises Hartley and David (1954) and Gumbel (1954)
who deal with the iid case.
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Existing literature

» Sen (1970) shows that max(Xi,..., X,) stochastically
dominates max(Y?1,..., Y"), where Y1 ..., Y" areiid
equally-weighted probability mixtures of X, ..., Xj:

P(max(X1,...,X,) < z) <P(max(YL,...,Y") < z2).

In particular
1 & 1 n
- > Emax(X}, ..., X")]
i=1

< E[max(YY,...,Y")] < E[max(Xy,...,Xp)]-

However, E[max(Y?!,..., Y")] cannot be expressed in terms
of Mi,.... M,.
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Unbounded independent case

Theorem (H., Jagers, Sudbury & Tokarev, 2009)

If Xi,...,X, are independent random variables with the property
that E[max(X2,...,X")] = M;, i=1,2,....n, then

1 n
;ZM’ < E[max(Xi,...,Xn)]
i=1

1 n—1
< =N M, ..., M,).
< Z L - max( M )

In particular, it M; =M, i =1,...,n,

M < E[max(X1,..., Xs)] < (2—-1/n)M.
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Unbounded independent case

Theorem (H., Jagers, Sudbury & Tokarev, 2009)

If Xi,...,X, are independent random variables with the property
that E[max(X2,...,X")] = M;, i=1,2,....n, then

1 n
;ZM’ < E[max(Xi,...,Xn)]
i=1

1
< —ZM,+”n max(My, ..., Mp).

In particular, it M; =M, i =1,...,n,

M < E[max(X1,..., Xs)] < (2—-1/n)M.

The upper bound is obtained by letting some of the random
variables be concentrated on 0 and x and letting x — oo.
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Bounded independent case

Theorem (H. & Sudbury, 2011)

If a set of random variables Xi,..., X, are independent, concen-
trated on [0, b] and s.t.

E[max(X},...,X")] = M;,i=1,...,n,

then, putting M, = max(My, ..., M,),

b f[(b CMYYR < Emax(Xe,. ... X0)]
i=1
b— (b - Mn)'i:[(l _ Mi/b)l/n'

i=1

IN
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Bounded independent case

Corollary

In the case M; = M,i=1,...,n we have
M < E[max(X, ..., X,)] < b— b(1 — M/b)>~1/n

where the latter expression approaches (2—1/n)M as b — +oc0 and
M(2 — M/b) as n — +oc.

4
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Bounded independent case

Changing X into b — X transforms maxima into minima
immediately yielding the following result.
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Bounded independent case

Changing X into b — X transforms maxima into minima
immediately yielding the following result.

The equivalent result for the minima, with my = min(my, ..., my),
is

my [J(mi/b)Y" < Elmin(Xs,..., Xn)] < [[ m’"-
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» U, V and W are independent continuous random variables.
Let X=UAWand Y=V AW (aAb=min(a,b)).
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» If X has marginal F, Y has marginal G and they assume a
copula C, then (X, Y) has joint distribution

H(x,y) = C(F(x), G(y))-
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Dependent case — Copulas

» If X has marginal F, Y has marginal G and they assume a
copula C, then (X, Y) has joint distribution

H(x,y) = C(F(x), G(y))-
> Recall that a copula is defined as satisfying:

» C is defined on [0, 1] x [0, 1];
» C(s,0) = C(0,t) =0;
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Dependent case — Copulas

» If X has marginal F, Y has marginal G and they assume a
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Dependent case — Copulas

» If X has marginal F, Y has marginal G and they assume a
copula C, then (X, Y) has joint distribution

H(x,y) = C(F(x), G(y))-

> Recall that a copula is defined as satisfying:

C is defined on [0, 1] x [0, 1];

C(s,0) = C(0,t) =0;

C(s,1)=sand C(1,t) =t;

C(so, ) — C(s2,t1) — C(s1,t2) + C(s1,t1) >0

v

v vy
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Dependent case — Copulas

» If X has marginal F, Y has marginal G and they assume a
copula C, then (X, Y) has joint distribution

H(x,y) = C(F(x), G(y))-

> Recall that a copula is defined as satisfying:
» C is defined on [0, 1] x [0, 1];
» C(s,0) = C(0,t) =0;
» C(s,1)=sand C(1,t)=t;
> C(SQ, tg) — C(52, tl) — C(Sl, tz) + C(Sl, tl) >0

» Three examples

Kais Hamza On the mixing advantage



Dependent case — Copulas

» If X has marginal F, Y has marginal G and they assume a
copula C, then (X, Y) has joint distribution

H(x,y) = C(F(x), G(y))-

> Recall that a copula is defined as satisfying:
» C is defined on [0, 1] x [0, 1];
» C(s,0) = C(0,t) =0;
» C(s,1)=sand C(1,t)=t;
> C(SQ, tg) — C(52, tl) — C(Sl, tz) + C(Sl, tl) >0

