On the mixing advantage

Kais Hamza
Monash University

ANZAPW, July 2013, University of Queensland Joint work with Aidan Sudbury, Peter Jagers \& Daniel Tokarev

Introduction

Introduction

- X_{i}^{j}, X_{i} are the lifetime of an individual/unit and, $\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)$ and $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ represent the lifetime of population/system.
All random variables are assumed to be non-negative. $X_{i}, X_{i}^{1}, \ldots, X_{i}^{n}$ are identically distributed.

Introduction

- X_{i}^{j}, X_{i} are the lifetime of an individual/unit and, $\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)$ and $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ represent the lifetime of population/system.
All random variables are assumed to be non-negative.
$X_{i}, X_{i}^{1}, \ldots, X_{i}^{n}$ are identically distributed.
- $\begin{array}{llllll} & X_{1}^{1} & X_{1}^{2} & \ldots & X_{1}^{n} & \rightarrow\end{array} M_{1}=\mathbb{E}\left[\max \left(X_{1}^{1}, \ldots, X_{1}^{n}\right)\right]$

Introduction

- X_{i}^{j}, X_{i} are the lifetime of an individual/unit and, $\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)$ and $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ represent the lifetime of population/system.
All random variables are assumed to be non-negative.
$X_{i}, X_{i}^{1}, \ldots, X_{i}^{n}$ are identically distributed.
- $\begin{array}{llllll}X_{1} & X_{1}^{1} & X_{1}^{2} & \ldots & X_{1}^{n} & \rightarrow \\ M_{1} & =\mathbb{E}\left[\max \left(X_{1}^{1}, \ldots, X_{1}^{n}\right)\right]\end{array}$
$X_{2} \quad X_{2}^{1} \quad X_{2}^{2} \quad \ldots \quad X_{2}^{n} \quad \rightarrow \quad M_{2}=\mathbb{E}\left[\max \left(X_{2}^{1}, \ldots, X_{2}^{n}\right)\right]$

Introduction

- X_{i}^{j}, X_{i} are the lifetime of an individual/unit and, $\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)$ and $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ represent the lifetime of population/system.
All random variables are assumed to be non-negative.
$X_{i}, X_{i}^{1}, \ldots, X_{i}^{n}$ are identically distributed.
- $\begin{array}{llllll}X_{1} & X_{1}^{1} & X_{1}^{2} & \ldots & X_{1}^{n} & \rightarrow \\ M_{1} & =\mathbb{E}\left[\max \left(X_{1}^{1}, \ldots, X_{1}^{n}\right)\right]\end{array}$
$X_{2} \quad X_{2}^{1} \quad X_{2}^{2} \quad \ldots \quad X_{2}^{n} \quad \rightarrow \quad M_{2}=\mathbb{E}\left[\max \left(X_{2}^{1}, \ldots, X_{2}^{n}\right)\right]$

Introduction

- X_{i}^{j}, X_{i} are the lifetime of an individual/unit and, $\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)$ and $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ represent the lifetime of population/system.
All random variables are assumed to be non-negative.
$X_{i}, X_{i}^{1}, \ldots, X_{i}^{n}$ are identically distributed.
- $\begin{array}{llllll}X_{1} & X_{1}^{1} & X_{1}^{2} & \ldots & X_{1}^{n} & \rightarrow \\ M_{1} & =\mathbb{E}\left[\max \left(X_{1}^{1}, \ldots, X_{1}^{n}\right)\right]\end{array}$
$X_{2} \quad X_{2}^{1} \quad X_{2}^{2} \quad \ldots \quad X_{2}^{n} \quad \rightarrow \quad M_{2}=\mathbb{E}\left[\max \left(X_{2}^{1}, \ldots, X_{2}^{n}\right)\right]$
!
$X_{n} \quad X_{n}^{1} \quad X_{n}^{2} \quad \ldots \quad X_{n}^{n} \quad \rightarrow \quad M_{n}=\mathbb{E}\left[\max \left(X_{n}^{1}, \ldots, X_{n}^{n}\right)\right]$

