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Let P = [pij] be the transition matrix of a finite irreducible, 
discrete time Markov chain (MC) {Xn} (n ≥ 0) with finite 
state space  S = {1, 2,…, m}. 
  

1. Introduction 

  i.e.  pij = P{Xn = j Xn−1 = i} for all i, j  ∈ S.

Such MCs have a unique stationary distribution 
{π j }, (1≤ j ≤m).

Let Tij be the first passage time RV from state i  to state j, 
i.e. Tij = min{ n ≥ 1 such that Xn = j  given that X0 = i}. 
      Tii is the first return to state i. 

  

Let  mij = E[Tij X0 = i ],  

be the mean first passage time from state i  to state j.



	

       

 
 

    

   

  

Generalized matrix inverses (g-inverses) of I −P   are 
typically used to solve systems of linear equations  to 
deduce expressions for {π j } and the {mij }, either in 

matrix form or in terms of the elements of the g-inverse. 

  

Further,  the elements of every g-inverse of  I −P  can be
expressed in terms of the {π j } and the {mij } of the 

associated MC.



   2. Generalized Matrix Inverses 
 

A generalized inverse of a matrix A is any matrix A– 

such that  AA– A = A . 
 A–  is a “one condition” g-inverse,  A(1) 

      A–   is an “equation solving” g-inverse 

Multi-condition g-inverses:  
        Consider real conformable matrices X (which we 
        assume to be square) 

Condition 1:        AXA = A 
Condition 2:      XAX = X 
Condition 3:   (AX)T = AX 
Condition 4:   (XA)T = XA 
Condition 5:   AX = XA 

  
  
  

If A is non-singular, A– = A–1, the inverse of A,  
and is unique. In general  A– is not unique. 



Let  A(i,j, . .) be any (i,j, . .) condition g-inverse of A then 
 
A(1,2)            is a “pseudo-inverse”      (Rao,  1955) 

      is a “reciprocal inverse”  (Bjerhammar, 1951) 
      is a “reflexive inverse”    (Rhode, 1964)   

A(1,3)        is a “least squares g-inverse” 
A(1,4)        is a “minimum norm g-inverse” 
A(1,2,4)      is a “weak generalized inverse”  

                                     (Goldman & Zelen, 1964) 
A(1,2,3,4)    is the “Moore-Penrose g-inverse”  

                             (Moore, 1920; Penrose, 1955) 
A(1,2,5)      is the “group Inverse” 
               (exists and is unique if r(A) = r(A2). ) 
                          (Erdeyli,1967) 

 

  
  
  



3. Solving systems of linear equations 
 A necessary and sufficient condition for 

 
    AXB = C 

 
 to have a solution is 

 
    AA– CB– B = C. 

 
 If this consistency condition is satisfied,  
 the general solution is given by 

 
   X = A–CB– + W – A–AWBB– 

 
 where W is an arbitrary matrix.  

                                                        (Penrose 1955, Rao,1955) 

  
  
  



Special cases 
(i)  The general solution of  XB = C  is 

  
   X = CB– + W(I – BB–) provided CB–B = C, 
where W is arbitrary. 

 
(ii)    The general solution of AX = C is 

  
    X = A– C + (I – A–A)W provided AA–C= C, 

        where W is arbitrary. 
 
(iii)    The general solution of  AXA = A  is 
 

             X = A–AA– + W – A–AWAA– , 
  where W is arbitrary,  (since AA– AA– A = AA– A = A.) 

 
 



Note that (iii) provides a characterization of A{1},  
the set of all g-inverses of A given any one g-inverse, A– : 
 
              A{1} = {A– + H – A–AHAA– , H arbitrary}     
 
or      
             A{1} = {A– + (I – A–A)F + G(I – AA–), F, G, arbitrary}. 
 
 



4. G-inverses of Markovian kernels, I – P  
  

(Hunter,1982) 

   
I −P + tuT  is non-singular

⇔  πTt ≠ 0 and uTe ≠ 0.

