# Probabilistic Bisection Search for Stochastic Root Finding 

Rolf Waeber Peter I. Frazier Shane G. Henderson

Operations Research \& Information Engineering
Cornell University, Ithaca, NY
Research supported by AFOSR YIP FA9550-11-1-0083, NSF CMMI 1200315

Shameless Commerce
www.simopt.org

## Stochastic Root-Finding Problem



- Consider a function $g:[0,1] \rightarrow \mathbb{R}$.
- Assumption: There exists a unique $X^{*} \in[0,1]$ such that
- $g(x)>0$ for $x<X^{*}$,
- $g(x)<0$ for $x>X^{*}$.

Goal: Find $X^{*} \in[0,1]$.

## Stochastic Root-Finding Problem



- Consider a function $g:[0,1] \rightarrow \mathbb{R}$.
- Assumption: There exists a unique $X^{*} \in[0,1]$ such that
- $g(x)>0$ for $x<X^{*}$,
- $g(x)<0$ for $x>X^{*}$.

Goal: Find $X^{*} \in[0,1]$.

- Can only observe $Y_{n}\left(X_{n}\right)=g\left(X_{n}\right)+\varepsilon_{n}\left(X_{n}\right)$, where $\varepsilon_{n}\left(X_{n}\right)$ is a conditionally independent noise sequence with zero mean (median).


## Stochastic Root-Finding Problem



- Consider a function $g:[0,1] \rightarrow \mathbb{R}$.
- Assumption: There exists a unique $X^{*} \in[0,1]$ such that
- $g(x)>0$ for $x<X^{*}$,
- $g(x)<0$ for $x>X^{*}$.

Goal: Find $X^{*} \in[0,1]$.

- Can only observe $Y_{n}\left(X_{n}\right)=g\left(X_{n}\right)+\varepsilon_{n}\left(X_{n}\right)$, where $\varepsilon_{n}\left(X_{n}\right)$ is a conditionally independent noise sequence with zero mean (median).


## Decisions:

- Where to place samples $X_{n}$ for $n=0,1,2, \ldots$
- How to estimate $X^{*}$ after $n$ iterations.


## Applications

- Simulation optimization:
- $g(x)$ as a gradient
- Finance:
- Pricing American options
- Estimating risk measures
- Computer science:
- Edge detection
- Image detection and tracking


1. Choose an initial estimate $X_{0} \in[0,1]$;
2. Select a tuning sequence $\left(a_{n}\right)_{n} \geq 0, \sum_{n=0}^{\infty} a_{n}^{2}<\infty$, and $\sum_{n=0}^{\infty} a_{n}=\infty$.
(Example: $a_{n}=d / n$ for $d>0$.)
3. $X_{n+1}=\Pi_{[0,1]}\left(X_{n}+a_{n} Y_{n}\left(X_{n}\right)\right)$, where $\Pi_{[0,1]}$ is the projection to $[0,1]$.

## Stochastic Approximation [Robbins and Moorro, 1951]



1. Choose an initial estimate $X_{0} \in[0,1]$;
2. Select a tuning sequence $\left(a_{n}\right)_{n} \geq 0, \sum_{n=0}^{\infty} a_{n}^{2}<\infty$, and $\sum_{n=0}^{\infty} a_{n}=\infty$. (Example: $a_{n}=d / n$ for $d>0$.)
3. $X_{n+1}=\Pi_{[0,1]}\left(X_{n}+a_{n} Y_{n}\left(X_{n}\right)\right)$, where $\Pi_{[0,1]}$ is the projection to $[0,1]$.

Stochastic approximation is fragile.

## Isotonic Regression

1. Simulate at selected points in the interval $(0,1)$
2. Minimize a sum of squared deviations from the sample values
3. Subject to a monotonicity constraint
4. Estimate root from regression function
5. Add points as necessary

## Isotonic Regression

1. Simulate at selected points in the interval $(0,1)$
2. Minimize a sum of squared deviations from the sample values
3. Subject to a monotonicity constraint
4. Estimate root from regression function
5. Add points as necessary

Computationally intensive if warm starts are not possible.

