On the mixing advantage

Kais Hamza

Monash University

ANZAPW, July 2013, University of Queensland
Joint work with Aidan Sudbury, Peter Jagers & Daniel Tokarev
Introduction
\(X_i^j, X_i\) are the lifetime of an individual/unit and, \(\max(X_i^1, \ldots, X_i^n)\) and \(\max(X_1, X_2, \ldots, X_n)\) represent the lifetime of population/system. All random variables are assumed to be non-negative. \(X_i, X_i^1, \ldots, X_i^n\) are identically distributed.
X_i^j, X_i are the lifetime of an individual/unit and,
$\max(X_i^1, \ldots, X_i^n)$ and $\max(X_1, X_2, \ldots, X_n)$ represent the
lifetime of population/system.
All random variables are assumed to be non-negative.
$X_i, X_i^1, \ldots, X_i^n$ are identically distributed.

$X_1 \quad X_1^1 \quad X_1^2 \quad \ldots \quad X_1^n \quad \rightarrow \quad M_1 = \mathbb{E}[\max(X_1^1, \ldots, X_1^n)]$
X_i^j, X_i are the lifetime of an individual/unit and,\n$\text{max}(X_i^1, \ldots, X_i^n)$ and $\text{max}(X_1, X_2, \ldots, X_n)$ represent the lifetime of population/system.\nAll random variables are assumed to be non-negative.\n$X_i, X_i^1, \ldots, X_i^n$ are identically distributed.\n
$X_1 \quad X_1^1 \quad X_1^2 \quad \ldots \quad X_1^n \quad \rightarrow \quad M_1 = \mathbb{E}[\text{max}(X_1^1, \ldots, X_1^n)]\nX_2 \quad X_2^1 \quad X_2^2 \quad \ldots \quad X_2^n \quad \rightarrow \quad M_2 = \mathbb{E}[\text{max}(X_2^1, \ldots, X_2^n)]$
\(X_i\), \(X_j\) are the lifetime of an individual/unit and,
\(\max(X_i^1, \ldots, X_i^n)\) and \(\max(X_1, X_2, \ldots, X_n)\) represent the lifetime of population/system.

All random variables are assumed to be non-negative.
\(X_i, X_i^1, \ldots, X_i^n\) are identically distributed.

\[
\begin{align*}
X_1 & \quad X_1^1 & \quad X_1^2 & \quad \ldots & \quad X_1^n & \rightarrow & \quad M_1 = \mathbb{E}[\max(X_1^1, \ldots, X_1^n)] \\
X_2 & \quad X_2^1 & \quad X_2^2 & \quad \ldots & \quad X_2^n & \rightarrow & \quad M_2 = \mathbb{E}[\max(X_2^1, \ldots, X_2^n)] \\
\vdots & & & & & & \vdots
\end{align*}
\]
Introduction

- X_i^j, X_i are the lifetime of an individual/unit and,
 $\max(X_i^1, \ldots, X_i^n)$ and $\max(X_1, X_2, \ldots, X_n)$ represent the
 lifetime of population/system.

 All random variables are assumed to be non-negative.
 $X_i, X_i^1, \ldots, X_i^n$ are identically distributed.

- $X_1, X_1^1, X_1^2, \ldots, X_1^n \rightarrow M_1 = \mathbb{E}[\max(X_1^1, \ldots, X_1^n)]$
 $X_2, X_2^1, X_2^2, \ldots, X_2^n \rightarrow M_2 = \mathbb{E}[\max(X_2^1, \ldots, X_2^n)]$
 ...
 $X_n, X_n^1, X_n^2, \ldots, X_n^n \rightarrow M_n = \mathbb{E}[\max(X_n^1, \ldots, X_n^n)]$
Introduction

- X_i^j, X_i are the lifetime of an individual/unit and, $\max(X_i^1, \ldots, X_i^n)$ and $\max(X_1, X_2, \ldots, X_n)$ represent the lifetime of population/system.
- All random variables are assumed to be non-negative. $X_i, X_i^1, \ldots, X_i^n$ are identically distributed.

- $X_1 \ X_1^1 \ X_2^1 \ \ldots \ X_1^n \rightarrow \ M_1 = \mathbb{E}[\max(X_1^1, \ldots, X_1^n)]$
- $X_2 \ X_2^1 \ X_2^2 \ \ldots \ X_2^n \rightarrow \ M_2 = \mathbb{E}[\max(X_2^1, \ldots, X_2^n)]$
- \vdots
- $X_n \ X_n^1 \ X_n^2 \ \ldots \ X_n^n \rightarrow \ M_n = \mathbb{E}[\max(X_n^1, \ldots, X_n^n)]$

- We wish to compare $\mathbb{E}[\max(X_1, X_2, \ldots, X_n)]$ to $M_i = \mathbb{E}[\max(X_i^1, \ldots, X_i^n)]$, $i = 1, \ldots, n$.