   

If πTt ≠ 0 and uTe ≠ 0 then

[I −P + tuT ]−1 is a g-inverse of I −P. 

   

Let P  be the transition matrix of a finite irreducible           

Markov chain with stationary probability vector πT .

Let eT = (1, 1, …, 1) and t  and u  be any vectors.



  
  
  
  

(Hunter,1982) 
 

   

All one condition g-inverses of I −P   can be expressed as 

                      A(1) = [I −P + tuT ]−1 + ef T + gπT

where f , g, t, and u  are arbitrary with uTe ≠ 0 and πTt ≠ 0.

   

 Given any g-inverse G of  I  –  P   and  t, u, with      

  π Tt ≠ 0, uTe ≠ 0,  we can compute  [I – P +  tuT ]-1  as

[I −P + tuT ]−1 = I − euT

uTe
⎡

⎣
⎢

⎤

⎦
⎥G I − tπ T

π Tt
⎡

⎣
⎢

⎤

⎦
⎥ +

euT

(π Tt )(uTe)
.

(Hunter, 1988) 



  
 

   

Parametric characterisation of g-inverses of I - P 

  

  
                 

        

        (Hunter, 1990) 

   

If  G is any g-inverse of I −P   there exist unique
parameters α ,  β, and  γ  such that

     G = G(α , β, γ ) =  [I –  P  +  αβT ]−1 + γ eπ T ,

with the property that α , β  and γ  involve 2m –  1
independent parameters with the properties that

            π Tα = 1, βTe  = 1 and  γ  + 1 =  βTGα .



  
 

  
 

     

Construction of the unique characterisation 

  

  
                

        

Given G, any g-inverse of I −P,  
Let     A ≡ I − (I −P)G  and B ≡ I −G(I −P).  

Then A = απT , B = eβ,  and

         G =  [I −P +αβT ]−1 + γ eπT , 
where  α        = Ae, 

            βT = πTB ( =  ei
T  B for all i),

and  γ +1 =  πTGα = βTGe = βTGα.

 α , β, γ  uniquely characterise the g-inverse as G(α , β, γ ).



  

  
    
  
  

 
 
 

   

  

Application: 

   

Let G = G(α ,β,γ )  be a (α ,β,γ)   g-inverse of I −P. 
G ∈A{1, 2} ⇔γ       = – 1.

G ∈A{1, 3} ⇔α  =  π / π Tπ .

G ∈A{1, 4} ⇔ β  = eT / eTe.

G ∈A{1, 5} ⇔α  = e, βT = π T .

We subdivide the A{1,5} category:
G ∈A{1, 5a} ⇔α  = e, 

G ∈A{1, 5b} ⇔  βT = π T .
so that
G ∈A{1, 5} ⇔  G ∈A{1, 5a} and G ∈A{1, 5b}.



  

  
    

   

  

Theorem 

    

Let G = G(α , β, γ ) be a (α , β, γ)    g-inverse of I −P,
where P  is the transition matrix of a finite irreducible MC
with stationary probability vector π  . 
(a) G∈A{1, 5a} ⇔  Ge  = ge   for some g.
     If Ge  = ge   for some g  then g  = 1 + γ .

(b) G∈A{1, 5b} ⇔π TG = hπ T  for some h
     If π TG = hπ T  for some h then h = 1 + γ
Corollary:
Let G = G(α , β, γ ) be a (α , β, γ)    g-inverse of I −P.

If  Ge  = ge   for some g   and π TG = hπ T  for some h
then g  = h = 1 + γ  and G∈A{1, 5}. i.e. G = G(e, π , γ ). 



Special cases of g-inverses of I – P 

   

 (a) Z = [I −P +Π ]–1  where Π  = eπT

      (Kemeny & Snell's  fundamental matrix, Z, 1960)       
      Shown to be a 1-condition g-inverse, Hunter (1969).
      Z  is a (1,5) g-inverse with form G = G(e, π, 0). 
                                 
