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Introduction

I X j
i , Xi are the lifetime of an individual/unit and,

max(X 1
i , . . . ,X

n
i ) and max(X1,X2, . . . ,Xn) represent the

lifetime of population/system.
All random variables are assumed to be non-negative.
Xi ,X

1
i , . . . ,X

n
i are identically distributed.

I X1 X 1
1 X 2

1 . . . X n
1 → M1 = E[max(X 1

1 , . . . ,X
n
1 )]

X2 X 1
2 X 2

2 . . . X n
2 → M2 = E[max(X 1

2 , . . . ,X
n
2 )]

...

Xn X 1
n X 2

n . . . X n
n → Mn = E[max(X 1

n , . . . ,X
n
n )]

I We wish to compare E[max(X1,X2, . . . ,Xn)] to
Mi = E[max(X 1

i , . . . ,X
n
i )], i = 1, . . . , n.
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Introduction

I Question: Is it better to mix or go with a single type?

I Obviously, if one type dominates all others, then choosing
that type only is optimum.

I Question: What if all types are similar (no dominant type); i.e.

E[max(X 1
1 , . . . ,X

n
1 )] = . . . = E[max(X 1

n , . . . ,X
n
n )]?
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Introduction

Assume all random variables are independent.

I It is easy to show (direct consequence of the
arithmetic-geometric mean inequality) that

E[max(X1, . . . ,Xn)] ≥ E[max(X 1
i , . . . ,X

n
i )].

In fact, the same arithmetic-geometric mean inequality shows
that

E[max(X1, . . . ,Xn)] ≥ 1

n

n∑
i=1

E[max(X 1
i , . . . ,X

n
i )].

In other words, mixing is advantageous.
I If Mi = E[max(X 1

i , . . . ,X
n
i )], i = 1, . . . , n, we call mixing

factor

θ =
E[max(X1, . . . ,Xn)]

max(M1, . . . ,Mn)
.

We show that when Mi = M, θ ≤ 2− 1/n < 2.
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Existing literature

I An extensive literature exists on E[max(X1, . . . ,Xn)] in the iid
case – see David and Nagaraja (2003). However, very little
work exists for the non-identically distributed case.

I Arnold and Groeneveld (1979) obtain upper and lower bounds
on E[max(X1, . . . ,Xn)] even when X1, . . . ,Xn are not
independent and not identically distributed, but in terms of
E[X1] and var(Xi ), not M1, . . . ,Mn.
This generalises Hartley and David (1954) and Gumbel (1954)
who deal with the iid case.
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Existing literature

I Sen (1970) shows that max(X1, . . . ,Xn) stochastically
dominates max(Y 1, . . . ,Y n), where Y 1, . . . ,Y n are iid
equally-weighted probability mixtures of X1, . . . ,Xn:

P(max(X1, . . . ,Xn) ≤ z) ≤ P(max(Y 1, . . . ,Y n) ≤ z).

In particular

1

n

n∑
i=1

E[max(X 1
i , . . . ,X

n
i )]

≤ E[max(Y 1, . . . ,Y n)] ≤ E[max(X1, . . . ,Xn)].

However, E[max(Y 1, . . . ,Y n)] cannot be expressed in terms
of M1, . . . ,Mn.
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Unbounded independent case

Theorem (H., Jagers, Sudbury & Tokarev, 2009)

If X1, . . . ,Xn are independent random variables with the property
that E[max(X 1

i , . . . ,X
n
i )] = Mi , i = 1, 2, ..., n , then

1

n

n∑
i=1

Mi ≤ E[max(X1, . . . ,Xn)]

≤ 1

n

n∑
i=1

Mi +
n − 1

n
max(M1, . . . ,Mn).

In particular, if Mi = M, i = 1, ..., n,

M ≤ E[max(X1, . . . ,Xn)] ≤ (2− 1/n)M.

The upper bound is obtained by letting some of the random
variables be concentrated on 0 and x and letting x →∞.
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Bounded independent case

Theorem (H. & Sudbury, 2011)

If a set of random variables X1, . . . ,Xn are independent, concen-
trated on [0, b] and s.t.

E[max(X 1
i , . . . ,X

n
i )] = Mi , i = 1, . . . , n,

then, putting Mn = max(M1, . . . ,Mn),

b −
n∏

i=1

(b −Mi )
1/n ≤ E[max(X1, . . . ,Xn)]

≤ b − (b −Mn)
n−1∏
i=1

(1−Mi/b)1/n.
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Bounded independent case

Corollary

In the case Mi = M, i = 1, . . . , n we have

M ≤ E[max(X1, . . . ,Xn)] ≤ b − b(1−M/b)2−1/n

where the latter expression approaches (2−1/n)M as b → +∞ and
M(2−M/b) as n→ +∞.
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Bounded independent case

Changing X into b − X transforms maxima into minima
immediately yielding the following result.

Corollary

The equivalent result for the minima, with m1 = min(m1, . . . ,mn),
is

m1

n∏
i=2

(mi/b)1/n ≤ E[min(X1, . . . ,Xn)] ≤
n∏

i=1

m
1/n
i .
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Dependent case

I What if the random variables are NOT independent.
I U, V and W are independent continuous random variables.