Kais Hamza

On the mixing advantage
Reliability – Warm Duplication Method
Introduction

Question: Is it better to mix or go with a single type?

Obviously, if one type dominates all others, then choosing that type only is optimum.

Question: What if all types are similar (no dominant type); i.e.
\[E[\max(X_1, \ldots, X_n)] = \ldots = E[\max(X_1, \ldots, X_n)] \]?

Kais Hamza

On the mixing advantage
Question: Is it better to mix or go with a single type?
Question: Is it better to mix or go with a single type?

Obviously, if one type dominates all others, then choosing that type only is optimum.
Introduction

Question: Is it better to mix or go with a single type?

Obviously, if one type dominates all others, then choosing that type only is optimum.

Question: What if all types are similar (no dominant type); i.e.

\[\mathbb{E}[\max(X_1^1, \ldots, X_1^n)] = \ldots = \mathbb{E}[\max(X_n^1, \ldots, X_n^n)]? \]
Assume all random variables are independent. It is easy to show (direct consequence of the arithmetic-geometric mean inequality) that

\[\mathbb{E}\left[\max(X_1, \ldots, X_n) \right] \geq \mathbb{E}\left[\max(X_{1i}, \ldots, X_{ni}) \right]. \]

In fact, the same arithmetic-geometric mean inequality shows that

\[\mathbb{E}\left[\max(X_1, \ldots, X_n) \right] \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\max(X_{1i}, \ldots, X_{ni}) \right]. \]

In other words, mixing is advantageous.

If \(M_i = \mathbb{E}\left[\max(X_{1i}, \ldots, X_{ni}) \right], \) we call mixing factor \(\theta = \frac{\mathbb{E}\left[\max(X_1, \ldots, X_n) \right]}{\max(M_1, \ldots, M_n)}. \)

We show that when \(M_i = M, \) \(\theta \leq 2 - \frac{1}{n} < 2. \)
Assume all random variables are independent.
Assume all random variables are independent.

- It is easy to show (direct consequence of the arithmetic-geometric mean inequality) that

$$\mathbb{E}[\max(X_1, \ldots, X_n)] \geq \mathbb{E}[\max(X_1^1, \ldots, X_n^1)].$$

In fact, the same arithmetic-geometric mean inequality shows that

$$\mathbb{E}[\max(X_1, \ldots, X_n)] \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\max(X_1^i, \ldots, X_n^i)].$$

In other words, mixing is advantageous.
Assume all random variables are independent.

- It is easy to show (direct consequence of the arithmetic-geometric mean inequality) that

\[\mathbb{E}[\max(X_1, \ldots, X_n)] \geq \mathbb{E}[\max(X^1, \ldots, X^n)]. \]

In fact, the same arithmetic-geometric mean inequality shows that

\[\mathbb{E}[\max(X_1, \ldots, X_n)] \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\max(X^1, \ldots, X^n)]. \]

In other words, mixing is advantageous.

- If \(M_i = \mathbb{E}[\max(X^1, \ldots, X^n)], \) \(i = 1, \ldots, n, \) we call mixing factor

\[\theta = \frac{\mathbb{E}[\max(X_1, \ldots, X_n)]}{\max(M_1, \ldots, M_n)}. \]

We show that when \(M_i = M, \) \(\theta \leq 2 - 1/n < 2. \)
Existing literature

An extensive literature exists on $\max(X_1, \ldots, X_n)$ in the iid case – see David and Nagaraja (2003). However, very little work exists for the non-identically distributed case. Arnold and Groeneveld (1979) obtain upper and lower bounds on $\max(X_1, \ldots, X_n)$ even when X_1, \ldots, X_n are not independent and not identically distributed, but in terms of $E[X_1]$ and $\text{var}(X_i)$, not M_1, \ldots, M_n. This generalises Hartley and David (1954) and Gumbel (1954) who deal with the iid case.
An extensive literature exists on $\mathbb{E}[\max(X_1, \ldots, X_n)]$ in the iid case – see David and Nagaraja (2003). However, very little work exists for the non-identically distributed case.
An extensive literature exists on $\mathbb{E}[\max(X_1, \ldots, X_n)]$ in the iid case – see David and Nagaraja (2003). However, very little work exists for the non-identically distributed case.