 (b)   A# =  [I −P +eπT ]–1 −eπT = Z −Π    (Group inverse)   
                                                                 (Meyer, 1975)
      A#  is the unique (1, 2, 5) g-inverse with form G = G(e, π, -1). 



Special cases of g-inverses of I – P 

   

(c)   G = G(π  /π Tπ , e /eTe, – 1) is the Moore-Penrose g-inverse
        G = [I −P +απeT ]–1 −αΠ  where α = (mπ Tπ )–1/2 

                                               (Styan, Paige, Wachter, 1975)

        Alternative form:    G = [I – P + πeT ]−1 − eπ T

mπ Tπ
.

        
        Equivalence comes from the fact that

        Aδ  = [I – P +δtuT ]−1 − eπ T

δ (π Tt )(uTe)
 does not depend on δ .

                                                                     (Hunter, 1988)



  
  
 
 

  
 
 

   

5. Stationary distributions 

Let  πT = (π1, π2, . . . , πm ) be the stationary prob. vector 
for the irreducible MC with transition matrix  P = [pij] . 

    

We need to solve π j = π ii=1

m∑ pij  with π ii=1

m∑ = 1,

i.e.                        πT (I – P) =  0T  with πTe = 1.

Finite irreducible MC’s {Xn} have a unique 
stationary distribution                          which,  
for aperiodic MC’s is the limiting distribution, 
 

   

This is an equation of the type XB =C,

with X  = πT ,B =  I −P, C = 0T.

  {π j },(1≤ j ≤ m)

  
i.e. lim

n→∞
P{Xn = j X0 = i} = lim

n→∞
P{Xn = j } = π j ,(1≤ j ≤ m).



 
 Procedures using A = I – (I – P)G 

 
 

     

 
If G is any g-inverse of I – P  and  A = I – (I – P)G  then 
                                                 
 
 
where  vT  is such that vTAe ≠ 0. 
 
Note:  Ae ≠ 0 so that we can always find such a vT. 
 

 
     

   
πT = vT A

vT Ae
,



	

    

 
 

Procedure using A = I – (I – P)G 
 

  

Let G be any g-inverse of I −P,  and A = I − (I −P)G = [aij ].

Let r  be the smallest integer i  (1≤ i ≤ m) such that aikk=1

m∑ ≠ 0,

then  π j =
arj

arkk=1

m∑
,  j = 1,...,m.

If G is a (1,3) or (1,5) g-inverse of I −P  then r  = 1.

                                               



 
    

 
 

   Procedures using G 

   

If G = [I −P  + tuT ]−1 where u, t  such that  uTe ≠ 0, π Tt ≠ 0,

                       π T = uTG
uTGe

.

                                           (Paige, Styan, Wachter,1975), 
                                           (Kemeny,1981), (Hunter,1982).

   

If G is a (1,4) g-inverse of I −P  then  

                            π T = eTG
eTGe

.



 
 

     
 

Identifier g-inverse Parameters 
 

   [I − P + tuT ]−1  α  
 β

T  γ 

 Gee     [I − P + eeT ]−1  e    e
T /m  (1/m) – 1 

  Geb
(r )  [I – P + e   pb

(r )T ]-1 e  
   pb

(r )T   0 

 Geb  [I – P +   e eb
T ]-1 e 

  eb
T  0 

  Gae
(c)  [I – P +    pa

(c)eT ]-1    pa
(c) / π a     e

T /m  (1/mπa) – 1 

  Gab
(c,r )  [I – P +    pa

(c) pb
(r )T ]-1    pa

(c) / π a     pb
(r )T  (1/πa) – 1 

  Gab
(c)  [I – P +    pa

(c)eb
T ]-1    pa

(c) / π a    eb
T  (1/πa) – 1 

 Gae  [I – P +   eaeT ]-1 ea/πa    e
T /m  (1/mπa) – 1 

  Gab
(r )  [I – P +    ea pb

(r )T ]-1 ea/πa 
   pb

(r )T  (1/πa) – 1 

 Gab  [I – P +   eaeb
T ]-1 ea/πa 

  eb
T  (1/πa) – 1 

  Gtb
(c)  [I – P +   tbeb

T ]-1 

   (tb ≡ e − eb + pb
(c) )  

  tb  
  eb

T  0 

 

    Special g - inverses of form G = [I −P + tuT ]−1



	

    

 
 

 
 

   
  
   

     

    Special case:  G = [I −P +euT ]−1  (with uTe ≠  0). 

