Duality approach		Work in progress
Multitype br	anching processes	
· · ·	om environment	
vvouid the	y survive forever?	
Sophie	e Hautphenne	
Universi	ity of Melbourne	
Universit	ty of melbourne	
Australia New Zealand	Applied Probability Wo	rkshop
Bisbane,	8–11 July 2013	

Multitype Markovian branching processes

• Describe the evolution of a population of *m* types of individuals over time

Multitype Markovian branching processes

• Describe the evolution of a population of *m* types of individuals over time

• $\Omega := [\Omega_{ij}]$ where Ω_{ij} is the total rate of $i \to j$, $(1 \le i, j \le m)$.

Multitype Markovian branching processes

• Describe the evolution of a population of *m* types of individuals over time

• $\Omega := [\Omega_{ij}]$ where Ω_{ij} is the total rate of $i \to j$, $(1 \le i, j \le m)$.

• $e^{\Omega t}$: the expected population size matrix at time t

Formulation	Duality approach	
Extinction!		

•
$$\{Z_t, t \in \mathbb{R}^+\}, Z_t := (Z_{t1}, Z_{t2}, \dots, Z_{tm})$$

 Z_{ti} : the number of individuals of type *i* alive at time *t*

Formulation	Duality approach	
Extinction!		

• $\{Z_t, t \in \mathbb{R}^+\}, Z_t := (Z_{t1}, Z_{t2}, \dots, Z_{tm})$

 Z_{ti} : the number of individuals of type *i* alive at time *t*

• Extinction probability vector $\mathbf{q} := (q_1, q_2, \dots, q_m)$, with

$$q_i := \mathsf{P}\left[\exists T < \infty : \mathbf{Z}_T = \mathbf{0} | \mathbf{Z}_0 = \mathbf{e}_i\right]$$

Formulation	Duality approach	
Extinction!		

• $\{Z_t, t \in \mathbb{R}^+\}, Z_t := (Z_{t1}, Z_{t2}, \dots, Z_{tm})$

 Z_{ti} : the number of individuals of type *i* alive at time *t*

• Extinction probability vector $\mathbf{q} := (q_1, q_2, \dots, q_m)$, with

$$q_i := \mathsf{P}\left[\exists T < \infty : \mathbf{Z}_T = \mathbf{0} | \mathbf{Z}_0 = \mathbf{e}_i\right]$$

• Growth rate λ : dominant eigenvalue of Ω

$$\mathbf{q} = \mathbf{1} \quad \Leftrightarrow \quad \lambda \leq \mathbf{0}$$

3

Random environment

Markovian random environment

• $\{X(t) : t \in \mathbb{R}^+\}$: ergodic continuous-time Markov chain, s.t.

$$\Omega = \Omega^{(i)}$$
 when $X(t) = i$, $i \in \{1, 2, \dots, r\}$.

Markovian random environment

• $\{X(t): t \in \mathbb{R}^+\}$: ergodic continuous-time Markov chain, s.t.

- $\Omega = \Omega^{(i)}$ when X(t) = i, $i \in \{1, 2, \dots, r\}$.
- $\{\hat{X}_n : n \in \mathbb{N}\}$: jump chain associated with $\{X(t)\}$,
- $\{\xi_n : n \in \mathbb{N}\}$: sequence of intervals between two transitions in $\{X(t)\}$.

Markovian random environment

• $\{X(t): t \in \mathbb{R}^+\}$: ergodic continuous-time Markov chain, s.t.

$$\Omega = \Omega^{(i)}$$
 when $X(t) = i, i \in \{1, 2, \dots, r\}.$

- $\{\hat{X}_n : n \in \mathbb{N}\}$: jump chain associated with $\{X(t)\}$,
- $\{\xi_n : n \in \mathbb{N}\}$: sequence of intervals between two transitions in $\{X(t)\}$.