## A Different Approach

What about a bisection algorithm?


- Deterministic bisection algorithm will fail almost surely.
- Need to account for the noise.


## The Probabilistic Bisection Algorithm

- Input: $Z_{n}\left(X_{n}\right):=\operatorname{sign}\left(Y_{n}\left(X_{n}\right)\right)$.
- Assume a prior density $f_{0}$ on $[0,1]$.



## The Probabilistic Bisection Algorithm [Horstein, 1963]

- Input: $Z_{n}\left(X_{n}\right):=\operatorname{sign}\left(Y_{n}\left(X_{n}\right)\right)$.
- Assume a prior density $f_{0}$ on $[0,1]$.



## The Probabilistic Bisection Algorithm [Horstein, 1963]

- Input: $Z_{n}\left(X_{n}\right):=\operatorname{sign}\left(Y_{n}\left(X_{n}\right)\right)$.
- Assume a prior density $f_{0}$ on $[0,1]$.


- Input: $Z_{n}\left(X_{n}\right):=\operatorname{sign}\left(Y_{n}\left(X_{n}\right)\right)$.
- Assume a prior density $f_{0}$ on $[0,1]$.



## Stochastic Root-Finding Revisited



$$
Z_{n}\left(X_{n}\right)= \begin{cases}\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } p\left(X_{n}\right) \\ -\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } 1-p\left(X_{n}\right)\end{cases}
$$

## Stochastic Root-Finding Revisited



$$
Z_{n}\left(X_{n}\right)= \begin{cases}\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } p\left(X_{n}\right) \\ -\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } 1-p\left(X_{n}\right)\end{cases}
$$

## Stochastic Root-Finding Revisited




$$
Z_{n}\left(X_{n}\right)= \begin{cases}\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } p\left(X_{n}\right) \\ -\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } 1-p\left(X_{n}\right)\end{cases}
$$

- The probability of a correct sign $p(\cdot)$ depends on $g(\cdot)$ and the noise $\left(\varepsilon_{n}\right)_{n}$.


## Stochastic Root-Finding Revisited




$$
Z_{n}\left(X_{n}\right)= \begin{cases}\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } p\left(X_{n}\right) \\ -\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } 1-p\left(X_{n}\right)\end{cases}
$$

- The probability of a correct sign $p(\cdot)$ depends on $g(\cdot)$ and the noise $\left(\varepsilon_{n}\right)_{n}$.
- Stylized Setting:
- $p(\cdot)$ is constant.


## Stochastic Root-Finding Revisited




$$
Z_{n}\left(X_{n}\right)= \begin{cases}\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } p\left(X_{n}\right) \\ -\operatorname{sign}\left(g\left(X_{n}\right)\right) & \text { with probability } 1-p\left(X_{n}\right)\end{cases}
$$

- The probability of a correct sign $p(\cdot)$ depends on $g(\cdot)$ and the noise $\left(\varepsilon_{n}\right)_{n}$.
- Stylized Setting:
- $p(\cdot)$ is constant.
- $p(\cdot)$ is known.


## Stylized Setting

Waeber et al. [2013]:

- Assume $p(\cdot)$ is constant and known
- Assume always measure at the median $X_{n}$
- Then $E\left|X_{n}-X^{*}\right|=O\left(e^{-r n}\right)$ for some $r>0$


## Not so Stylized Setting

- $g(x)$ is a step function with a jump at $X^{*}$, for example, in edge detection applications [Castro and Nowak, 2008].