Arnold and Groeneveld (1979) obtain upper and lower bounds on $\mathbb{E}[\max(X_1, \ldots, X_n)]$ even when X_1, \ldots, X_n are not independent and not identically distributed, but in terms of $\mathbb{E}[X_1]$ and $\text{var}(X_i)$, not M_1, \ldots, M_n. This generalises Hartley and David (1954) and Gumbel (1954) who deal with the iid case.
Existing literature

Sen (1970) shows that \(\max(X_1, \ldots, X_n) \) stochastically dominates \(\max(Y_1, \ldots, Y_n) \), where \(Y_1, \ldots, Y_n \) are iid equally-weighted probability mixtures of \(X_1, \ldots, X_n \):

\[P(\max(X_1, \ldots, X_n) \leq z) \leq P(\max(Y_1, \ldots, Y_n) \leq z). \]

In particular,

\[\frac{1}{n} \sum_{i=1}^{n} E[\max(X_{1i}, \ldots, X_{ni})] \leq E[\max(Y_1, \ldots, Y_n)] \leq E[\max(X_1, \ldots, X_n)]. \]

However, \(E[\max(Y_1, \ldots, Y_n)] \) cannot be expressed in terms of \(M_1, \ldots, M_n \).
Sen (1970) shows that $\max(X_1, \ldots, X_n)$ stochastically dominates $\max(Y^1, \ldots, Y^n)$, where Y^1, \ldots, Y^n are iid equally-weighted probability mixtures of X_1, \ldots, X_n:

$$P(\max(X_1, \ldots, X_n) \leq z) \leq P(\max(Y^1, \ldots, Y^n) \leq z).$$

In particular

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\max(X^1_i, \ldots, X^n_i)]$$

$$\leq \mathbb{E}[\max(Y^1, \ldots, Y^n)] \leq \mathbb{E}[\max(X_1, \ldots, X_n)].$$

However, $\mathbb{E}[\max(Y^1, \ldots, Y^n)]$ cannot be expressed in terms of M_1, \ldots, M_n.
Theorem (H., Jagers, Sudbury & Tokarev, 2009)

If X_1, \ldots, X_n are independent random variables with the property that $E[\max(X_1, \ldots, X_n)] = M_i, i = 1, \ldots, n$, then

$$\frac{1}{n} \sum_{i=1}^{n} M_i \leq E[\max(X_1, \ldots, X_n)] \leq \frac{1}{n} \sum_{i=1}^{n} M_i + \frac{n-1}{n} \max(M_1, \ldots, M_n).$$

In particular, if $M_i = M, i = 1, \ldots, n$, then $M \leq E[\max(X_1, \ldots, X_n)] \leq (2 - 1/n) M$.

The upper bound is obtained by letting some of the random variables be concentrated on 0 and x and letting $x \to \infty$.
Unbounded independent case

Theorem (H., Jagers, Sudbury & Tokarev, 2009)

If X_1, \ldots, X_n are independent random variables with the property that $\mathbb{E}[^\text{max}(X^i_1, \ldots, X^i_n)] = M_i$, $i = 1, 2, \ldots, n$, then

$$\frac{1}{n} \sum_{i=1}^{n} M_i \leq \mathbb{E}[^\text{max}(X_1, \ldots, X_n)] \leq \frac{1}{n} \sum_{i=1}^{n} M_i + \frac{n - 1}{n} \max(M_1, \ldots, M_n).$$

In particular, if $M_i = M$, $i = 1, \ldots, n$,

$$M \leq \mathbb{E}[^\text{max}(X_1, \ldots, X_n)] \leq (2 - 1/n)M.$$
Theorem (H., Jagers, Sudbury & Tokarev, 2009)

If X_1, \ldots, X_n are independent random variables with the property that $\mathbb{E}[\max(X_1^i, \ldots, X_n^i)] = M_i$, $i = 1, 2, \ldots, n$, then

$$\frac{1}{n} \sum_{i=1}^{n} M_i \leq \mathbb{E}[\max(X_1, \ldots, X_n)] \leq \frac{1}{n} \sum_{i=1}^{n} M_i + \frac{n-1}{n} \max(M_1, \ldots, M_n).$$

In particular, if $M_i = M$, $i = 1, \ldots, n$,

$$M \leq \mathbb{E}[\max(X_1, \ldots, X_n)] \leq (2 - 1/n)M.$$

The upper bound is obtained by letting some of the random variables be concentrated on 0 and x and letting $x \to \infty$.
Theorem (H. & Sudbury, 2011)

If a set of random variables X_1, \ldots, X_n are independent, concentrated on $[0, b]$ and s.t.