Theorem (Tanny, 1981)

There exists a constant ω such that

$$\lim_{n\to\infty}\frac{1}{n}\log\left\{e^{\Omega^{(\hat{X}_0)}\xi_0}e^{\Omega^{(\hat{X}_1)}\xi_1}\cdots e^{\Omega^{(\hat{X}_{n-1})}\xi_{n-1}}\right\}_{ij}=\omega \quad a.s.,$$

independently of *i* and *j*, and $\mathbf{q} = \mathbf{1} \Leftrightarrow \omega \leq \mathbf{0}$.

Formulation	Duality approach	
Motivation		

The limit

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log \left\{ e^{\Omega^{(\hat{X}_0)} \xi_0} e^{\Omega^{(\hat{X}_1)} \xi_1} \cdots e^{\Omega^{(\hat{X}_{n-1})} \xi_{n-1}} \right\}_{ij}$$

is generally hard to evaluate.

Formulation	Duality approach	Work in progress
Motivation		

The limit

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log \left\{ e^{\Omega^{(\hat{X}_0)} \xi_0} e^{\Omega^{(\hat{X}_1)} \xi_1} \cdots e^{\Omega^{(\hat{X}_{n-1})} \xi_{n-1}} \right\}_{ij}$$

is generally hard to evaluate.

With Guy Latouche and Giang Nguyen, we have worked on a similar problem:

S. Hautphenne, G. Latouche and G. Nguyen. (2013) Markovian trees subject to catastrophes: Would they survive forever? *Matrix-Analytic Methods in Stochastic Models. Springer Proceedings in Mathematics series.*

Formulation	Duality approach	Work in progress
Motivation		

The limit

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log \left\{ e^{\Omega^{(\hat{X}_0)} \xi_0} e^{\Omega^{(\hat{X}_1)} \xi_1} \cdots e^{\Omega^{(\hat{X}_{n-1})} \xi_{n-1}} \right\}_{ij}$$

is generally hard to evaluate.

With Guy Latouche and Giang Nguyen, we have worked on a similar problem:

S. Hautphenne, G. Latouche and G. Nguyen. (2013) Markovian trees subject to catastrophes: Would they survive forever? *Matrix-Analytic Methods in Stochastic Models. Springer Proceedings in Mathematics series.*

We have constructed lower and upper bounds for ω .

Formulation	Duality approach		Work in progress
Catastrophes			
Follow a Pollow a Pollow	oisson process with	rate $eta=1/{\it E}[\xi]$	

• At each catastrophe epoch: type *i* survives with probability δ_i , or dies with probability $1 - \delta_i$

7

Formulation	Duality approach	Work in progress
Extinction c	riteria	

• Survival probability matrix $\Delta_{\delta} := \operatorname{diag}(\delta_1, \ldots, \delta_m)$

- Survival probability matrix $\Delta_{\delta} := \operatorname{diag}(\delta_1, \ldots, \delta_m)$
- {ξ_n, n ≥ 1}: sequence of time intervals between catastrophes Here: ξ_n i.i.d and ~ Exp(β)

But our results hold for any stationary ergodic sequence

- Survival probability matrix $\Delta_{\delta} := \operatorname{diag}(\delta_1, \ldots, \delta_m)$
- {ξ_n, n ≥ 1}: sequence of time intervals between catastrophes Here: ξ_n i.i.d and ~ Exp(β)

But our results hold for any stationary ergodic sequence

Tanny's Theorem implies that there exists a constant ω such that

$$\lim_{n\to\infty}\frac{1}{n}\log\{e^{\Omega\xi_1}\Delta_{\delta}\,e^{\Omega\xi_2}\Delta_{\delta}\cdots e^{\Omega\xi_n}\Delta_{\delta}\}_{ij}=\omega \quad \text{ a.s.,}$$

independently of i and j, and

$$\mathbf{q} = \mathbf{1} \quad \Leftrightarrow \quad \omega \leq \mathbf{0}$$

Looking for bounds

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Omega \xi_1} \Delta_{\delta} e^{\Omega \xi_2} \Delta_{\delta} \cdots e^{\Omega \xi_n} \Delta_{\delta}\}_{ij}$$

