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Stochastic Root-Finding Problem
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• Consider a function g : [0, 1]→ R.
• Assumption: There exists a unique X∗ ∈ [0, 1] such that

• g(x) > 0 for x < X ∗,
• g(x) < 0 for x > X ∗.

Goal: Find X∗ ∈ [0, 1].

• Can only observe Yn(Xn) = g(Xn) + εn(Xn), where εn(Xn) is a
conditionally independent noise sequence with zero mean (median).
Decisions:

• Where to place samples Xn for n = 0, 1, 2, . . .

• How to estimate X ∗ after n iterations.
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Applications

• Simulation optimization:
• g(x) as a gradient

• Finance:
• Pricing American options
• Estimating risk measures

• Computer science:
• Edge detection
• Image detection and tracking

Stochastic Root-Finding Probabilistic Bisection Algorithm Analysis Conclusions References 4/32



Waeber, Frazier, Henderson Probabilistic Bisection Search for Stochastic Root Finding

Stochastic Approximation [Robbins and Monro, 1951]
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1. Choose an initial estimate X0 ∈ [0, 1];

2. Select a tuning sequence (an)n ≥ 0,
∑∞

n=0 a 2
n <∞, and∑∞

n=0 an =∞.
(Example: an = d/n for d > 0.)

3. Xn+1 = Π[0,1](Xn + anYn(Xn)), where Π[0,1] is the projection to [0, 1].

Stochastic approximation is fragile.
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Isotonic Regression

1. Simulate at selected points in the interval (0, 1)

2. Minimize a sum of squared deviations from the sample values

3. Subject to a monotonicity constraint

4. Estimate root from regression function

5. Add points as necessary

Computationally intensive if warm starts are not possible.
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A Different Approach

What about a bisection algorithm?
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• Deterministic bisection algorithm will fail almost surely.
• Need to account for the noise.
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The Probabilistic Bisection Algorithm
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The Probabilistic Bisection Algorithm [Horstein, 1963]

• Input: Zn(Xn) := sign(Yn(Xn)).
• Assume a prior density f0 on [0, 1].
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Stochastic Root-Finding Revisited
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Zn(Xn) =

{
sign (g(Xn)) with probability p(Xn),

−sign (g(Xn)) with probability 1− p(Xn).

• The probability of a correct sign p(·) depends on g(·) and the noise
(εn)n.

• Stylized Setting:
• p(·) is constant.
• p(·) is known.
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Stylized Setting

Waeber et al. [2013]:
• Assume p(·) is constant and known
• Assume always measure at the median Xn

• Then E |Xn − X∗| = O(e−rn) for some r > 0
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Not so Stylized Setting
• g(x) is a step function with a jump at X∗, for example, in edge
detection applications [Castro and Nowak, 2008].

• Sample sequentially at point Xn and use Sm(Xn) =
∑m

i=1 Yn,i(Xn) to
construct an α-level test of power 1 [Siegmund, 1985]:

Nn = inf
{
m : |Sm| ≥ [(m + 1)(log(m + 1) + 2 log(1/α))]1/2

}
.

Then PXn=X∗ {Nn <∞} ≤ α, PXn 6=X∗ {Nn <∞} = 1, and
PXn<X∗ {SNn(Xn) > 0} ≥ 1− α/2 = pc ,
PXn>X∗ {SNn(Xn) < 0} ≥ 1− α/2 = pc .
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The Probabilistic Bisection Algorithm [Horstein, 1963]

Notation: p(·) = pc ∈ (1/2, 1] and qc = 1− pc .

1. Place a prior density f0 on the root X∗, f0 has domain [0, 1].
Example: U(0, 1).

2. For n=0,1,2, . . .
(a) Measure at the median Xn := F −1

n (1/2).
(b) Update the posterior density:

if Zn(Xn) = +1, fn+1(x) =
{

2pc · fn(x), if x > Xn,

2qc · fn(x), if x ≤ Xn,

if Zn(Xn) = −1, fn+1(x) =
{

2qc · fn(x), if x > Xn,

2pc · fn(x), if x ≤ Xn.
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Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions

0 1

f
n
(x)

n = 10, X
n
 = 0.39721, Z

n
(X

n
) = −1

X*

X
n

Stochastic Root-Finding Probabilistic Bisection Algorithm Analysis Conclusions References 14/32



Waeber, Frazier, Henderson Probabilistic Bisection Search for Stochastic Root Finding

Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions
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Sample Path of Posterior Distributions

0 1

f
n
(x)

n = 150, X
n
 = 0.37261, Z

n
(X

n
) = 1

X*

X
n

Stochastic Root-Finding Probabilistic Bisection Algorithm Analysis Conclusions References 14/32



Waeber, Frazier, Henderson Probabilistic Bisection Search for Stochastic Root Finding

Comparison to Stochastic Approximation
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Literature Review: Probabilistic Bisection Algorithm

• First introduced in Horstein [1963].