$E[\max(X_1, \ldots, X_n)] = M_i, i = 1, \ldots, n,$

then, putting $M_n = \max(M_1, \ldots, M_n),$

$$b - \left(b - M_n \right) \frac{n}{1 - \frac{M_i}{b}}^{1/n} \leq E[\max(X_1, \ldots, X_n)] \leq b - \left(b - M_n \right) \frac{n - 1}{\prod_{i=1}^n (1 - M_i/b)}^{1/n}. $$
Bounded independent case

Theorem (H. & Sudbury, 2011)

If a set of random variables X_1, \ldots, X_n are independent, concentrated on $[0, b]$ and s.t.

$$\mathbb{E}[\max(X^1_i, \ldots, X^n_i)] = M_i, \ i = 1, \ldots, n,$$

then, putting $M_n = \max(M_1, \ldots, M_n)$,

$$b - \prod_{i=1}^{n}(b - M_i)^{1/n} \leq \mathbb{E}[\max(X_1, \ldots, X_n)] \leq b - (b - M_n) \prod_{i=1}^{n-1}(1 - M_i/b)^{1/n}.$$
Bounded independent case

In the case $M_i = M, i = 1, \ldots, n$ we have

$$M \leq E[\max(X_1, \ldots, X_n)] \leq b - b(1 - M/b)^2 - 1/n$$

where the latter expression approaches $(2 - 1/n)M$ as $b \to +\infty$ and $M(b - M/b)$ as $n \to +\infty$.

Kais Hamza

On the mixing advantage
Corollary

In the case $M_i = M, i = 1, \ldots, n$ we have

$$M \leq \mathbb{E}[\max(X_1, \ldots, X_n)] \leq b - b(1 - M/b)^{2 - 1/n}$$

where the latter expression approaches $(2 - 1/n)M$ as $b \to +\infty$ and $M(2 - M/b)$ as $n \to +\infty$.
Bounded independent case

Changing X into $b - X$ transforms maxima into minima immediately yielding the following result.

Corollary The equivalent result for the minima, with $m_1 = \min(m_1, \ldots, m_n)$,

$$m_1 \prod_{i=2}^{n} \left(\frac{m_i}{b} \right)^{1/n} \leq E[\min(X_1, \ldots, X_n)] \leq n \prod_{i=1}^{n} m_i^{1/n}.$$
Bounded independent case

Changing X into $b - X$ transforms maxima into minima immediately yielding the following result.
Changing \(X\) into \(b - X\) transforms maxima into minima immediately yielding the following result.

Corollary

The equivalent result for the minima, with \(m_1 = \min(m_1, \ldots, m_n)\), is

\[
m_1 \prod_{i=2}^{n} \left(\frac{m_i}{b}\right)^{1/n} \leq \mathbb{E} \left[\min(X_1, \ldots, X_n)\right] \leq \prod_{i=1}^{n} m_i^{1/n}.
\]
Dependent case

What if the random variables are NOT independent.

U, V, and W are independent continuous random variables.

Let X = U ∧ W and Y = V ∧ W (a ∧ b = min(a, b)).
Dependent case

- What if the random variables are NOT independent.
Dependent case

- What if the random variables are NOT independent.
- U, V and W are independent continuous random variables.
 Let $X = U \land W$ and $Y = V \land W$ ($a \land b = \min(a, b)$).
Dependent case

- What if the random variables are NOT independent.
- \(U, V \) and \(W \) are independent continuous random variables.
 Let \(X = U \wedge W \) and \(Y = V \wedge W \) \((a \wedge b = \min(a, b))\).
What if the random variables are NOT independent.

- U, V and W are independent continuous random variables.

Let $X = U \wedge W$ and $Y = V \wedge W$ ($a \wedge b = \min(a, b)$).
Dependent case – Copulas

If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution $H(x, y) = C(F(x), G(y))$.

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
- $C(s_2, t_2) - C(s_2, t_1) - C(s_1, t_2) + C(s_1, t_1) \geq 0$.

Three examples:

- $\Pi(s, t) = st$ – independent case;
- $M(s, t) = s \land t$ – perfectly positively related case;
- $W(s, t) = (s + t - 1) +$ – perfectly negatively related case;
- $K(s, t) = s \land t - \psi(s \land t) + (s \lor t) \psi(s \land t)$ – ($U \land W, V \land W$).

Kais Hamza
On the mixing advantage
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
- $C(s_2, t_2) - C(s_2, t_1) - C(s_1, t_2) + C(s_1, t_1) \geq 0$.

Three examples:

- $\Pi(s, t) = st$ – independent case;
- $M(s, t) = s \land t$ – perfectly positively related case;
- $W(s, t) = (s+t-1)+$ – perfectly negatively related case;
- $K(s, t) = s \land t - \psi(s \land t) + (s \lor t) \psi(s \land t) - (U \land W, V \land W)$.
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
- $C(s_2, t_2) - C(s_2, t_1) - C(s_1, t_2) + C(s_1, t_1) \geq 0$.
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
- $C(s_2, t_2) - C(s_2, t_1) - C(s_1, t_2) + C(s_1, t_1) \geq 0$.