## Not so Stylized Setting

- $g(x)$ is a step function with a jump at $X^{*}$, for example, in edge detection applications [Castro and Nowak, 2008].
- Sample sequentially at point $X_{n}$ and use $S_{m}\left(X_{n}\right)=\sum_{i=1}^{m} Y_{n, i}\left(X_{n}\right)$ to construct an $\alpha$-level test of power 1 [Siegmund, 1985]:

$$
N_{n}=\inf \left\{m:\left|S_{m}\right| \geq[(m+1)(\log (m+1)+2 \log (1 / \alpha))]^{1 / 2}\right\} .
$$

Then $\mathbb{P}_{X_{n}=X^{*}}\left\{N_{n}<\infty\right\} \leq \alpha, \mathbb{P}_{X_{n} \neq X^{*}}\left\{N_{n}<\infty\right\}=1$, and

$$
\begin{aligned}
& \mathbb{P}_{X_{n}<X^{*}}\left\{S_{N_{n}}\left(X_{n}\right) 0\right\} \geq 1-\alpha / 2=p_{c}, \\
& \mathbb{P}_{X_{n}>X^{*}}\left\{S_{N_{n}}\left(X_{n}\right)<0\right\} \geq 1-\alpha / 2=p_{c} .
\end{aligned}
$$




## The Probabilistic Bisection Algorithm [Horstein, 1963]

Notation: $p(\cdot)=p_{c} \in(1 / 2,1]$ and $q_{c}=1-p_{c}$.

## The Probabilistic Bisection Algorithm [Horstein, 1963]

Notation: $p(\cdot)=p_{c} \in(1 / 2,1]$ and $q_{c}=1-p_{c}$.

1. Place a prior density $f_{0}$ on the root $X^{*}, f_{0}$ has domain $[0,1]$.

Example: $U(0,1)$.
2. For $n=0,1,2, \ldots$
(a) Measure at the median $X_{n}:=F_{n}^{-1}(1 / 2)$.
(b) Update the posterior density:

$$
\begin{aligned}
& \text { if } Z_{n}\left(X_{n}\right)=+1, \\
& f_{n+1}(x)= \begin{cases}2 p_{c} \cdot f_{n}(x), & \text { if } x>X_{n}, \\
2 q_{c} \cdot f_{n}(x), & \text { if } x \leq X_{n},\end{cases} \\
& \text { if } Z_{n}\left(X_{n}\right)=-1, \\
& f_{n+1}(x)= \begin{cases}2 q_{c} \cdot f_{n}(x), & \text { if } x>X_{n}, \\
2 p_{c} \cdot f_{n}(x), & \text { if } x \leq X_{n} .\end{cases}
\end{aligned}
$$

## Sample Path of Posterior Distributions

$$
n=0, X_{n}=0.5, Z_{n}\left(X_{n}\right)=1
$$



## Sample Path of Posterior Distributions

$$
n=1, X_{n}=0.61538, Z_{n}\left(X_{n}\right)=1
$$



## Sample Path of Posterior Distributions

$$
n=2, X_{n}=0.70414, Z_{n}\left(X_{n}\right)=-1
$$



## Sample Path of Posterior Distributions

$$
n=3, X_{n}=0.63587, Z_{n}\left(X_{n}\right)=-1
$$



## Sample Path of Posterior Distributions

$$
n=4, X_{n}=0.55589, Z_{n}\left(X_{n}\right)=-1
$$



## Sample Path of Posterior Distributions

$$
n=5, X_{n}=0.46446, Z_{n}\left(X_{n}\right)=-1
$$



## Sample Path of Posterior Distributions

$$
n=10, X_{n}=0.39721, Z_{n}\left(X_{n}\right)=-1
$$



## Sample Path of Posterior Distributions



## Comparison to Stochastic Approximation



## Literature Review: Probabilistic Bisection Algorithm

- First introduced in Horstein [1963].
- Discretized version: Burnashev and Zigangirov [1974].
- Feige et al. [1994], Karp and Kleinberg [2007], Ben-Or and Hassidim [2008], Nowak [2008], Nowak [2009], ...
- Survey paper: Castro and Nowak [2008]