» Three examples
» M(s, t) = st — independent case;
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Dependent case — Copulas

» If X has marginal F, Y has marginal G and they assume a
copula C, then (X, Y) has joint distribution

H(x,y) = C(F(x), G(y))-

> Recall that a copula is defined as satisfying:
C is defined on [0, 1] x [0, 1];
C(s,0) = C(0,t) = 0;
C(s, )—sand C(1,t) =
C(Sg,tg) C(52,t1) C(Sl,t2)+C(51,t1) > 0.
» Three examples
» M(s, t) = st — independent case;
» M(s,t) = s At - perfectly positively related case;

v

v vy

Kais Hamza On the mixing advantage



Dependent case — Copulas

» If X has marginal F, Y has marginal G and they assume a
copula C, then (X, Y) has joint distribution

H(x,y) = C(F(x), G(y))-

> Recall that a copula is defined as satisfying:
C is defined on [0, 1] x [0, 1];
C(s,0) = C(0,t) = 0;
C(s, )—sand C(1,t) =
C(Sg,tg) C(52,t1) C(Sl,t2)+C(51,t1) > 0.
» Three examples
» M(s, t) = st — independent case;
» M(s,t) = s At - perfectly positively related case;
» W(s,t) = (s+t— 1) — perfectly negatively related case;

v

v vy
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Dependent case — Copulas

» If X has marginal F, Y has marginal G and they assume a
copula C, then (X, Y) has joint distribution

H(x,y) = C(F(x), G(y))-

> Recall that a copula is defined as satisfying:

C is defined on [0, 1] x [0, 1];

C(s,0) = C(0,t) =0;

C(s,1)=sand C(1,t) =t;

C(so, ) — C(s2,t1) — C(s1,t2) + C(s1,t1) >0

v

v vy

> Three examples

M(s, t) = st — independent case;

M(s, t) = s A t — perfectly positively related case;

W(s,t) = (s +t — 1)" — perfectly negatively related case;
K(s,t) =sAt—vy(sAt)+(sVi)p(snt)—(UANW,VAW).

v

v vy
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Dependent case — A toy example

> n=2.

» Xi, X5 take at most 2 values and assume a copula C.
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Dependent case — A toy example

> n=2.
» Xi, X5 take at most 2 values and assume a copula C.
» pi =P(Xi =a;), P(X; =x;) =1—p;, aj < x;.
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Dependent case — A toy example

n=2.

X1, X, take at most 2 values and assume a copula C.
pi =P(Xi = a;), P(X; = x;) =1—p;, aj < x;.

> X,-1 and X,-2 inherit the copula of X3 and X5, C:

) = C(pi,pi)

) = pi—C(pi,pi)
P(X! = xi, X? =a;) = pi— C(pi,pi)

) = 1-=2pj+ C(pi,pi)

v

v

v
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Dependent case — A toy example

n=2.

X1, X, take at most 2 values and assume a copula C.
pi =P(Xi = a;), P(X; = x;) =1—p;, aj < x;.

> X,-1 and X,-2 inherit the copula of X3 and X5, C:

) = C(pi,pi)
t=a,X?=x) = pi—C(pi,pi)

)

)

v

v

v

= pi— Clpi, pi)
= 1-2p;+ C(pi, pi)

v

M; = Elmax(X2, X2)] = C(pi, pi)ai + (1 = C(pi, pi))x:
i=1,2.
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Dependent case — A toy example

We assume that for any (s, t),

C(s,t) —sC(t,t) >0 and C(s,t) — tC(s,s) > 0. (*)

» [1, M and K satisfy this condition; W does not.
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Dependent case — A toy example

We assume that for any (s, t),

C(s,t) —sC(t,t) >0 and C(s,t) — tC(s,s) > 0. (*)

» [1, M and K satisfy this condition; W does not.

» If (U, V) are uniform (0, 1) and have copula C, then (%)
translates to

P(U <s|lmax(U,V)<t)>P(U<s), s<t.
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Dependent case — A toy example
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Assume WLOG that a; < a». We need to consider 3 cases:
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Assume WLOG that a; < a,. We need to consider 3 cases:
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Dependent case — A toy example
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Dependent case — A toy example

The case a1 < x; < a» < xz is trivial since in this case X>
dominates Xj.

Kais Hamza On the mixing advantage



Dependent case — A toy example
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Dependent case — A toy example

0 a, a, MoX, X

Assume a1 < a» < x» < x1.
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Dependent case — A toy example

! ! ! ! . !
T T T T T T

0 a, a, MoX, X

Assume a1 < a» < x» < x1.

E[max(Xl, M2)] — E[max(Xl, Xz)]
= p1M — C(p1, p2)az — (p1 — C(p1, P2))x2
= (C(P17P2) - p1 C(Pzapz))(x2 —a) > 0.
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Dependent case — A toy example

! ! ! ! . !
T T T T T T

0 a, a, MoX, X

Assume a1 < a» < x» < x1.