Three examples

- $\Pi(s, t) = st$ – independent case;
- $M(s, t) = s \wedge t$ – perfectly positively related case;
- $W(s, t) = (s + t - 1) +$ – perfectly negatively related case;
- $K(s, t) = s \wedge t - \psi(s \wedge t) + (s \vee t) \psi(s \wedge t) - (U \wedge W, V \wedge W)$.
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
- $C(s_2, t_2) - C(s_2, t_1) - C(s_1, t_2) + C(s_1, t_1) \geq 0$.

Three examples

- $\Pi(s, t) = st$ – independent case;
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
- $C(s_2, t_2) - C(s_2, t_1) - C(s_1, t_2) + C(s_1, t_1) \geq 0$.

Three examples:

- $\Pi(s, t) = st$ – independent case;
- $M(s, t) = s \land t$ – perfectly positively related case;
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:
- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
- $C(s_2, t_2) - C(s_2, t_1) - C(s_1, t_2) + C(s_1, t_1) \geq 0$.

Three examples
- $\Pi(s, t) = st$ – independent case;
- $M(s, t) = s \wedge t$ – perfectly positively related case;
- $W(s, t) = (s + t - 1)^+ – perfectly negatively related case;
If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$H(x, y) = C(F(x), G(y)).$$

Recall that a copula is defined as satisfying:

- C is defined on $[0, 1] \times [0, 1]$;
- $C(s, 0) = C(0, t) = 0$;
- $C(s, 1) = s$ and $C(1, t) = t$;
- $C(s_2, t_2) - C(s_2, t_1) - C(s_1, t_2) + C(s_1, t_1) \geq 0$.

Three examples

- $\Pi(s, t) = st$ – independent case;
- $M(s, t) = s \land t$ – perfectly positively related case;
- $W(s, t) = (s + t - 1)^+$ – perfectly negatively related case;
- $K(s, t) = s \land t - \psi(s \land t) + (s \lor t)\psi(s \land t) - (U \land W, V \land W)$.

Kais Hamza
On the mixing advantage
Dependent case – A toy example

\(n = 2 \).

\(X_1, X_2 \) take at most 2 values and assume a copula \(C \).

\[p_i = P(X_i = a_i), P(X_i = x_i) = 1 - p_i, a_i \leq x_i. \]

\(X_1^i \) and \(X_2^i \) inherit the copula of \(X_1 \) and \(X_2 \), \(C \):

\[P(X_1^i = a_i, X_2^i = a_i) = C(p_i, p_i) \]

\[P(X_1^i = a_i, X_2^i = x_i) = p_i - C(p_i, p_i) \]

\[P(X_1^i = x_i, X_2^i = a_i) = p_i - C(p_i, p_i) \]

\[P(X_1^i = x_i, X_2^i = x_i) = 1 - 2p_i + C(p_i, p_i) \]

\[M_i = E[\max(X_1^i, X_2^i)] = C(p_i, p_i)a_i + (1 - C(p_i, p_i))x_i, i = 1, 2. \]
Dependent case – A toy example

$n = 2$.

X_1, X_2 take at most 2 values and assume a copula C.

$p_i = P(X_i = a_i), P(X_i = x_i) = 1 - p_i, a_i \leq x_i$.

X_1^i and X_2^i inherit the copula of X_1 and X_2, C:

$P(X_1^i = a_i, X_2^i = a_i) = C(p_i, p_i)$

$P(X_1^i = a_i, X_2^i = x_i) = p_i - C(p_i, p_i)$

$P(X_1^i = x_i, X_2^i = a_i) = p_i - C(p_i, p_i)$

$P(X_1^i = x_i, X_2^i = x_i) = 1 - 2p_i + C(p_i, p_i)$.

$M_i = E[\max(X_1^i, X_2^i)] = C(p_i, p_i)a_i + (1 - C(p_i, p_i))x_i$.
Dependent case – A toy example

- \(n = 2 \).
- \(X_1, X_2 \) take at most 2 values and assume a copula \(C \).
Dependent case – A toy example

- \(n = 2 \).
- \(X_1, X_2 \) take at most 2 values and assume a copula \(C \).
- \(p_i = \mathbb{P}(X_i = a_i), \mathbb{P}(X_i = x_i) = 1 - p_i, a_i \leq x_i \).
Dependent case – A toy example

- $n = 2$.
- X_1, X_2 take at most 2 values and assume a copula C.
- $p_i = \mathbb{P}(X_i = a_i)$, $\mathbb{P}(X_i = x_i) = 1 - p_i$, $a_i \leq x_i$.
- X^1_i and X^2_i inherit the copula of X_1 and X_2, C:

$$
\begin{align*}
\mathbb{P}(X^1_i = a_i, X^2_i = a_i) &= C(p_i, p_i) \\
\mathbb{P}(X^1_i = a_i, X^2_i = x_i) &= p_i - C(p_i, p_i) \\
\mathbb{P}(X^1_i = x_i, X^2_i = a_i) &= p_i - C(p_i, p_i) \\
\mathbb{P}(X^1_i = x_i, X^2_i = x_i) &= 1 - 2p_i + C(p_i, p_i)
\end{align*}
$$
Dependent case – A toy example