• Discretized version: Burnashev and Zigangirov [1974].

• Feige et al. [1994], Karp and Kleinberg [2007], Ben-Or and Hassidim
[2008], Nowak [2008], Nowak [2009], ...

• Survey paper: Castro and Nowak [2008]

“The [probabilistic bisection] algorithm seems to work
extremely well in practice, but it is hard to analyze and
there are few theoretical guarantees for it, especially
pertaining error rates of convergence.”
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Algorithm Analysis
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Consistency

Setting for probabilistic bisection with power 1 tests:
• X∗ ∈ [0, 1] fixed and unknown.
• Xn 6= X∗ for any finite n ∈ N.
• p(Xn) ≥ pc for all n ∈ N.
• pc ∈ (1/2, 1) is an input parameter.

Theorem
Xn → X∗ almost surely as n→∞.
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Analysis of Posterior Density

0 1

• If Zn = +1 :

fn+1(x) = 2qc · fn(x), x < Xn,

fn+1(x) = 2pc · fn(x), x ≥ Xn,

• If Zn = −1 :

fn+1(x) = 2pc · fn(x), x < Xn,

fn+1(x) = 2qc · fn(x), x ≥ Xn.
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Analysis of Posterior Density
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Case I: If X∗ < Xn : P(Zn = +1) = 1− p(Xn) ≤ 1− pc
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Analysis of Posterior Density

X
n

0 1X*

Case II: If X∗ > Xn : P(Zn = +1) = p(Xn) ≥ pc
• If Zn = +1 :

fn+1(x) = 2qc · fn(x), x < Xn,

fn+1(x) = 2pc · fn(x), x ≥ Xn,

• If Zn = −1 :

fn+1(x) = 2pc · fn(x), x < Xn,

fn+1(x) = 2qc · fn(x), x ≥ Xn.

Stochastic Root-Finding Probabilistic Bisection Algorithm Analysis Conclusions References 20/32



Waeber, Frazier, Henderson Probabilistic Bisection Search for Stochastic Root Finding

Analysis of Posterior Density cont.

• The dynamics of fn(x) are very complicated for almost all x ∈ [0, 1].

HOWEVER, the dynamics of fn(X∗) are rather simple:

fn+1(X∗) =

{
2pc · fn(X∗), with probability p(Xn) ≥ pc ,
2qc · fn(X∗), with probability q(Xn) ≤ qc .

• A sample path of fn(X∗) dominates a sample path of a coupled
geometric random walk (Wn)n with dynamics

Wn+1 =

{
2pc ·Wn, with probability pc ,
2qc ·Wn, with probability qc .

• The process fn(X∗) behaves almost like a geometric random walk
independently of (Xn)n.
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Confidence Intervals for X ∗

• Notation: µ = pc ln 2pc + qc ln 2qc .
• For α ∈ (0, 1), define

bn = nµ− n1/2(−0.5 lnα)1/2(ln 2pc − ln 2qc).

• Define
Jn = conv(x ∈ [0, 1] : fn(x) ≥ ebn).

Theorem
For α ∈ (0, 1),

P(X∗ ∈ Jn) ≥ 1− α,

for all n ∈ N.

Proof:
Application of Hoeffding’s inequality.

�
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Size of Confidence Interval
Theorem
Choose pc ≥ 0.85, α ∈ (0, 1). For 0 < r < µ− qc ln 2pc there exists a
N(pc , r , α) ∈ N, such that

P(|Jn| ≤ e−rn,X∗ ∈ Jn) ≥ 1− α,

for all n ≥ N(pc , r , α).

Proof Idea:

0 1
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Rate of Convergence

Theorem
Define X̂n to be any point in Jn, then there exists r > 0 such that

E[|X∗ − X̂n|] = O(e−rn).

• This is extremely fast compared to stochastic approximation:

O(e−rn) vs. O(n−1/2).

