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Formulation Duality approach Example Work in progress

Multitype Markovian branching processes

Describe the evolution of a population of m types of
individuals over time

Ω := [Ωij ] where Ωij is the total rate of i → j , (1 ≤ i , j ≤ m).

eΩt : the expected population size matrix at time t
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Extinction!

{Zt , t ∈ R+}, Zt := (Zt1,Zt2, . . . ,Ztm)

Zti : the number of individuals of type i alive at time t

Extinction probability vector q := (q1, q2, . . . , qm), with

qi := P [∃T <∞ : ZT = 0|Z0 = ei ]

Growth rate λ: dominant eigenvalue of Ω

q = 1 ⇔ λ ≤ 0
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Random environment

Time 0 

State 1 State 3 State 2 

Ω(1) Ω(2) Ω(3)
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Markovian random environment

{X (t) : t ∈ R+}: ergodic continuous-time Markov chain, s.t.

Ω = Ω(i) when X (t) = i , i ∈ {1, 2, . . . , r}.

{X̂n : n ∈ N}: jump chain associated with {X (t)},

{ξn : n ∈ N}: sequence of intervals between two transitions in
{X (t)}.

Theorem (Tanny, 1981)

There exists a constant ω such that

lim
n→∞

1

n
log

{
eΩ(X̂0)ξ0 eΩ(X̂1)ξ1 · · · eΩ(X̂n−1)ξn−1

}
ij

= ω a.s.,

independently of i and j, and q = 1⇔ ω ≤ 0.
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Motivation

The limit

ω = lim
n→∞

1

n
log

{
eΩ(X̂0)ξ0 eΩ(X̂1)ξ1 · · · eΩ(X̂n−1)ξn−1

}
ij

is generally hard to evaluate.

With Guy Latouche and Giang Nguyen, we have worked on a
similar problem:

S. Hautphenne, G. Latouche and G. Nguyen. (2013)
Markovian trees subject to catastrophes: Would they survive forever?
Matrix-Analytic Methods in Stochastic Models. Springer Proceedings in
Mathematics series.

We have constructed lower and upper bounds for ω.
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Catastrophes

Follow a Poisson process with rate β = 1/E [ξ]

At each catastrophe epoch: type i survives with probability δi ,
or dies with probability 1− δi
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Extinction criteria

Survival probability matrix ∆δ := diag(δ1, . . . , δm)

{ξn, n ≥ 1}: sequence of time intervals between catastrophes

Here: ξn i.i.d and ∼ Exp(β)

But our results hold for any stationary ergodic sequence

Tanny’s Theorem implies that there exists a constant ω such that

lim
n→∞

1

n
log{eΩξ1∆δ eΩξ2∆δ · · · eΩξn∆δ}ij = ω a.s.,

independently of i and j , and

q = 1 ⇔ ω ≤ 0
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Looking for bounds

ω = lim
n→∞

1

n
log{eΩξ1∆δ eΩξ2∆δ · · · eΩξn∆δ}ij

If killing is uniform, that is, δ := δ1 = δ2 = · · · = δm, then

ω = λE [ξ] + log δ,

where λ is the dominant eigenvalue of Ω

If killing is not uniform, ∆δ modifies the eigenvectors of eΩξ

in different ways for different values of ξ
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A duality approach

(1) Ω∗ := Ω− λI : has one eigenvalue 0, and all others have
strictly negative real part

ω = lim
n→∞

1

n
log{eΩξ1∆δ · · · eΩξn∆δ}ij

ω = λE [ξ] + lim
n→∞

1

n
log{eΩ∗ξ1∆δ · · · eΩ∗ξn∆δ}ij

(2) Let v be the left eigenvector of Ω∗ corresponding to 0.

Define Θ:= ∆−1
v Ω∗∆v , with ∆v = diag(v).

Θ is a generator!

→ ω = λE [ξ] + lim
n→∞

1

n
log{eΘξ1∆δ · · · eΘξn∆δ}ij
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A duality approach

ω = lim
n→∞

1

n
log{eΩξ1∆δ · · · eΩξn∆δ}ij

ω = λE [ξ] + lim
n→∞

1

n
log{eΘξ1∆δ · · · eΘξn∆δ}ij

Random matrices eΩξ ⇒ random stochastic matrices eΘξ

The whole population of a branching process ⇒ one single
particle which evolves according to the Markov dual process
{ϕt} with generator Θ

ξ1 ξ2 

1st catastrophe 2nd catastrophe 

Time 
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A duality approach

ξ1 ξ2 

θ1 θ2 

1st catastrophe 2nd catastrophe 

Time 

{θn, n ≥ 1}: successive epochs of catastrophes

S : first epoch when the single particle does not survive

ϕn: the state of the single particle at catastrophe epoch θn

ω = λE [ξ] + lim
n→∞

1

n
log{eΘξ1∆δ · · · eΘξn∆δ}ij

ω = λE [ξ] + lim
n→∞

1

n
log P[S > θn, ϕn = j |ϕ0 = i , θ1, . . . , θn]