- \(n = 2 \).
- \(X_1, X_2 \) take at most 2 values and assume a copula \(C \).
- \(p_i = \mathbb{P}(X_i = a_i), \mathbb{P}(X_i = x_i) = 1 - p_i, a_i \leq x_i \).
- \(X_i^1 \) and \(X_i^2 \) inherit the copula of \(X_1 \) and \(X_2 \), \(C \):
 \[
 \begin{align*}
 \mathbb{P}(X_i^1 = a_i, X_i^2 = a_i) &= C(p_i, p_i) \\
 \mathbb{P}(X_i^1 = a_i, X_i^2 = x_i) &= p_i - C(p_i, p_i) \\
 \mathbb{P}(X_i^1 = x_i, X_i^2 = a_i) &= p_i - C(p_i, p_i) \\
 \mathbb{P}(X_i^1 = x_i, X_i^2 = x_i) &= 1 - 2p_i + C(p_i, p_i)
 \end{align*}
 \]
- \(M_i = \mathbb{E}[\max(X_i^1, X_i^2)] = C(p_i, p_i) a_i + (1 - C(p_i, p_i)) x_i, \quad i = 1, 2 \).
Dependent case – A toy example

Assumption

We assume that for any \((s, t)\),

\[C(s, t) - sC(t, t) \geq 0 \quad \text{and} \quad C(s, t) - tC(s, s) \geq 0. \]

\(\star\)

\(\Pi, M\) and \(K\) satisfy this condition; \(W\) does not.

\(\star\) If \((U, V)\) are uniform \((0, 1)\) and have copula \(C\), then \(\star\) translates to

\[P(U \leq s \mid \max(U, V) \leq t) \geq P(U \leq s), \quad s < t. \]
Dependent case – A toy example

Assumption

We assume that for any \((s, t)\),

\[
C(s, t) - sC(t, t) \geq 0 \quad \text{and} \quad C(s, t) - tC(s, s) \geq 0. \quad (\star)
\]

- \(\Pi, M\) and \(K\) satisfy this condition; \(W\) does not.
Dependent case – A toy example

Assumption

We assume that for any \((s, t)\),

\[C(s, t) - sC(t, t) \geq 0 \text{ and } C(s, t) - tC(s, s) \geq 0. \]

\((\star)\)

- \(\Pi, M\) and \(K\) satisfy this condition; \(W\) does not.
- If \((U, V)\) are uniform \((0, 1)\) and have copula \(C\), then \((\star)\) translates to

\[\mathbb{P}(U \leq s \mid \max(U, V) \leq t) \geq \mathbb{P}(U \leq s), \quad s < t. \]
Assume WLOG that $a_1 \leq a_2$. We need to consider 3 cases:
Assume WLOG that $a_1 \leq a_2$. We need to consider 3 cases:
Assume WLOG that $a_1 \leq a_2$. We need to consider 3 cases:
Dependent case – A toy example

Assume WLOG that $a_1 \leq a_2$. We need to consider 3 cases:
Assume WLOG that $a_1 \leq a_2$. We need to consider 3 cases:
The case $a_1 \leq x_1 \leq a_2 \leq x_2$ is trivial since in this case X_2 dominates X_1.
The case $a_1 \leq x_1 \leq a_2 \leq x_2$ is trivial since in this case X_2 dominates X_1.
Assume $a_1 \leq a_2 \leq x_2 \leq x_1$.

$$E[\max(X_1, M_2)] - E[\max(X_1, X_2)] = p_1 M_2 - C(p_1, p_2) a_2 - (p_1 - C(p_1, p_2)) x_2 = \left(C(p_1, p_2) - p_1 C(p_2, p_2)\right) (x_2 - a_2) \geq 0.$$

Therefore we may replace X_2 with M_2.

Kais Hamza

On the mixing advantage
Assume $a_1 \leq a_2 \leq x_2 \leq x_1$.
Assume $a_1 \leq a_2 \leq x_2 \leq x_1$.

\[
\mathbb{E}[\max(X_1, M_2)] - \mathbb{E}[\max(X_1, X_2)] \\
= p_1 M_2 - C(p_1, p_2) a_2 - (p_1 - C(p_1, p_2)) x_2 \\
= \left(C(p_1, p_2) - p_1 C(p_2, p_2) \right) (x_2 - a_2) \geq 0.
\]

Therefore we may replace X_2 with M_2.
Dependent case – A toy example

Assume $a_1 \leq a_2 \leq x_2 \leq x_1$.