9

Looking for bounds

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log\{ e^{\Omega \xi_1} \Delta_{\delta} e^{\Omega \xi_2} \Delta_{\delta} \cdots e^{\Omega \xi_n} \Delta_{\delta} \}_{ij}$$

• If killing is uniform, that is, $\delta := \delta_1 = \delta_2 = \cdots = \delta_m$, then $\omega = \lambda E[\xi] + \log \delta,$

where λ is the dominant eigenvalue of Ω

Example

Looking for bounds

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Omega \xi_1} \Delta_{\delta} e^{\Omega \xi_2} \Delta_{\delta} \cdots e^{\Omega \xi_n} \Delta_{\delta}\}_{ij}$$

• If killing is uniform, that is, $\delta := \delta_1 = \delta_2 = \cdots = \delta_m$, then

 $\omega = \lambda E[\xi] + \log \delta,$

where λ is the dominant eigenvalue of Ω

 If killing is not uniform, Δ_δ modifies the eigenvectors of e^{Ωξ} in different ways for different values of ξ

A duality approach	

(1) $\Omega^* := \Omega - \lambda I$: has one eigenvalue 0, and all others have strictly negative real part

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Omega \xi_1} \Delta_{\delta} \cdots e^{\Omega \xi_n} \Delta_{\delta}\}_{ij}$$
$$= \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Omega^* \xi_1} \Delta_{\delta} \cdots e^{\Omega^* \xi_n} \Delta_{\delta}\}_{ij}$$

Formulation	Duality approach	Example	Work in progress
A duality approa	h		

(1) $\Omega^* := \Omega - \lambda I$: has one eigenvalue 0, and all others have strictly negative real part

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Omega \xi_1} \Delta_{\delta} \cdots e^{\Omega \xi_n} \Delta_{\delta}\}_{ij}$$
$$= \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Omega^* \xi_1} \Delta_{\delta} \cdots e^{\Omega^* \xi_n} \Delta_{\delta}\}_{ij}$$

(2) Let v be the left eigenvector of Ω* corresponding to 0.
Define Θ:= Δ_ν⁻¹ Ω* Δ_ν, with Δ_ν = diag(v).
Θ is a generator!

$$\rightarrow \quad \omega = \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Theta \xi_1} \Delta_{\delta} \cdots e^{\Theta \xi_n} \Delta_{\delta}\}_{ij}$$

A duality approach

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Omega \xi_1} \Delta_{\delta} \cdots e^{\Omega \xi_n} \Delta_{\delta}\}_{ij}$$
$$= \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Theta \xi_1} \Delta_{\delta} \cdots e^{\Theta \xi_n} \Delta_{\delta}\}_{ij}$$

• Random matrices $e^{\Omega\xi} \Rightarrow$ random stochastic matrices $e^{\Theta\xi}$

Example

A duality approach

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Omega \xi_1} \Delta_{\delta} \cdots e^{\Omega \xi_n} \Delta_{\delta}\}_{ij}$$
$$= \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Theta \xi_1} \Delta_{\delta} \cdots e^{\Theta \xi_n} \Delta_{\delta}\}_{ij}$$

- Random matrices $e^{\Omega\xi} \Rightarrow$ random stochastic matrices $e^{\Theta\xi}$
- The whole population of a branching process ⇒ one single particle which evolves according to the Markov dual process {*φ*_t} with generator ⊖

Example

A duality approach

- $\{\theta_n, n \ge 1\}$: successive epochs of catastrophes
- S: first epoch when the single particle does not survive
- φ_n : the state of the single particle at catastrophe epoch θ_n

A duality approach

• $\{\theta_n, n \ge 1\}$: successive epochs of catastrophes

- S: first epoch when the single particle does not survive
- φ_n : the state of the single particle at catastrophe epoch θ_n

$$\omega = \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log\{e^{\Theta \xi_1} \Delta_\delta \cdots e^{\Theta \xi_n} \Delta_\delta\}_{ij}$$
$$= \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log P[S > \theta_n, \varphi_n = j | \varphi_0 = i, \theta_1, \dots, \theta_n]$$