Introduction

- X_{i}^{j}, X_{i} are the lifetime of an individual/unit and, $\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)$ and $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ represent the lifetime of population/system.
All random variables are assumed to be non-negative.
$X_{i}, X_{i}^{1}, \ldots, X_{i}^{n}$ are identically distributed.
- $\begin{array}{llllll}X_{1} & X_{1}^{1} & X_{1}^{2} & \ldots & X_{1}^{n} & \rightarrow \\ M_{1} & =\mathbb{E}\left[\max \left(X_{1}^{1}, \ldots, X_{1}^{n}\right)\right]\end{array}$
$X_{2} \quad X_{2}^{1} \quad X_{2}^{2} \quad \ldots \quad X_{2}^{n} \quad \rightarrow \quad M_{2}=\mathbb{E}\left[\max \left(X_{2}^{1}, \ldots, X_{2}^{n}\right)\right]$
;
$X_{n} \quad X_{n}^{1} \quad X_{n}^{2} \quad \ldots \quad X_{n}^{n} \quad \rightarrow \quad M_{n}=\mathbb{E}\left[\max \left(X_{n}^{1}, \ldots, X_{n}^{n}\right)\right]$
- We wish to compare $\mathbb{E}\left[\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]$ to $M_{i}=\mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right], i=1, \ldots, n$.

Introduction

Reliability - Warm Duplication Method

Introduction

Introduction

- Question: Is it better to mix or go with a single type?

Introduction

- Question: Is it better to mix or go with a single type?
- Obviously, if one type dominates all others, then choosing that type only is optimum.

Introduction

- Question: Is it better to mix or go with a single type?
- Obviously, if one type dominates all others, then choosing that type only is optimum.
- Question: What if all types are similar (no dominant type); i.e.

$$
\mathbb{E}\left[\max \left(X_{1}^{1}, \ldots, X_{1}^{n}\right)\right]=\ldots=\mathbb{E}\left[\max \left(X_{n}^{1}, \ldots, X_{n}^{n}\right)\right] ?
$$

Introduction

Introduction

Assume all random variables are independent.

Introduction

Assume all random variables are independent.

- It is easy to show (direct consequence of the arithmetic-geometric mean inequality) that

$$
\mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \geq \mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right]
$$

In fact, the same arithmetic-geometric mean inequality shows that

$$
\mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right]
$$

In other words, mixing is advantageous.

Introduction

Assume all random variables are independent.

- It is easy to show (direct consequence of the arithmetic-geometric mean inequality) that

$$
\mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \geq \mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right]
$$

In fact, the same arithmetic-geometric mean inequality shows that

$$
\mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \geq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right]
$$

In other words, mixing is advantageous.

- If $M_{i}=\mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right], i=1, \ldots, n$, we call mixing factor

$$
\theta=\frac{\mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]}{\max \left(M_{1}, \ldots, M_{n}\right)}
$$

We show that when $M_{i}=M, \theta \leq 2-1 / n<2$.

Existing literature

Kais Hamza

Existing literature

- An extensive literature exists on $\mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$ in the iid case - see David and Nagaraja (2003). However, very little work exists for the non-identically distributed case.

Existing literature

- An extensive literature exists on $\mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$ in the iid case - see David and Nagaraja (2003). However, very little work exists for the non-identically distributed case.
- Arnold and Groeneveld (1979) obtain upper and lower bounds on $\mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]$ even when X_{1}, \ldots, X_{n} are not independent and not identically distributed, but in terms of $\mathbb{E}\left[X_{1}\right]$ and $\operatorname{var}\left(X_{i}\right)$, not M_{1}, \ldots, M_{n}.
This generalises Hartley and David (1954) and Gumbel (1954) who deal with the iid case.