    

                 πT = uTG,                                 

Hence if   uT = (u1,u2, …,um) and  G =  [gij ] then

                       π j = ukgkjk=1
m∑ , j  =  1, 2, ..., m.

Thus   Gee = [I −P + eeT ]−1     ⇒  π j = gkjk=1
m∑  = gi j  

           Geb
(r ) = [I −P + epb

(r )T ]−1 ⇒  π j = pbkgkjk=1
m∑  

           Geb = [I −P + eeb
T ]−1     ⇒  π j = gbj

              



	

   

 
 

 
 

   
  
   

     

    Special case:  G = [I −P + teT ]−1  (with πTe ≠  0). 

    

                 πT = eTG
eTGe

.                                 

Hence if  G =  [gij ] then

                       π j =
gi j

gii

, j  =  1, 2, ..., m.

Holds for Gae
(c) = [I −P + pa

(c)eT ]−1, 

               Gee = [I −P + eeT ]−1   ( ⇒π j = gi j ), 

               Gae = [I −P + eae
T ]−1.  

              



	

   

 
 

 
 

   
  
   

     

    Special case:  G = [I −P + teb
T ]−1  (with πTe ≠  0). 

    

                 πT =
eb

TG
eb

TGe
,                                 

Hence if  G =  [gij ] then

                       π j =
gbj

gbi

, j  =  1, 2, ..., m.

Holds for Gab
(c) = [I −P + pa

(c)eb
T ]−1, 

               Gab = [I −P + eaeb
T ]−1, 

               Geb = [I −P + eeb
T ]−1  (⇒π j = gbj ),    

               Gtb
(c) = [I −P + tbeb

T ]−1 (⇒π j = gbj ).    

              



	

 

    
 
 

  6. Moments of first passage time distributions 
        

 
Let Tij be the first passage time RV from state i to state j, 
 
 
 
 

  

{Xn } irreducible ⇒  Tij  are proper r.v.’s.

For all i, j ∈ S, and k ≥1 let mij
(k ) = E[Tij

k X0 = i ]. 

The  mij
(k )  are well defined and finite.

Let  mij
(1) = mij , the mean first passge time from state i  

                       to state j.

  Let M = [mij ]  be the matrix of mean first passage times 

  

Let M (2) = [mij
(2) ]  be the matrix of second moments.



  

 

                       

i.e. equation of the type  AX = C,  where  
X = M, A = I – P and C = E – PD. 
 
 

   

 Well known that
                          mij = 1+ pik

k  ≠ j
∑ mkj .

M  satisfies the matrix equation
                         (I −P)M = E −PMd ,

where E  = [1] = eeT ,

and    Md = [δ ijmij ] =(Πd )−1 ≡ D   (with Π = eπT ).



  

 
                                                                       
 
 

(Hunter, 1982)   

If G is any g-inverse of I −P, then

M = [GΠ −E(GΠ )d + I – G+EGd ]D.

   

Thus if  G = [gij ],   and gii = g
j=1

m∑
ij
,  then

           mij =  
[gjj − gij  + δ ij ]

π j
 + (gii - gj i),  for all i, j.    



  

 Joint computation for πj and mij 
 

  

         

   

1. Compute   G = [gij ], ANY g-inverse of I −P.

2. Compute sequentially rows 1, 2, …r ( ≤  m) of 

    A = I − (I −P)G ≡ [aij ] until  arkk =1

m∑ , (1≤  r ≤  m) 

    is the first non-zero sum.

3. Compute  π j = arj arkk =1

m∑ ,   j = 1, ..., m.