## Literature Review: Probabilistic Bisection Algorithm

- First introduced in Horstein [1963].
- Discretized version: Burnashev and Zigangirov [1974].
- Feige et al. [1994], Karp and Kleinberg [2007], Ben-Or and Hassidim [2008], Nowak [2008], Nowak [2009], ...
- Survey paper: Castro and Nowak [2008]
"The [probabilistic bisection] algorithm seems to work extremely well in practice, but it is hard to analyze and there are few theoretical guarantees for it, especially pertaining error rates of convergence."


## Algorithm Analysis

## Consistency

Setting for probabilistic bisection with power 1 tests:

- $X^{*} \in[0,1]$ fixed and unknown.
- $X_{n} \neq X^{*}$ for any finite $n \in \mathbb{N}$.
- $p\left(X_{n}\right) \geq p_{c}$ for all $n \in \mathbb{N}$.
- $p_{c} \in(1 / 2,1)$ is an input parameter.


## Consistency

Setting for probabilistic bisection with power 1 tests:

- $X^{*} \in[0,1]$ fixed and unknown.
- $X_{n} \neq X^{*}$ for any finite $n \in \mathbb{N}$.
- $p\left(X_{n}\right) \geq p_{c}$ for all $n \in \mathbb{N}$.
- $p_{c} \in(1 / 2,1)$ is an input parameter.


## Theorem

$X_{n} \rightarrow X^{*}$ almost surely as $n \rightarrow \infty$.

Analysis of Posterior Density


## Analysis of Posterior Density



- If $Z_{n}=+1$ :

$$
\begin{aligned}
& f_{n+1}(x)=2 q_{c} \cdot f_{n}(x), \quad x<X_{n}, \\
& f_{n+1}(x)=2 p_{c} \cdot f_{n}(x), \quad x \geq X_{n},
\end{aligned}
$$

- If $Z_{n}=-1$ :

$$
\begin{aligned}
& f_{n+1}(x)=2 p_{c} \cdot f_{n}(x), \quad x<X_{n}, \\
& f_{n+1}(x)=2 q_{c} \cdot f_{n}(x), \quad x \geq X_{n} .
\end{aligned}
$$

## Analysis of Posterior Density



Case I: If $X^{*}<X_{n}: \mathbb{P}\left(Z_{n}=+1\right)=1-p\left(X_{n}\right) \leq 1-p_{c}$

- If $Z_{n}=+1$ :

$$
\begin{aligned}
& f_{n+1}(x)=2 q_{c} \cdot f_{n}(x), \quad x<X_{n}, \\
& f_{n+1}(x)=2 p_{c} \cdot f_{n}(x), \quad x \geq X_{n},
\end{aligned}
$$

- If $Z_{n}=-1$ :

$$
\begin{aligned}
& f_{n+1}(x)=2 p_{c} \cdot f_{n}(x), \quad x<X_{n}, \\
& f_{n+1}(x)=2 q_{c} \cdot f_{n}(x), \quad x \geq X_{n} .
\end{aligned}
$$

## Analysis of Posterior Density



Case II: If $X^{*}>X_{n}: \mathbb{P}\left(Z_{n}=+1\right)=p\left(X_{n}\right) \geq p_{c}$

- If $Z_{n}=+1$ :

$$
\begin{aligned}
& f_{n+1}(x)=2 q_{c} \cdot f_{n}(x), \quad x<X_{n}, \\
& f_{n+1}(x)=2 p_{c} \cdot f_{n}(x), \quad x \geq X_{n},
\end{aligned}
$$

- If $Z_{n}=-1$ :

$$
\begin{aligned}
& f_{n+1}(x)=2 p_{c} \cdot f_{n}(x), \quad x<X_{n}, \\
& f_{n+1}(x)=2 q_{c} \cdot f_{n}(x), \quad x \geq X_{n} .
\end{aligned}
$$

## Analysis of Posterior Density cont.

- The dynamics of $f_{n}(x)$ are very complicated for almost all $x \in[0,1]$.