\[
\mathbb{E}[\max(X_1, M_2)] - \mathbb{E}[\max(X_1, X_2)] \\
= p_1 M_2 - C(p_1, p_2) a_2 - (p_1 - C(p_1, p_2)) x_2 \\
= \left(C(p_1, p_2) - p_1 C(p_2, p_2) \right) (x_2 - a_2) \geq 0.
\]

Therefore we may replace X_2 with M_2.
Dependent case – A toy example

Assume $a_1 \leq a_2 \leq x_1 \leq x_2$. We vary a_2 and x_2 keeping p_2 (and a_1, x_1, p_1) constant:

$$E[\max(X_1^2, X_2^2)] = C(p_2, p_2) a_2 + (1 - C(p_2, p_2)) x_2 = M_2.$$

Then, the linear function

$$E[\max(X_1^2, X_2^2)] = C(p_1, p_2) a_2 + (1 - p_2) x_2 + (p_2 - C(p_1, p_2)) x_1$$

is maximum at one of the 3 boundary points.
Assume $a_1 \leq a_2 \leq x_1 \leq x_2$.
Dependent case – A toy example

Assume $a_1 \leq a_2 \leq x_1 \leq x_2$.
We vary a_2 and x_2 keeping p_2 (and a_1, x_1, p_1) constant:

$$
\mathbb{E}[\max(X_2^1, X_2^2)] = C(p_2, p_2)a_2 + (1 - C(p_2, p_2))x_2 = M_2.
$$
Dependent case – A toy example

Assume \(a_1 \leq a_2 \leq x_1 \leq x_2 \).
We vary \(a_2 \) and \(x_2 \) keeping \(p_2 \) (and \(a_1, x_1, p_1 \)) constant:

\[
\mathbb{E}[\max(X_2^1, X_2^2)] = C(p_2, p_2) a_2 + (1 - C(p_2, p_2)) x_2 = M_2.
\]

Then, the linear function

\[
\mathbb{E}[\max(X_1, X_2)] = C(p_1, p_2) a_2 + (1 - p_2) x_2 + (p_2 - C(p_1, p_2)) x_1
\]

is maximum at one of the 3 boundary points.
Dependent case – A toy example

Assume \(a_1 \leq a_2 \leq x_1 \leq x_2 \).

We vary \(a_2 \) and \(x_2 \) keeping \(p_2 \) (and \(a_1, x_1, p_1 \)) constant:

\[
E[\max(X_1^2, X_2^2)] = C(p_2, p_2) a_2 + (1 - C(p_2, p_2)) x_2 = M_2.
\]

Then, the linear function

\[
E[\max(X_1^2, X_2^2)] = C(p_1, p_2) a_2 + (1 - p_2) x_2 + (p_2 - C(p_1, p_2)) x_1
\]

is maximum at one of the 3 boundary points.
Assume $a_1 \leq a_2 \leq x_1 \leq x_2$.
We vary a_2 and x_2 keeping p_2 (and a_1, x_1, p_1) constant:

$$E[\max(X_1^1, X_2^2)] = C(p_2, p_2)a_2 + (1 - C(p_2, p_2))x_2 = M_2.$$

Then, the linear function

$$E[\max(X_1, X_2)] = C(p_1, p_2)a_2 + (1 - p_2)x_2 + (p_2 - C(p_1, p_2))x_1$$

is maximum at one of the 3 boundary points.
In this case X_2 dominates X_1.

$a_2 = x_1$. In this case X_2 dominates X_1.
Dependent case – A toy example

- $a_2 = x_1$. In this case X_2 dominates X_1.
- $a_2 = a_1$. In this case we may collapse X_1 into M_1.

In any case, we may assume that $X_2 = M_2$ and $a_1 \leq M_2 \leq x_1$.
Dependent case – A toy example

- $a_2 = x_1$. In this case X_2 dominates X_1.
- $a_2 = a_1$. In this case we may collapse X_1 into M_1.
- $x_2 = x_1$. In this case we may collapse X_2 into M_2.
Dependent case – A toy example

- $a_2 = x_1$. In this case X_2 dominates X_1.
- $a_2 = a_1$. In this case we may collapse X_1 into M_1.
- $x_2 = x_1$. In this case we may collapse X_2 into M_2.
- In any case, we may assume that $X_2 = M_2$ and $a_1 \leq M_2 \leq x_1$.
Dependent case – A toy example

We vary a_1 and p_1 keeping x_1 constant:

$$E_{\max(X_1, X_2)} = C(p_1, p_1) a_1 + (1 - C(p_1, p_1)) x_1 = M_1.$$

Then,

$$E_{\max(X_1, M_2)} = p_1 M_2 + (1 - p_1) x_1 = x_1 - (x_1 - M_2) p_1$$

is maximum for p_1 minimum i.e. $a_1 = 0$.
We vary a_1 and p_1 keeping x_1 constant:

$$E[\max(X_1^1, X_1^2)] = C(p_1, p_1)a_1 + (1 - C(p_1, p_1))x_1 = M_1.$$
Dependent case – A toy example

We vary a_1 and p_1 keeping x_1 constant:

$$E[\max(X_1^1, X_1^2)] = C(p_1, p_1)a_1 + (1 - C(p_1, p_1))x_1 = M_1.$$

Then,

$$E[\max(X_1, M_2)] = p_1 M_2 + (1 - p_1)x_1 = x_1 - (x_1 - M_2)p_1$$

is maximum for p_1 minimum i.e. $a_1 = 0$.