12
S. Hautphenne University of Melbourne Multitype branching processes



Formulation Duality approach Example Work in progress

A duality approach

ξ1 ξ2 

θ1 θ2 

1st catastrophe 2nd catastrophe 

Time 

{θn, n ≥ 1}: successive epochs of catastrophes

S : first epoch when the single particle does not survive

ϕn: the state of the single particle at catastrophe epoch θn

ω = λE [ξ] + lim
n→∞

1

n
log{eΘξ1∆δ · · · eΘξn∆δ}ij

ω = λE [ξ] + lim
n→∞

1

n
log P[S > θn, ϕn = j |ϕ0 = i , θ1, . . . , θn]

12
S. Hautphenne University of Melbourne Multitype branching processes



Formulation Duality approach Example Work in progress

An upper bound for ω

ξ1 ξ2 

θ1 θ2 

1st catastrophe 2nd catastrophe 

Time 

ω = λE [ξ] + lim
n→∞

1

n
log P[S > θn, ϕn = j |ϕ0 = i , θ1, . . . , θn]

ω ≤ λE [ξ] + lim
n→∞

1

n
log E [P[S > θn, ϕn = j |ϕ0 = i , θ1, . . . , θn]]

ω = λE [ξ] + lim
n→∞

1

n
log P[S > θn, ϕn = j |ϕ0 = i ]

ω = λE [ξ] + log sp{β(βI −Θ)−1∆δ}

β(βI −Θ)−1∆δ: transition matrix for {ϕt} embedded immediately
after catastrophe epochs
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A lower bound for ω

ξ1 ξ2 

θ1 θ2 

1st catastrophe 2nd catastrophe 

Time 

ω = λE [ξ] + lim
n→∞

1

n
log P[S > θn, ϕn = j |ϕ0 = i , θ1, . . . , θn]

ω ≥ λE [ξ] + lim
n→∞

1

n
log(P[S > θn, ϕn = j |ϕ0 = i , ϕ1, . . . , ϕn−1, θ1, . . . , θn])

ω = λE [ξ] + lim
n→∞

log δ
n1/n
1 δ

n2/n
2 · · · δnm/n

m [(eΘξn∆δ)ϕn−1,j ]
1/n

ω = λE [ξ] +
∑

1≤i≤m

πi log δi ,

π: stationary distribution of {ϕt}, π = uT ∆v

u and v: left and right eigenvectors of Ω∗ corresponding to 0
14
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Bounds for Poisson catastrophes

In summary,

Theorem

λ

β
+
∑

1≤i≤n

uivi log δi ≤ ω ≤ λ

β
+ log sp

[
β (βI −Θ)−1 ∆δ

]
where

λ = dominant eigenvalue of Ω,

u, v = left & right eigenvectors of Ω corresp. to λ, with u1 = 1, uv = 1,

Θ = ∆−1
v (Ω− λI )∆v .

15
S. Hautphenne University of Melbourne Multitype branching processes



Formulation Duality approach Example Work in progress

The bounds are tight

Recall that when killing is uniform:

ω = λE [ξ] + log δ

In this case,

λE [ξ] +
∑

1≤i≤m

πi log δi = ω = λE [ξ] + log sp{β(βI −Θ)−1∆δ}
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North Atlantic right whales
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North Atlantic right whales: The model

1=calf, 2=immature, 3=mature, 4=reproducing, 5=post-breeding

Transition rates

Birth rate
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North Atlantic right whales: The effect of survival
probabilities

Catastrophes follow a Poisson process with E (ξ) = 25 years

value of πδ — Right whales
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Back to random environments

We have high hopes that the same type of duality approach may
be used to find bounds for

ω = lim
n→∞

1

n
log

{
eΩ(X̂0)ξ0 eΩ(X̂1)ξ1 · · · eΩ(X̂n−1)ξn−1

}
ij

for more general random environments.
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Work in progress

Markovian random environment with two states:

Theorem

ω` ≤ ω ≤ ωu with

ω` =
1

2
[(λ1/c1 + λ2/c2) + (π1 − π2) log(∆−1

v1
v2)]

ωu =
1

2
[(λ1/c1 + λ2/c2) + log sp(M̃)]

where

M̃ = c1 c2 [(c1 + λ1)I − Ω(1)]−1 [(c2 + λ2)I − Ω(2)]−1

ci = parameter of the exponential sojour time in environment i

λi = max. eigenvalue of Ω(i)

ui , vi = left & right eigenvectors corresp. to λi , s.t. uT
i 1 = 1, uT

i vi = 1

πi = uT
i ∆vi
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Thank you for your attention.
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