## Analysis of Posterior Density cont.

- The dynamics of $f_{n}(x)$ are very complicated for almost all $x \in[0,1]$. HOWEVER, the dynamics of $f_{n}\left(X^{*}\right)$ are rather simple:

$$
f_{n+1}\left(X^{*}\right)= \begin{cases}2 p_{c} \cdot f_{n}\left(X^{*}\right), & \text { with probability } p\left(X_{n}\right) \geq p_{c}, \\ 2 q_{c} \cdot f_{n}\left(X^{*}\right), & \text { with probability } q\left(X_{n}\right) \leq q_{c}\end{cases}
$$

## Analysis of Posterior Density cont.

- The dynamics of $f_{n}(x)$ are very complicated for almost all $x \in[0,1]$. HOWEVER, the dynamics of $f_{n}\left(X^{*}\right)$ are rather simple:

$$
f_{n+1}\left(X^{*}\right)= \begin{cases}2 p_{c} \cdot f_{n}\left(X^{*}\right), & \text { with probability } p\left(X_{n}\right) \geq p_{c} \\ 2 q_{c} \cdot f_{n}\left(X^{*}\right), & \text { with probability } q\left(X_{n}\right) \leq q_{c}\end{cases}
$$

- A sample path of $f_{n}\left(X^{*}\right)$ dominates a sample path of a coupled geometric random walk $\left(W_{n}\right)_{n}$ with dynamics

$$
W_{n+1}= \begin{cases}2 p_{c} \cdot W_{n}, & \text { with probability } p_{c}, \\ 2 q_{c} \cdot W_{n}, & \text { with probability } q_{c} .\end{cases}
$$

## Analysis of Posterior Density cont.

- The dynamics of $f_{n}(x)$ are very complicated for almost all $x \in[0,1]$. HOWEVER, the dynamics of $f_{n}\left(X^{*}\right)$ are rather simple:

$$
f_{n+1}\left(X^{*}\right)= \begin{cases}2 p_{c} \cdot f_{n}\left(X^{*}\right), & \text { with probability } p\left(X_{n}\right) \geq p_{c} \\ 2 q_{c} \cdot f_{n}\left(X^{*}\right), & \text { with probability } q\left(X_{n}\right) \leq q_{c}\end{cases}
$$

- A sample path of $f_{n}\left(X^{*}\right)$ dominates a sample path of a coupled geometric random walk $\left(W_{n}\right)_{n}$ with dynamics

$$
W_{n+1}= \begin{cases}2 p_{c} \cdot W_{n}, & \text { with probability } p_{c}, \\ 2 q_{c} \cdot W_{n}, & \text { with probability } q_{c} .\end{cases}
$$

- The process $f_{n}\left(X^{*}\right)$ behaves almost like a geometric random walk independently of $\left(X_{n}\right)_{n}$.


## Confidence Intervals for $X^{*}$

- Notation: $\mu=p_{c} \ln 2 p_{c}+q_{c} \ln 2 q_{c}$.
- For $\alpha \in(0,1)$, define

$$
b_{n}=n \mu-n^{1 / 2}(-0.5 \ln \alpha)^{1 / 2}\left(\ln 2 p_{c}-\ln 2 q_{c}\right) .
$$

- Define

$$
J_{n}=\operatorname{conv}\left(x \in[0,1]: f_{n}(x) \geq e^{b_{n}}\right) .
$$

## Confidence Intervals for $X^{*}$

- Notation: $\mu=p_{c} \ln 2 p_{c}+q_{c} \ln 2 q_{c}$.
- For $\alpha \in(0,1)$, define

$$
b_{n}=n \mu-n^{1 / 2}(-0.5 \ln \alpha)^{1 / 2}\left(\ln 2 p_{c}-\ln 2 q_{c}\right) .
$$

- Define

$$
J_{n}=\operatorname{conv}\left(x \in[0,1]: f_{n}(x) \geq e^{b_{n}}\right) .
$$

## Theorem

For $\alpha \in(0,1)$,

$$
\mathbb{P}\left(X^{*} \in J_{n}\right) \geq 1-\alpha,
$$

for all $n \in \mathbb{N}$.