An upper bound for $\boldsymbol{\omega}$

$$\omega = \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log P[S > \theta_n, \varphi_n = j | \varphi_0 = i, \theta_1, \dots, \theta_n]$$

$$\leq \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log E[P[S > \theta_n, \varphi_n = j | \varphi_0 = i, \theta_1, \dots, \theta_n]]$$

$$= \lambda E[\xi] + \lim_{n \to \infty} \frac{1}{n} \log P[S > \theta_n, \varphi_n = j | \varphi_0 = i]$$

$$= \lambda E[\xi] + \log sp\{\beta(\beta I - \Theta)^{-1} \Delta_{\delta}\}$$

 $\beta(\beta I - \Theta)^{-1}\Delta_{\delta}$: transition matrix for $\{\varphi_t\}$ embedded immediately after catastrophe epochs

13

A lower bound for ω

Bounds for Poisson catastrophes

In summary,

Theorem

$$\frac{\lambda}{\beta} + \sum_{1 \leq i \leq n} u_i v_i \log \delta_i \leq \omega \leq \frac{\lambda}{\beta} + \log sp \left[\beta \left(\beta I - \Theta\right)^{-1} \Delta_{\delta}\right]$$

where

$$\lambda = \text{dominant eigenvalue of } \Omega$$
,

 $\mathbf{u}, \mathbf{v} = \mathbf{u}$ left & right eigenvectors of Ω corresp. to λ , with $\mathbf{u}\mathbf{1} = 1$, $\mathbf{u}\mathbf{v} = 1$,

 $\Theta = \Delta_{\nu}^{-1}(\Omega - \lambda I)\Delta_{\nu}.$

The bounds are tight

Recall that when killing is uniform:

 $\omega = \lambda E[\xi] + \log \delta$

In this case,

$$\lambda E[\xi] + \sum_{1 \le i \le m} \pi_i \log \delta_i = \omega = \lambda E[\xi] + \log sp\{\beta(\beta I - \Theta)^{-1} \Delta_{\delta}\}$$

Example

North Atlantic right whales

North Atlantic right whales: The model

1=calf, 2=immature, 3=mature, 4=reproducing, 5=post-breeding

North Atlantic right whales: The effect of survival probabilities

Catastrophes follow a Poisson process with $E(\xi) = 25$ years

Example

Back to random environments

We have high hopes that the same type of duality approach may be used to find bounds for

$$\omega = \lim_{n \to \infty} \frac{1}{n} \log \left\{ e^{\Omega^{(\hat{X}_0)} \xi_0} e^{\Omega^{(\hat{X}_1)} \xi_1} \cdots e^{\Omega^{(\hat{X}_{n-1})} \xi_{n-1}} \right\}_{ij}$$

for more general random environments.

Work in progress

Markovian random environment with two states:

Theorem

 $\omega_{\ell} \leq \omega \leq \omega_{u}$ with

$$\omega_{\ell} = \frac{1}{2} [(\lambda_1/c_1 + \lambda_2/c_2) + (\pi_1 - \pi_2) \log(\Delta_{\mathbf{v}_1}^{-1} \mathbf{v}_2)]$$

$$\omega_{\mu} = \frac{1}{2} [(\lambda_1/c_1 + \lambda_2/c_2) + \log sp(\tilde{M})]$$

where

$$\tilde{M} = c_1 c_2 [(c_1 + \lambda_1)I - \Omega^{(1)}]^{-1} [(c_2 + \lambda_2)I - \Omega^{(2)}]^{-1}$$

$$c_i$$
 = parameter of the exponential sojour time in environment i

$$\lambda_i = \max$$
. eigenvalue of $\Omega^{(i)}$

$$\mathbf{u}_i, \mathbf{v}_i = \text{left } \& \text{ right eigenvectors corresp. to } \lambda_i, \text{ s.t. } \mathbf{u}_i^T \mathbf{1} = 1, \mathbf{u}_i^T \mathbf{v}_i = 1$$

 $\pi_i = \mathbf{u}_i^T \Delta_{\mathbf{v}_i}$

21

Thank you for your attention.