• And we have true confidence intervals for X∗.
• But n is the number of measurement points, what about total
wall-clock time?

Stochastic Root-Finding Probabilistic Bisection Algorithm Analysis Conclusions References 24/32



Waeber, Frazier, Henderson Probabilistic Bisection Search for Stochastic Root Finding

Rate of Convergence

Theorem
Define X̂n to be any point in Jn, then there exists r > 0 such that

E[|X∗ − X̂n|] = O(e−rn).

• This is extremely fast compared to stochastic approximation:

O(e−rn) vs. O(n−1/2).

• And we have true confidence intervals for X∗.
• But n is the number of measurement points, what about total
wall-clock time?

Stochastic Root-Finding Probabilistic Bisection Algorithm Analysis Conclusions References 24/32



Waeber, Frazier, Henderson Probabilistic Bisection Search for Stochastic Root Finding

Rate of Convergence

Theorem
Define X̂n to be any point in Jn, then there exists r > 0 such that

E[|X∗ − X̂n|] = O(e−rn).

• This is extremely fast compared to stochastic approximation:

O(e−rn) vs. O(n−1/2).

• And we have true confidence intervals for X∗.

• But n is the number of measurement points, what about total
wall-clock time?

Stochastic Root-Finding Probabilistic Bisection Algorithm Analysis Conclusions References 24/32



Waeber, Frazier, Henderson Probabilistic Bisection Search for Stochastic Root Finding

Rate of Convergence

Theorem
Define X̂n to be any point in Jn, then there exists r > 0 such that

E[|X∗ − X̂n|] = O(e−rn).

• This is extremely fast compared to stochastic approximation:

O(e−rn) vs. O(n−1/2).

• And we have true confidence intervals for X∗.
• But n is the number of measurement points, what about total
wall-clock time?

Stochastic Root-Finding Probabilistic Bisection Algorithm Analysis Conclusions References 24/32



Waeber, Frazier, Henderson Probabilistic Bisection Search for Stochastic Root Finding

Wall-Clock Time
At each iteration of the Probabilistic Bisection Algorithm:

• Sample sequentially at point Xn and observe
Sm(Xn) =

∑m
i=1 Yn,i(Xn), until

Nn = inf
{
m : |Sm| ≥ [(m + 1)(log(m + 1) + 2 log(1/α))]1/2

}
,

then PXn=X∗ {Nn <∞} ≤ α, PXn 6=X∗ {Nn <∞} = 1, and

PXn<X∗ {SNn(Xn) > 0} ≥ 1− α/2 = pc ,
PXn>X∗ {SNn(Xn) < 0} ≥ 1− α/2 = pc .

• Wall-clock time: Tn =
∑n

i=1 Nn.
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Sample Paths
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Numerical Comparison
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Rate of Convergence in Wall-Clock Time?
• Farrell [1964]:

Eg(x)[N] ∼ (1/g(x))2 log log(1/|g(x)|) as g(x)→ 0,

and for all tests of power one, if P0(N =∞) > 0, then

lim
g(x)→0

g(x)2Eg(x)[N] =∞.

Theorem
(|X∗ − Xn|(Tn)1/2)n is not tight.

• If
g(x)→ 0 as x → X∗,

and if we use Xn as the best estimate of X∗ then the Probabilistic
Bisection Algorithm with power one tests is asymptotically slower
than Stochastic Approximation.
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Conjecture

• Xn might not be the best estimate for X∗ when we use power one
tests.

• Intuitively, observations where we spend more time should also be
closer to X∗, hence an estimator of the form

X̃n =
1
Tn

n∑
i=1

NiXi

should perform better.

• Conjecture: For any ε > 0 it holds that

E[|X̃n − X∗|] = O(T−
1
2+εn ),

(if g satisfies some growth conditions).
• Sufficient Condition: |Xn − X∗| = O(e−rn) for some r > 0.
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Numerical Comparison Cont.
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Conclusions

Positive:
• Provides true confidence interval of the root X∗.
• Works extremely well if there is a jump at g(X∗) (geometric rate of
convergence).

• Only one tuning parameter.
• Robust finite-time performance

Drawbacks:

• Seems to be asymptotically slower than Stochastic Approximation (but not by much).
• Higher computational cost

Future Research:
• Use parallel computing (very little switching of (Xn)n).

• Extension to higher dimensions.
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