## Confidence Intervals for $X^{*}$

- Notation: $\mu=p_{c} \ln 2 p_{c}+q_{c} \ln 2 q_{c}$.
- For $\alpha \in(0,1)$, define

$$
b_{n}=n \mu-n^{1 / 2}(-0.5 \ln \alpha)^{1 / 2}\left(\ln 2 p_{c}-\ln 2 q_{c}\right)
$$

- Define

$$
J_{n}=\operatorname{conv}\left(x \in[0,1]: f_{n}(x) \geq e^{b_{n}}\right) .
$$

## Theorem

For $\alpha \in(0,1)$,

$$
\mathbb{P}\left(X^{*} \in J_{n}\right) \geq 1-\alpha,
$$

for all $n \in \mathbb{N}$.
Proof:
Application of Hoeffding's inequality.

## Size of Confidence Interval

## Theorem

Choose $p_{c} \geq 0.85, \alpha \in(0,1)$. For $0<r<\mu-q_{c} \ln 2 p_{c}$ there exists a $N\left(p_{c}, r, \alpha\right) \in \mathbb{N}$, such that

$$
\mathbb{P}\left(\left|J_{n}\right| \leq e^{-r n}, X^{*} \in J_{n}\right) \geq 1-\alpha,
$$

for all $n \geq N\left(p_{c}, r, \alpha\right)$.

## Size of Confidence Interval

## Theorem

Choose $p_{c} \geq 0.85, \alpha \in(0,1)$. For $0<r<\mu-q_{c} \ln 2 p_{c}$ there exists a $N\left(p_{c}, r, \alpha\right) \in \mathbb{N}$, such that

$$
\mathbb{P}\left(\left|J_{n}\right| \leq e^{-r n}, X^{*} \in J_{n}\right) \geq 1-\alpha,
$$

for all $n \geq N\left(p_{c}, r, \alpha\right)$.

## Proof Idea:



Rate of Convergence

## Theorem

Define $\hat{X}_{n}$ to be any point in $J_{n}$, then there exists $r>0$ such that

$$
\left.\mathbb{E}\left[\mid X^{*}-\hat{X}_{n}\right]\right]=O\left(e^{-r \eta}\right) .
$$

## Theorem

Define $\hat{X}_{n}$ to be any point in $J_{n}$, then there exists $r>0$ such that

$$
\left.\mathbb{E}\left[\mid X^{*}-\hat{X}_{n}\right]\right]=O\left(e^{-r \eta}\right) .
$$

- This is extremely fast compared to stochastic approximation:

$$
O\left(e^{-r n}\right) \text { vs. } O\left(n^{-1 / 2}\right) .
$$

## Theorem

Define $\hat{X}_{n}$ to be any point in $J_{n}$, then there exists $r>0$ such that

$$
\left.\mathbb{E}\left[\mid X^{*}-\hat{X}_{n}\right]\right]=O\left(e^{-r \eta}\right) .
$$

- This is extremely fast compared to stochastic approximation:

$$
O\left(e^{-r n}\right) \text { vs. } O\left(n^{-1 / 2}\right)
$$

- And we have true confidence intervals for $X^{*}$.


## Theorem

Define $\hat{X}_{n}$ to be any point in $J_{n}$, then there exists $r>0$ such that

$$
\left.\mathbb{E}\left[\mid X^{*}-\hat{X}_{n}\right]\right]=O\left(e^{-r \eta}\right) .
$$

- This is extremely fast compared to stochastic approximation:

$$
O\left(e^{-r n}\right) \text { vs. } O\left(n^{-1 / 2}\right)
$$

- And we have true confidence intervals for $X^{*}$.
- But $n$ is the number of measurement points, what about total wall-clock time?