Existing literature

Kais Hamza

Existing literature

- Sen (1970) shows that $\max \left(X_{1}, \ldots, X_{n}\right)$ stochastically dominates $\max \left(Y^{1}, \ldots, Y^{n}\right)$, where Y^{1}, \ldots, Y^{n} are iid equally-weighted probability mixtures of X_{1}, \ldots, X_{n} :

$$
\mathbb{P}\left(\max \left(X_{1}, \ldots, X_{n}\right) \leq z\right) \leq \mathbb{P}\left(\max \left(Y^{1}, \ldots, Y^{n}\right) \leq z\right)
$$

In particular

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right] \\
& \quad \leq \mathbb{E}\left[\max \left(Y^{1}, \ldots, Y^{n}\right)\right] \leq \mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right]
\end{aligned}
$$

However, $\mathbb{E}\left[\max \left(Y^{1}, \ldots, Y^{n}\right)\right]$ cannot be expressed in terms of M_{1}, \ldots, M_{n}.

Unbounded independent case

Unbounded independent case

Theorem (H., Jagers, Sudbury \& Tokarev, 2009)

If X_{1}, \ldots, X_{n} are independent random variables with the property that $\mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right]=M_{i}, i=1,2, \ldots, n$, then

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} M_{i} & \leq \mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \\
& \leq \frac{1}{n} \sum_{i=1}^{n} M_{i}+\frac{n-1}{n} \max \left(M_{1}, \ldots, M_{n}\right)
\end{aligned}
$$

In particular, if $M_{i}=M, i=1, \ldots, n$,

$$
M \leq \mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \leq(2-1 / n) M .
$$

Unbounded independent case

Theorem (H., Jagers, Sudbury \& Tokarev, 2009)

If X_{1}, \ldots, X_{n} are independent random variables with the property that $\mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right]=M_{i}, i=1,2, \ldots, n$, then

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} M_{i} & \leq \mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \\
& \leq \frac{1}{n} \sum_{i=1}^{n} M_{i}+\frac{n-1}{n} \max \left(M_{1}, \ldots, M_{n}\right)
\end{aligned}
$$

In particular, if $M_{i}=M, i=1, \ldots, n$,

$$
M \leq \mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \leq(2-1 / n) M .
$$

The upper bound is obtained by letting some of the random variables be concentrated on 0 and x and letting $x \rightarrow \infty$.

Bounded independent case

Bounded independent case

Theorem (H. \& Sudbury, 2011)

If a set of random variables X_{1}, \ldots, X_{n} are independent, concentrated on $[0, b]$ and s.t.

$$
\mathbb{E}\left[\max \left(X_{i}^{1}, \ldots, X_{i}^{n}\right)\right]=M_{i}, i=1, \ldots, n,
$$

then, putting $M_{n}=\max \left(M_{1}, \ldots, M_{n}\right)$,

$$
\begin{aligned}
b-\prod_{i=1}^{n}\left(b-M_{i}\right)^{1 / n} & \leq \mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \\
& \leq b-\left(b-M_{n}\right) \prod_{i=1}^{n-1}\left(1-M_{i} / b\right)^{1 / n}
\end{aligned}
$$

Bounded independent case

Bounded independent case

Corollary

In the case $M_{i}=M, i=1, \ldots, n$ we have

$$
M \leq \mathbb{E}\left[\max \left(X_{1}, \ldots, X_{n}\right)\right] \leq b-b(1-M / b)^{2-1 / n}
$$

where the latter expression approaches $(2-1 / n) M$ as $b \rightarrow+\infty$ and $M(2-M / b)$ as $n \rightarrow+\infty$.

Bounded independent case

Bounded independent case

Changing X into $b-X$ transforms maxima into minima immediately yielding the following result.

Bounded independent case

Changing X into $b-X$ transforms maxima into minima immediately yielding the following result.