4. Compute mjj = arkk =1

m∑ arj , j = 1, ..., m, and for, i ≠ j.

     mij = (gjj − gij ) arkk =1

m∑ arj{ } + (gikk =1

m∑  − gjk ){ }. 



  

 
                                                                       
 
 

    Let H = G(I – Π) then 
 
    M = [I – H + EHd]D.                                                                       
 

H leads to simpler elemental forms for M: 

   

 If H = [hij ],  mij =  
[hjj − hij  + δij ]

π j
 ,  for all i, j,

i.e.  mij = 

1
π j

i = j,

 
(hjj − hij )

π j
, i ≠ j.

⎧

⎨

⎪
⎪

⎩

⎪
⎪
⎪

We can simplify this further under special conditions: 



  

 

     

Theorem:  G ∈A{1, 5a} ⇔  M = [ I −G +EGd ]D.  

Thus under any of the following equivalent conditions:
(i)        G ∈A{1, 5a}
(ii)       Ge = ge, g  a constant,
(iii)      GE −E(GΠ )dD =  0,

(iv)      GΠ – E(GΠ)d  = 0, 

we have that   M = [ I −G +EGd ]D  and 

                  mij =  
[g jj − gij  + δ ij ]

π j
 ,  for all i, j,



  

  
    

 
   

Significance of H = G(I – Π) 

   

Special cases with the simple elemental form for the mij :

(a) G = [I −P +Π ]–1 = Z   where Π  = eπ T

      Kemeny & Snell's  fundamental matrix (γ = 0)      
                                             (Kemeny and Snell, 1960) 

 (b)  G =  [I −P +Π ]–1 −Π = Z −Π = A#    
       Meyer's Group inverse (γ = −1)         (Meyer, 1975)

   

Let G = G(α , β, γ ) be any 1 - condition  g-inverse of I −P,
Then H = G(I −Π ) is a g-inverse of I −P  with 
                         H = G( e,β,–1)∈A{1, 2, 5a}.
Further  K = (I −Π )H = (I −Π )G(I −Π ) is a g-inverse of I −P  
with K = G( e,π ,–1)∈A{1, 2, 5}, the group inverse.



  

 Second moments of the first passage times 
 

  

         
    

  

M (2)satisfies the matrix equation

                    (I −P)M (2) = E + 2P(M −Md )−PMd
(2).

where   Md
(2) = 2D(ΠM)d −D,   with D =  Md = (Πd )−1.   

G is any g-inverse of I −P, Md
(2) = D + 2D{(I −Π)G(I −Π)}d D.

G ∈A{1,5a} ⇒Md
(2) = D + 2DGdD − 2D(ΠG)d D,

G ∈A{1,5b} ⇒Md
(2) = D + 2DGdD − 2D(GΠ)d D,

G ∈A{1,5} ⇒Md
(2) = 2DGdD − (1+ 2γ )D,

In particular, Md
(2) = D + 2DA#

dD = 2DZdD −D.



  

 Second moments of first passage times 
 

  

 (Hunter, 2007b)  
  

If G is any g-inverse of I −P,

M (2) = 2[GM – E(GM)d ]+ [I −G +EGd ][Md
(2) +D]−M,

      = 2[GM – E(GM)d ]+ 2[I −G +EGd ]D(ΠM)d −M.

If G∈A(1, 5a) then 

M (2) = 2[GM −E(GM)d ]+MD -1Md
(2).

In particular,

M (2) = 2[ZM −E(ZM)d ]+M(2ZdD − I),

       =  2[A#M −E(A#M)d ]+M(2A#
dD + I). 



  

 Elemental expressions for 
 

  
 

          

  mij
(2)    

(Hunter, 2007b) 

   

If  G = [gij ] then 

mij
(2) = 2 (gik − gjk )mkjk=1

m∑ −mij + (δ ij − gij + gjj )(mjj
(2) +mjj ).