## Wall-Clock Time

At each iteration of the Probabilistic Bisection Algorithm:

- Sample sequentially at point $X_{n}$ and observe

$$
S_{m}\left(X_{n}\right)=\sum_{i=1}^{m} Y_{n, i}\left(X_{n}\right) \text {, until }
$$

$$
N_{n}=\inf \left\{m:\left|S_{m}\right| \geq[(m+1)(\log (m+1)+2 \log (1 / \alpha))]^{1 / 2}\right\}
$$

then $\mathbb{P}_{X_{n}=X^{*}}\left\{N_{n}<\infty\right\} \leq \alpha, \mathbb{P}_{X_{n} \neq X^{*}}\left\{N_{n}<\infty\right\}=1$, and

$$
\begin{aligned}
& \mathbb{P}_{X_{n}<X^{*}}\left\{S_{N_{n}}\left(X_{n}\right)>0\right\} \geq 1-\alpha / 2=p_{c}, \\
& \mathbb{P}_{X_{n}>X^{*}}\left\{S_{N_{n}}\left(X_{n}\right)<0\right\} \geq 1-\alpha / 2=p_{c} .
\end{aligned}
$$

- Wall-clock time: $T_{n}=\sum_{i=1}^{n} N_{n}$.




## Sample Paths



## Numerical Comparison



## Rate of Convergence in Wall-Clock Time?

- Farrell [1964]:

$$
\mathbb{E}_{g(x)}[N] \sim(1 / g(x))^{2} \log \log (1 /|g(x)|) \text { as } g(x) \rightarrow 0,
$$

and for all tests of power one, if $\mathbb{P}_{0}(N=\infty)>0$, then

$$
\lim _{g(x) \rightarrow 0} g(x)^{2} \mathbb{E}_{g(x)}[N]=\infty
$$

## Rate of Convergence in Wall-Clock Time?

- Farrell [1964]:

$$
\mathbb{E}_{g(x)}[N] \sim(1 / g(x))^{2} \log \log (1 /|g(x)|) \text { as } g(x) \rightarrow 0
$$

and for all tests of power one, if $\mathbb{P}_{0}(N=\infty)>0$, then

$$
\lim _{g(x) \rightarrow 0} g(x)^{2} \mathbb{E}_{g(x)}[N]=\infty
$$

## Theorem

$\left(\left|X^{*}-X_{n}\right|\left(T_{n}\right)^{1 / 2}\right)_{n}$ is not tight.

## Rate of Convergence in Wall-Clock Time?

- Farrell [1964]:

$$
\mathbb{E}_{g(x)}[N] \sim(1 / g(x))^{2} \log \log (1 /|g(x)|) \text { as } g(x) \rightarrow 0
$$

and for all tests of power one, if $\mathbb{P}_{0}(N=\infty)>0$, then

$$
\lim _{g(x) \rightarrow 0} g(x)^{2} \mathbb{E}_{g(x)}[N]=\infty
$$

## Theorem

$\left(\left|X^{*}-X_{n}\right|\left(T_{n}\right)^{1 / 2}\right)_{n}$ is not tight.

- If

$$
g(x) \rightarrow 0 \text { as } x \rightarrow X^{*}
$$

and if we use $X_{n}$ as the best estimate of $X^{*}$ then the Probabilistic Bisection Algorithm with power one tests is asymptotically slower than Stochastic Approximation.

## Conjecture

- $X_{n}$ might not be the best estimate for $X^{*}$ when we use power one tests.
- Intuitively, observations where we spend more time should also be closer to $X^{*}$, hence an estimator of the form

$$
\tilde{X}_{n}=\frac{1}{T_{n}} \sum_{i=1}^{n} N_{i} X_{i}
$$

should perform better.