Corollary

The equivalent result for the minima, with $m_{1}=\min \left(m_{1}, \ldots, m_{n}\right)$, is

$$
m_{1} \prod_{i=2}^{n}\left(m_{i} / b\right)^{1 / n} \leq \mathbb{E}\left[\min \left(X_{1}, \ldots, X_{n}\right)\right] \leq \prod_{i=1}^{n} m_{i}^{1 / n}
$$

Dependent case

Dependent case

- What if the random variables are NOT independent.

Dependent case

- What if the random variables are NOT independent.
- U, V and W are independent continuous random variables.

$$
\text { Let } X=U \wedge W \text { and } Y=V \wedge W(a \wedge b=\min (a, b))
$$

Dependent case

- What if the random variables are NOT independent.
- U, V and W are independent continuous random variables.

$$
\text { Let } X=U \wedge W \text { and } Y=V \wedge W(a \wedge b=\min (a, b))
$$

Dependent case

- What if the random variables are NOT independent.
- U, V and W are independent continuous random variables.

$$
\text { Let } X=U \wedge W \text { and } Y=V \wedge W(a \wedge b=\min (a, b))
$$

Dependent case - Copulas

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;
- $C(s, 0)=C(0, t)=0$;

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;
- $C(s, 0)=C(0, t)=0$;
- $C(s, 1)=s$ and $C(1, t)=t$;

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;
- $C(s, 0)=C(0, t)=0$;
- $C(s, 1)=s$ and $C(1, t)=t$;
- $C\left(s_{2}, t_{2}\right)-C\left(s_{2}, t_{1}\right)-C\left(s_{1}, t_{2}\right)+C\left(s_{1}, t_{1}\right) \geq 0$.

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;
- $C(s, 0)=C(0, t)=0$;
- $C(s, 1)=s$ and $C(1, t)=t$;
- $C\left(s_{2}, t_{2}\right)-C\left(s_{2}, t_{1}\right)-C\left(s_{1}, t_{2}\right)+C\left(s_{1}, t_{1}\right) \geq 0$.
- Three examples

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;
- $C(s, 0)=C(0, t)=0$;
- $C(s, 1)=s$ and $C(1, t)=t$;
- $C\left(s_{2}, t_{2}\right)-C\left(s_{2}, t_{1}\right)-C\left(s_{1}, t_{2}\right)+C\left(s_{1}, t_{1}\right) \geq 0$.
- Three examples
- $\Pi(s, t)=s t$ - independent case;

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;
- $C(s, 0)=C(0, t)=0$;
- $C(s, 1)=s$ and $C(1, t)=t$;
- $C\left(s_{2}, t_{2}\right)-C\left(s_{2}, t_{1}\right)-C\left(s_{1}, t_{2}\right)+C\left(s_{1}, t_{1}\right) \geq 0$.
- Three examples
- $\Pi(s, t)=s t$ - independent case;
- $M(s, t)=s \wedge t$ - perfectly positively related case;

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;
- $C(s, 0)=C(0, t)=0$;
- $C(s, 1)=s$ and $C(1, t)=t$;
- $C\left(s_{2}, t_{2}\right)-C\left(s_{2}, t_{1}\right)-C\left(s_{1}, t_{2}\right)+C\left(s_{1}, t_{1}\right) \geq 0$.
- Three examples
- $\Pi(s, t)=s t$ - independent case;
- $M(s, t)=s \wedge t$ - perfectly positively related case;
- $W(s, t)=(s+t-1)^{+}$- perfectly negatively related case;