E[max(Xl, M2)] — E[max(Xl, Xz)]
= p1M — C(p1, p2)az — (p1 — C(p1, P2))x2
= (C(P17P2) - p1 C(Pzapz))(x2 —a) > 0.

Therefore we may replace X, with M.
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Dependent case — A toy example
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Dependent case — A toy example

0 a, a X X

Assume a1 < a» < x1 < Xxo.
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Dependent case — A toy example

0 a, a X X

Assume a1 < a» < x1 < Xxo.
We vary ap and x» keeping p» (and a1, x1, p1) constant:

E[max(X3, X3)] = C(p2, p2)az + (1 — C(p2, p2))x2 = Mo.
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Dependent case — A toy example

0 a, a X X

Assume a1 < a» < x1 < Xxo.
We vary ap and x» keeping p» (and a1, x1, p1) constant:

E[max(X3,X3)] = C(p2, p2)az + (1 — C(p2, p2))x2 = Mo.
Then, the linear function

E[max(X1, X2)] = C(p1, p2)az + (1 — p2)x2 + (p2 — C(p1, p2))x1

is maximum at one of the 3 boundary points.
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Dependent case — A toy example

0 a, a X X

Assume a1 < a» < x1 < Xxo.
We vary ap and x» keeping p» (and a1, x1, p1) constant:

E[max(X3,X3)] = C(p2, p2)az + (1 — C(p2, p2))x2 = Mo.
Then, the linear function
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Dependent case — A toy example

0 a, a X X

» a>» = x1. In this case X5 dominates Xj.
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Dependent case — A toy example

0 a, a X X

» a>» = x1. In this case X5 dominates Xj.

> a, = aj. In this case we may collapse X; into M.
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Dependent case — A toy example

0 a, a X X

» a>» = x1. In this case X5 dominates Xj.
> a, = aj. In this case we may collapse X; into M.

> xp = x1. In this case we may collapse X5 into M.
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Dependent case — A toy example

» a>» = x1. In this case X5 dominates Xj.
> a, = aj. In this case we may collapse X; into M.
> xp = x1. In this case we may collapse X5 into M.

» In any case, we may assume that X, = M, and a; < M, < x3.
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Dependent case — A toy example
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Dependent case — A toy example

We vary a; and p; keeping x; constant:

E[max(X{, X?)] = C(p1, p1)ar + (1 — C(p1, p1))x1 = M.
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Dependent case — A toy example

We vary a; and p; keeping x; constant:

E[max(X}, X?)] = C(p1, pr)ar + (1 — C(p1, p1)pa = M.
Then,

E[max(X1, M2)] = p1Ma + (1 — p1)xa = x1 — (ca — M2)p1

is maximum for p; minimum i.e. a; = 0.
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Dependent case — A toy example

Therefore we may assume that Xo = M, a3 =0and 0 < Mp < x.
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Dependent case — A toy example

a,=0 M, X

Therefore we may assume that Xo = M, a3 =0and 0 < Mp < x.
In this case
My

E[max(X1, Xo)] = M2 + (1= pr) o

1—
E[max(X1, X2)] < sup (Mgr + Ml—r) .
0

<r<1 1—C(r,r)
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The upper bound for 1, M and K
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The upper bound for 1, M and K

Let v(r) = C(r,r) and assume that M; < Ms.
» C =T1. In this case y(r) = r?, 7/(1) = 2 and

1
E[max(Xl,Xz)] < §M1 + MQ.
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The upper bound for 1, M and K

Let v(r) = C(r,r) and assume that M; < Ms.
» C =T1. In this case y(r) = r?, 7/(1) = 2 and

1
E[max(Xl,Xz)] < §M1 + Mo.

» C = M. In this case y(r) = r, /(1) = 1 and

E[max(Xl, Xg)] S M1 + Mz.
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The upper bound for 1, M and K

Let v(r) = C(r,r) and assume that M; < Ms.
» C =T1. In this case y(r) = r?, 7/(1) = 2 and

E[max(X, Xo)] < %Ml + M.

» C = M. In this case y(r) = r, /(1) = 1 and
E[max(X1, X2)] < My + Ma.

» C = K. In this case v(r) = r — ¢(r) + ry(r), /(1) = 2 and

1
E[maX(Xth)] < EMI + M.
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The upper bound for 1, M and K

Let v(r) = C(r,r) and assume that M; < Ms.
» C =T1. In this case y(r) = r?, 7/(1) = 2 and

1
E[max(Xl,Xz)] < §M1 + Mo.
» C =M. In this case v(r) =r, 7/(1) =1 and
E[max(Xl,Xg)] § M1 + Mz.

» C = K. In this case v(r) = r — ¢(r) + ry(r), /(1) = 2 and

1
E[maX(Xth)] < EMI + M.

» Note that the definition of M; depends on C and the three
bounds cannot be compared.
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