## Conjecture

- $X_{n}$ might not be the best estimate for $X^{*}$ when we use power one tests.
- Intuitively, observations where we spend more time should also be closer to $X^{*}$, hence an estimator of the form

$$
\tilde{X}_{n}=\frac{1}{T_{n}} \sum_{i=1}^{n} N_{i} X_{i}
$$

should perform better.

- Conjecture: For any $\epsilon>0$ it holds that

$$
\mathbb{E}\left[\left|\tilde{X}_{n}-X^{*}\right|\right]=O\left(T_{n}^{-\frac{1}{2}+\epsilon}\right),
$$

(if $g$ satisfies some growth conditions).

## Conjecture

- $X_{n}$ might not be the best estimate for $X^{*}$ when we use power one tests.
- Intuitively, observations where we spend more time should also be closer to $X^{*}$, hence an estimator of the form

$$
\tilde{X}_{n}=\frac{1}{T_{n}} \sum_{i=1}^{n} N_{i} X_{i}
$$

should perform better.

- Conjecture: For any $\epsilon>0$ it holds that

$$
\mathbb{E}\left[\left|\tilde{X}_{n}-X^{*}\right|\right]=O\left(T_{n}^{-\frac{1}{2}+\epsilon}\right),
$$

(if $g$ satisfies some growth conditions).

- Sufficient Condition: $\left|X_{n}-X^{*}\right|=O\left(e^{-r n}\right)$ for some $r>0$.


## Numerical Comparison Cont.



## Conclusions

## Positive:

- Provides true confidence interval of the root $X^{*}$.
- Works extremely well if there is a jump at $g\left(X^{*}\right)$ (geometric rate of convergence).
- Only one tuning parameter.
- Robust finite-time performance

Drawbacks:

- Seems to be asymptotically slower than Stochastic Approximation (but not by much).
- Higher computational cost


## Future Research:

- Use parallel computing (very little switching of $\left.\left(X_{n}\right)_{n}\right)$.
- Extension to higher dimensions.
M. Ben-Or and A. Hassidim. The Bayesian learner is optimal for noisy binary search (and pretty good for quantum as well). In 49th Annual Symposium on Foundations of Computer Science (FOCS), pages 221-230. IEEE, 2008.
M. V. Burnashev and K. S. Zigangirov. An interval estimation problem for controlled observations. Problemy Peredachi Informatsii, 10(3):51-61, 1974.
R. M. Castro and R. D. Nowak. Active learning and sampling. In A. O. Hero, D. A. Castañón, D. Cochran, and K. Kastella, editors, Foundations and Applications of Sensor Management, pages 177-200. Springer, 2008. ISBN 978-0-387-49819-5. URL http://dx.doi.org/10.1007/978-0-387-49819-5_8.
R. H. Farrell. Asymptotic behavior of expected sample size in certain one sided tests. Ann. Math. Statist., 35(1):36-72, 1964.
U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM J. Comput., 23(5):1001-1018, 1994.
M. Horstein. Sequential transmission using noiseless feedback. IEEE Trans. Inform. Theory, 9(3): 136-143, 1963.
R. M. Karp and R. Kleinberg. Noisy binary search and its applications. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 881-890. SIAM, 2007.
R. D. Nowak. Generalized binary search. In 46th Annual Allerton Conference on Communication, Control, and Computing, pages 568-574, 2008.
R. D. Nowak. Noisy generalized binary search. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Adv. Neural Inf. Process. Syst. 22, pages 1366-1374, 2009.
H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statist., 22(3): 400-407, 1951.
D. Siegmund. Sequential Analysis: tests and confidence intervals. Springer, 1985.
R. Waeber, P. I. Frazier, and S. G. Henderson. Bisection search with noisy responses. SIAM J. Control Optim., 2013.