Let X = U ∧W and Y = V ∧W (a ∧ b = min(a, b)).

U

V

W
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Dependent case – Copulas

I If X has marginal F , Y has marginal G and they assume a
copula C , then (X ,Y ) has joint distribution

H(x , y) = C (F (x),G (y)).

I Recall that a copula is defined as satisfying:

I C is defined on [0, 1]× [0, 1];
I C (s, 0) = C (0, t) = 0;
I C (s, 1) = s and C (1, t) = t;
I C (s2, t2)− C (s2, t1)− C (s1, t2) + C (s1, t1) ≥ 0.

I Three examples

I Π(s, t) = st – independent case;
I M(s, t) = s ∧ t – perfectly positively related case;
I W (s, t) = (s + t − 1)+ – perfectly negatively related case;
I K (s, t) = s ∧ t −ψ(s ∧ t) + (s ∨ t)ψ(s ∧ t) – (U ∧W ,V ∧W ).
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Dependent case – A toy example

I n = 2.

I X1,X2 take at most 2 values and assume a copula C .

I pi = P(Xi = ai ), P(Xi = xi ) = 1− pi , ai ≤ xi .

I X 1
i and X 2

i inherit the copula of X1 and X2, C :

P(X 1
i = ai ,X

2
i = ai ) = C (pi , pi )

P(X 1
i = ai ,X

2
i = xi ) = pi − C (pi , pi )

P(X 1
i = xi ,X

2
i = ai ) = pi − C (pi , pi )

P(X 1
i = xi ,X

2
i = xi ) = 1− 2pi + C (pi , pi )

I Mi = E[max(X 1
i ,X

2
i )] = C (pi , pi )ai + (1− C (pi , pi ))xi ,

i = 1, 2.
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Dependent case – A toy example

Assumption

We assume that for any (s, t),

C (s, t)− sC (t, t) ≥ 0 and C (s, t)− tC (s, s) ≥ 0. (?)

I Π, M and K satisfy this condition; W does not.

I If (U,V ) are uniform (0, 1) and have copula C , then (?)
translates to

P(U ≤ s|max(U,V ) ≤ t) ≥ P(U ≤ s), s < t.
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Dependent case – A toy example

Assume WLOG that a1 ≤ a2. We need to consider 3 cases:

x1

0 a1 a2 x2
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Dependent case – A toy example

0 a1 a2 x2x1

The case a1 ≤ x1 ≤ a2 ≤ x2 is trivial since in this case X2

dominates X1.
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Dependent case – A toy example

0 a1 a2 x2 x1M2

Assume a1 ≤ a2 ≤ x2 ≤ x1.

E[max(X1,M2)]− E[max(X1,X2)]

= p1M2 − C (p1, p2)a2 − (p1 − C (p1, p2))x2

=
(
C (p1, p2)− p1C (p2, p2)

)
(x2 − a2) ≥ 0.

Therefore we may replace X2 with M2.
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Dependent case – A toy example

0 a1 a2 x2x1

Assume a1 ≤ a2 ≤ x1 ≤ x2.
We vary a2 and x2 keeping p2 (and a1, x1, p1) constant:

E[max(X 1
2 ,X

2
2 )] = C (p2, p2)a2 + (1− C (p2, p2))x2 = M2.

Then, the linear function

E[max(X1,X2)] = C (p1, p2)a2 + (1− p2)x2 + (p2 − C (p1, p2))x1

is maximum at one of the 3 boundary points.
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Dependent case – A toy example

0 a1 a2 x2x1

I a2 = x1. In this case X2 dominates X1.

I a2 = a1. In this case we may collapse X1 into M1.

I x2 = x1. In this case we may collapse X2 into M2.

I In any case, we may assume that X2 = M2 and a1 ≤ M2 ≤ x1.
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Dependent case – A toy example

11

11
1 ax

Mxp
−
−

=

0 a1 x1M2

We vary a1 and p1 keeping x1 constant:

E[max(X 1
1 ,X

2
1 )] = C (p1, p1)a1 + (1− C (p1, p1))x1 = M1.

Then,

E[max(X1,M2)] = p1M2 + (1− p1)x1 = x1 − (x1 −M2)p1

is maximum for p1 minimum i.e. a1 = 0.
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Dependent case – A toy example

a1=0 x1M2

Therefore we may assume that X2 = M2, a1 = 0 and 0 ≤ M2 ≤ x1.

In this case

E[max(X1,X2)] = p1M2 + (1− p1)
M1

1− C (p1, p1)

Theorem

E[max(X1,X2)] ≤ sup
0≤r<1

(
M2r + M1

1− r

1− C (r , r)

)
.
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The upper bound for Π, M and K

Let γ(r) = C (r , r) and assume that M1 ≤ M2.

I C = Π. In this case γ(r) = r2, γ′(1) = 2 and

E[max(X1,X2)] ≤ 1

2
M1 + M2.

I C = M. In this case γ(r) = r , γ′(1) = 1 and

E[max(X1,X2)] ≤ M1 + M2.

I C = K . In this case γ(r) = r − ψ(r) + rψ(r), γ′(1) = 2 and

E[max(X1,X2)] ≤ 1

2
M1 + M2.

I Note that the definition of Mi depends on C and the three
bounds cannot be compared.
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