Kais Hamza On the mixing advantage
Dependent case – A toy example

Therefore we may assume that \(X_2 = M_2, a_1 = 0 \) and \(0 \leq M_2 \leq x_1 \).
Dependent case – A toy example

Therefore we may assume that $X_2 = M_2$, $a_1 = 0$ and $0 \leq M_2 \leq x_1$.

In this case

$$E[\max(X_1, X_2)] = p_1 M_2 + (1 - p_1) \frac{M_1}{1 - C(p_1, p_1)}$$

Theorem

$$E[\max(X_1, X_2)] \leq \sup_{0 \leq r < 1} \left(M_2 r + M_1 \frac{1 - r}{1 - C(r, r)} \right).$$
The upper bound for Π, M and K

Let $\gamma(r) = C(r, r)$ and assume that $M_1 \leq M_2$.

$C = \Pi$. In this case $\gamma(r) = r^2$, $\gamma'(1) = 2$ and $E[\max(X_1, X_2)] \leq \frac{1}{2} M_1 + M_2$.

$C = M$. In this case $\gamma(r) = r$, $\gamma'(1) = 1$ and $E[\max(X_1, X_2)] \leq M_1 + M_2$.

$C = K$. In this case $\gamma(r) = r - \psi(r) + r \psi(r)$, $\gamma'(1) = 2$ and $E[\max(X_1, X_2)] \leq \frac{1}{2} M_1 + M_2$.

Note that the definition of M_i depends on C and the three bounds cannot be compared.
Let \(\gamma(r) = C(r, r) \) and assume that \(M_1 \leq M_2 \).

- \(C = \Pi \). In this case \(\gamma(r) = r^2 \), \(\gamma'(1) = 2 \) and

\[
\mathbb{E}[\max(X_1, X_2)] \leq \frac{1}{2} M_1 + M_2.
\]
Let \(\gamma(r) = C(r, r) \) and assume that \(M_1 \leq M_2 \).

- \(C = \Pi \). In this case \(\gamma(r) = r^2 \), \(\gamma'(1) = 2 \) and
 \[
 \mathbb{E}[\max(X_1, X_2)] \leq \frac{1}{2}M_1 + M_2.
 \]

- \(C = M \). In this case \(\gamma(r) = r \), \(\gamma'(1) = 1 \) and
 \[
 \mathbb{E}[\max(X_1, X_2)] \leq M_1 + M_2.
 \]
Let $\gamma(r) = C(r, r)$ and assume that $M_1 \leq M_2$.

- **$C = \Pi$.** In this case $\gamma(r) = r^2$, $\gamma'(1) = 2$ and
 \[
 \mathbb{E}[\max(X_1, X_2)] \leq \frac{1}{2}M_1 + M_2.
 \]

- **$C = M$.** In this case $\gamma(r) = r$, $\gamma'(1) = 1$ and
 \[
 \mathbb{E}[\max(X_1, X_2)] \leq M_1 + M_2.
 \]

- **$C = K$.** In this case $\gamma(r) = r - \psi(r) + r\psi(r)$, $\gamma'(1) = 2$ and
 \[
 \mathbb{E}[\max(X_1, X_2)] \leq \frac{1}{2}M_1 + M_2.
 \]
Let $\gamma(r) = C(r, r)$ and assume that $M_1 \leq M_2$.

- $C = \Pi$. In this case $\gamma(r) = r^2$, $\gamma'(1) = 2$ and
 $$
 \mathbb{E}[\max(X_1, X_2)] \leq \frac{1}{2} M_1 + M_2.
 $$

- $C = M$. In this case $\gamma(r) = r$, $\gamma'(1) = 1$ and
 $$
 \mathbb{E}[\max(X_1, X_2)] \leq M_1 + M_2.
 $$

- $C = K$. In this case $\gamma(r) = r - \psi(r) + r\psi(r)$, $\gamma'(1) = 2$ and
 $$
 \mathbb{E}[\max(X_1, X_2)] \leq \frac{1}{2} M_1 + M_2.
 $$

- Note that the definition of M_i depends on C and the three bounds cannot be compared.
References