Dependent case - Copulas

- If X has marginal F, Y has marginal G and they assume a copula C, then (X, Y) has joint distribution

$$
H(x, y)=C(F(x), G(y))
$$

- Recall that a copula is defined as satisfying:
- C is defined on $[0,1] \times[0,1]$;
- $C(s, 0)=C(0, t)=0$;
- $C(s, 1)=s$ and $C(1, t)=t$;
- $C\left(s_{2}, t_{2}\right)-C\left(s_{2}, t_{1}\right)-C\left(s_{1}, t_{2}\right)+C\left(s_{1}, t_{1}\right) \geq 0$.
- Three examples
- $\Pi(s, t)=s t$ - independent case;
- $M(s, t)=s \wedge t$ - perfectly positively related case;
- $W(s, t)=(s+t-1)^{+}$- perfectly negatively related case;
- $K(s, t)=s \wedge t-\psi(s \wedge t)+(s \vee t) \psi(s \wedge t)-(U \wedge W, V \wedge W)$.

Dependent case - A toy example

Dependent case - A toy example

- $n=2$.

Dependent case - A toy example

- $n=2$.
- X_{1}, X_{2} take at most 2 values and assume a copula C.

Dependent case - A toy example

- $n=2$.
- X_{1}, X_{2} take at most 2 values and assume a copula C.
- $p_{i}=\mathbb{P}\left(X_{i}=a_{i}\right), \mathbb{P}\left(X_{i}=x_{i}\right)=1-p_{i}, a_{i} \leq x_{i}$.

Dependent case - A toy example

- $n=2$.
- X_{1}, X_{2} take at most 2 values and assume a copula C.
- $p_{i}=\mathbb{P}\left(X_{i}=a_{i}\right), \mathbb{P}\left(X_{i}=x_{i}\right)=1-p_{i}, a_{i} \leq x_{i}$.
- X_{i}^{1} and X_{i}^{2} inherit the copula of X_{1} and X_{2}, C :

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}^{1}=a_{i}, X_{i}^{2}=a_{i}\right)=C\left(p_{i}, p_{i}\right) \\
& \mathbb{P}\left(X_{i}^{1}=a_{i}, X_{i}^{2}=x_{i}\right)=p_{i}-C\left(p_{i}, p_{i}\right) \\
& \mathbb{P}\left(X_{i}^{1}=x_{i}, X_{i}^{2}=a_{i}\right)=p_{i}-C\left(p_{i}, p_{i}\right) \\
& \mathbb{P}\left(X_{i}^{1}=x_{i}, X_{i}^{2}=x_{i}\right)=1-2 p_{i}+C\left(p_{i}, p_{i}\right)
\end{aligned}
$$

Dependent case - A toy example

- $n=2$.
- X_{1}, X_{2} take at most 2 values and assume a copula C.
- $p_{i}=\mathbb{P}\left(X_{i}=a_{i}\right), \mathbb{P}\left(X_{i}=x_{i}\right)=1-p_{i}, a_{i} \leq x_{i}$.
- X_{i}^{1} and X_{i}^{2} inherit the copula of X_{1} and X_{2}, C :

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}^{1}=a_{i}, X_{i}^{2}=a_{i}\right)=C\left(p_{i}, p_{i}\right) \\
& \mathbb{P}\left(X_{i}^{1}=a_{i}, X_{i}^{2}=x_{i}\right)=p_{i}-C\left(p_{i}, p_{i}\right) \\
& \mathbb{P}\left(X_{i}^{1}=x_{i}, X_{i}^{2}=a_{i}\right)=p_{i}-C\left(p_{i}, p_{i}\right) \\
& \mathbb{P}\left(X_{i}^{1}=x_{i}, X_{i}^{2}=x_{i}\right)=1-2 p_{i}+C\left(p_{i}, p_{i}\right)
\end{aligned}
$$

- $M_{i}=\mathbb{E}\left[\max \left(X_{i}^{1}, X_{i}^{2}\right)\right]=C\left(p_{i}, p_{i}\right) a_{i}+\left(1-C\left(p_{i}, p_{i}\right)\right) x_{i}$, $i=1,2$.

Dependent case - A toy example

Dependent case - A toy example

Assumption

We assume that for any (s, t),

$$
C(s, t)-s C(t, t) \geq 0 \text { and } C(s, t)-t C(s, s) \geq 0 .
$$

- Π, M and K satisfy this condition; W does not.

Dependent case - A toy example

Assumption

We assume that for any (s, t),

$$
C(s, t)-s C(t, t) \geq 0 \text { and } C(s, t)-t C(s, s) \geq 0
$$

- Π, M and K satisfy this condition; W does not.
- If (U, V) are uniform $(0,1)$ and have copula C, then (\star) translates to

$$
\mathbb{P}(U \leq s \mid \max (U, V) \leq t) \geq \mathbb{P}(U \leq s), \quad s<t
$$

Dependent case - A toy example

Dependent case - A toy example

Assume WLOG that $a_{1} \leq a_{2}$. We need to consider 3 cases:

Dependent case - A toy example

Assume WLOG that $a_{1} \leq a_{2}$. We need to consider 3 cases:

Dependent case - A toy example

Assume WLOG that $a_{1} \leq a_{2}$. We need to consider 3 cases:

Dependent case - A toy example

Assume WLOG that $a_{1} \leq a_{2}$. We need to consider 3 cases:

Dependent case - A toy example

Dependent case - A toy example

The case $a_{1} \leq x_{1} \leq a_{2} \leq x_{2}$ is trivial since in this case X_{2} dominates X_{1}.

Dependent case - A toy example

Dependent case - A toy example

Assume $a_{1} \leq a_{2} \leq x_{2} \leq x_{1}$.

Dependent case - A toy example

Assume $a_{1} \leq a_{2} \leq x_{2} \leq x_{1}$.

$$
\begin{aligned}
& \mathbb{E}\left[\max \left(X_{1}, M_{2}\right)\right]-\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \\
& \quad=p_{1} M_{2}-C\left(p_{1}, p_{2}\right) a_{2}-\left(p_{1}-C\left(p_{1}, p_{2}\right)\right) x_{2} \\
& \quad=\left(C\left(p_{1}, p_{2}\right)-p_{1} C\left(p_{2}, p_{2}\right)\right)\left(x_{2}-a_{2}\right) \geq 0
\end{aligned}
$$

Dependent case - A toy example

Assume $a_{1} \leq a_{2} \leq x_{2} \leq x_{1}$.

$$
\begin{aligned}
& \mathbb{E}\left[\max \left(X_{1}, M_{2}\right)\right]-\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \\
& \quad=p_{1} M_{2}-C\left(p_{1}, p_{2}\right) a_{2}-\left(p_{1}-C\left(p_{1}, p_{2}\right)\right) x_{2} \\
& \quad=\left(C\left(p_{1}, p_{2}\right)-p_{1} C\left(p_{2}, p_{2}\right)\right)\left(x_{2}-a_{2}\right) \geq 0
\end{aligned}
$$

Therefore we may replace X_{2} with M_{2}.

Dependent case - A toy example

Dependent case - A toy example

Assume $a_{1} \leq a_{2} \leq x_{1} \leq x_{2}$.

Dependent case - A toy example

Assume $a_{1} \leq a_{2} \leq x_{1} \leq x_{2}$.
We vary a_{2} and x_{2} keeping p_{2} (and a_{1}, x_{1}, p_{1}) constant:

$$
\mathbb{E}\left[\max \left(X_{2}^{1}, X_{2}^{2}\right)\right]=C\left(p_{2}, p_{2}\right) a_{2}+\left(1-C\left(p_{2}, p_{2}\right)\right) x_{2}=M_{2} .
$$

Dependent case - A toy example

Assume $a_{1} \leq a_{2} \leq x_{1} \leq x_{2}$.
We vary a_{2} and x_{2} keeping p_{2} (and a_{1}, x_{1}, p_{1}) constant:

$$
\mathbb{E}\left[\max \left(X_{2}^{1}, X_{2}^{2}\right)\right]=C\left(p_{2}, p_{2}\right) a_{2}+\left(1-C\left(p_{2}, p_{2}\right)\right) x_{2}=M_{2} .
$$

Then, the linear function

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right]=C\left(p_{1}, p_{2}\right) a_{2}+\left(1-p_{2}\right) x_{2}+\left(p_{2}-C\left(p_{1}, p_{2}\right)\right) x_{1}
$$

is maximum at one of the 3 boundary points.

Dependent case - A toy example

Dependent case - A toy example

Assume $a_{1} \leq a_{2} \leq x_{1} \leq x_{2}$.
We vary a_{2} and x_{2} keeping p_{2} (and a_{1}, x_{1}, p_{1}) constant:

$$
\mathbb{E}\left[\max \left(X_{2}^{1}, X_{2}^{2}\right)\right]=C\left(p_{2}, p_{2}\right) a_{2}+\left(1-C\left(p_{2}, p_{2}\right)\right) x_{2}=M_{2} .
$$

Then, the linear function

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right]=C\left(p_{1}, p_{2}\right) a_{2}+\left(1-p_{2}\right) x_{2}+\left(p_{2}-C\left(p_{1}, p_{2}\right)\right) x_{1}
$$

is maximum at one of the 3 boundary points.

Dependent case - A toy example

- $a_{2}=x_{1}$. In this case X_{2} dominates X_{1}.

Dependent case - A toy example

- $a_{2}=x_{1}$. In this case X_{2} dominates X_{1}.
- $a_{2}=a_{1}$. In this case we may collapse X_{1} into M_{1}.

Dependent case - A toy example

- $a_{2}=x_{1}$. In this case X_{2} dominates X_{1}.
- $a_{2}=a_{1}$. In this case we may collapse X_{1} into M_{1}.
- $x_{2}=x_{1}$. In this case we may collapse X_{2} into M_{2}.

Dependent case - A toy example

- $a_{2}=x_{1}$. In this case X_{2} dominates X_{1}.
- $a_{2}=a_{1}$. In this case we may collapse X_{1} into M_{1}.
- $x_{2}=x_{1}$. In this case we may collapse X_{2} into M_{2}.
- In any case, we may assume that $X_{2}=M_{2}$ and $a_{1} \leq M_{2} \leq x_{1}$.

Dependent case - A toy example

Dependent case - A toy example

We vary a_{1} and p_{1} keeping x_{1} constant:

$$
\mathbb{E}\left[\max \left(X_{1}^{1}, X_{1}^{2}\right)\right]=C\left(p_{1}, p_{1}\right) a_{1}+\left(1-C\left(p_{1}, p_{1}\right)\right) x_{1}=M_{1}
$$

Dependent case - A toy example

We vary a_{1} and p_{1} keeping x_{1} constant:

$$
\mathbb{E}\left[\max \left(X_{1}^{1}, X_{1}^{2}\right)\right]=C\left(p_{1}, p_{1}\right) a_{1}+\left(1-C\left(p_{1}, p_{1}\right)\right) x_{1}=M_{1}
$$

Then,

$$
\mathbb{E}\left[\max \left(X_{1}, M_{2}\right)\right]=p_{1} M_{2}+\left(1-p_{1}\right) x_{1}=x_{1}-\left(x_{1}-M_{2}\right) p_{1}
$$

is maximum for p_{1} minimum i.e. $a_{1}=0$.

Dependent case - A toy example

Therefore we may assume that $X_{2}=M_{2}, a_{1}=0$ and $0 \leq M_{2} \leq x_{1}$.

Dependent case - A toy example

$$
a_{1}=0 \quad M_{2} \quad x_{1}
$$

Therefore we may assume that $X_{2}=M_{2}, a_{1}=0$ and $0 \leq M_{2} \leq x_{1}$. In this case

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right]=p_{1} M_{2}+\left(1-p_{1}\right) \frac{M_{1}}{1-C\left(p_{1}, p_{1}\right)}
$$

Theorem

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq \sup _{0 \leq r<1}\left(M_{2} r+M_{1} \frac{1-r}{1-C(r, r)}\right)
$$

The upper bound for Π, M and K

The upper bound for Π, M and K

Let $\gamma(r)=C(r, r)$ and assume that $M_{1} \leq M_{2}$.

- $C=\Pi$. In this case $\gamma(r)=r^{2}, \gamma^{\prime}(1)=2$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq \frac{1}{2} M_{1}+M_{2}
$$

The upper bound for Π, M and K

Let $\gamma(r)=C(r, r)$ and assume that $M_{1} \leq M_{2}$.

- $C=\Pi$. In this case $\gamma(r)=r^{2}, \gamma^{\prime}(1)=2$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq \frac{1}{2} M_{1}+M_{2}
$$

- $C=M$. In this case $\gamma(r)=r, \gamma^{\prime}(1)=1$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq M_{1}+M_{2}
$$

The upper bound for Π, M and K

Let $\gamma(r)=C(r, r)$ and assume that $M_{1} \leq M_{2}$.

- $C=\Pi$. In this case $\gamma(r)=r^{2}, \gamma^{\prime}(1)=2$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq \frac{1}{2} M_{1}+M_{2}
$$

- $C=M$. In this case $\gamma(r)=r, \gamma^{\prime}(1)=1$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq M_{1}+M_{2}
$$

- $C=K$. In this case $\gamma(r)=r-\psi(r)+r \psi(r), \gamma^{\prime}(1)=2$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq \frac{1}{2} M_{1}+M_{2}
$$

The upper bound for Π, M and K

Let $\gamma(r)=C(r, r)$ and assume that $M_{1} \leq M_{2}$.

- $C=\Pi$. In this case $\gamma(r)=r^{2}, \gamma^{\prime}(1)=2$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq \frac{1}{2} M_{1}+M_{2}
$$

- $C=M$. In this case $\gamma(r)=r, \gamma^{\prime}(1)=1$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq M_{1}+M_{2}
$$

- $C=K$. In this case $\gamma(r)=r-\psi(r)+r \psi(r), \gamma^{\prime}(1)=2$ and

$$
\mathbb{E}\left[\max \left(X_{1}, X_{2}\right)\right] \leq \frac{1}{2} M_{1}+M_{2}
$$

- Note that the definition of M_{i} depends on C and the three bounds cannot be compared.

References

- Arnold B.C. and Groeneveld R.A. (1979), Bounds on Expectations of Linear Systematic Statistics Based on Dependent Samples, Ann. Stat. 7, pp 220-223..
- Balakrishnan N. and Balasubramanian K. (2008), Revisiting Sen's inequalities on order statistics, Statist. Probab. Letters 78, pp 616-621.
- David H.A. and Nagaraja H.N. (2003), Order Statistics, John Wiley \& Sons, Hoboken, New Jersey, 3rd ed.
- Hamza K., Jagers P., Sudbury A. and Tokarev D. (2009), The mixing advantage is less than 2, Extremes 12, no. 1, pp 19-31.
- Hamza K. and Sudbury A. (2011), The mixing advantage for bounded random variables, Statist. Probab. Letters 81, no. 8, pp 1190-1195.

Refrences

- Hartley H.O. and David H.A. (1954), Universal Bounds for Mean Range and Extreme Observation, Ann. Math. Stat. 25, pp 85-89..
- Gumbel E.J. (1954), The Maxima of the Mean Largest Value and of the Range, Ann. Math. Stat. 25, pp 76-84..
- Sen P.K. (1970), A Note on Order Statistics for Heterogeneous Distributions, Ann. Math. Stat. 41, pp 2137-2139..
- Tokarev D. (2007), Galton-Watson processes and extinction in population systems, PhD Thesis, Monash University.