If  Ge  =  ge ⇔G ∈A(1,5a), then

  mij
(2) = 2 (gik − gjk )mkjk=1

m∑ +
mijmjj

(2)

mjj
.

mjj
(2) +mjj = 2mjj π imij .i=1

m∑



  

 Computational considerations - 1 
 

  

          

Two relevant papers:  
[1] Heyman and O’Leary (1995) (“Computations with 
     Markov chains” (2nd International Workshop on M.C.’s) 
[2] Heyman and Reeves (1989) (ORSA J Computing) 

  [1]:  “deriving means and variances of first passage times    
from either the fundamental matrix Z or the group 
generalized inverse A# leads to a significant inaccuracy on 
the more difficult problems.” 
  … “it does not make sense to compute either the  
fundamental matrix or the group generalized inverse unless 
the individual elements of those matrices are of interest.”  



  

 Computational considerations - 2 
 

       

          

[2]: Computation of M using Z or A# - 3 sources of error 
      1.   An algorithm for computing π.	

      2.   Compute the inverse of I - P + Π .	

             (Matrix may have negative elements  - can cause  
              round off-errors in computing inverse.) 
        3.  Matrix evaluation of M - the matrix multiplying D  
              may have negative elements. 
 
    Additional work  to compute M(2) - three matrix  
     multiplications are required - two of which involve a  
     diagonal matrix - in each of these multiplications there  
     is a matrix with possibly negative elements.  

There has to be a better way! 



  

 Simpler computation technique 
 

 

Thus following one matrix inversion (actually only the b-th 
 row for the stationary distribution), one can find  the  
 stationary probabilities and the mean first passage times.  

  

mij
(2) =

mjj [1+ 2mjj (g jj - gbj
(2) )], i = j,

2mjj [gjj
(2) - gij

(2) + mij (g jj - gbj
(2) )] - mij , i ≠ j.

⎧
⎨
⎪

⎩⎪

var [Tij ] =
mjj [1– mjj + 2mjj (gjj - gbj

(2))], i = j,

2mjj [gjj
(2) – gij

(2) +mij (gjj - gbj
(2))] - mij (1- mij ), i ≠ j.

⎧
⎨
⎪

⎩⎪

    

Let Geb = [gij ] = [I – P + eeb
T ] –1  ( a special  A(1, 5a) g - inverse)

π j = gbj , j =1,2,...,m;  mij =
δ ij + gjj − gij

gbj

=
1 gbj , i = j,

(gjj − gij ) gbj , i ≠ j.

⎧
⎨
⎪

⎩⎪



	

 

    
 
 

7.  G-inverses in terms of stationary  
    probabilities and mean first passage times 

If we have expressions for the gij when i ≠ j we can  
deduce expressions for all the gjj.    

   

Let G = G(α ,β,γ ) be any 1-condition g-inverse of I −P
then, since Gα  = (γ  + 1)e  and βTG = (γ  + 1)π T ,

(i)    gjj = 1
α j

1+ γ − αkk≠ j∑ gjk( ).
(ii)   gjj = 1

β j

(1+ γ )π j − β ii≠ j∑ gij( ).



	

 

              
 
 

     

We do not, in general have any information from the

previous results about  gi• = gijj=1

m∑  for specific i.

If αk = α, a constant ( = 1, since πTα = απTe = α )

⇒  gi• = 1+ γ , a constant fo all i.

Thus when α  = e, i.e when G∈A{1, 5a}
            gij = gjj + π jmij , for all i ≠ j.

We explore the special case when α  = e later.
We need a procedure that yields expressions for gi•



  

  
    

 
  

Let G = G( α , β, γ ) be any 1-condition g-inverse of I – P
Let H = G(I −Π ) ≡  [hij ]

  

 hij  can be expressed in terms of the {βk } parameters 

of the g-inverse. 

If δ j ≡ βkmkjk≠ j
m∑ , then 

                       hjj = π jδ j  (j  =1,2, ..m)

                       hij = π j (δ j −mij ), i ≠ j, (i, j  =1,2, ..m)



  

  
    

 
   

  

We can now find an expression for the row sums of G,
 in terms of the {αk } parameters of the g-inverse, 

the π j  and the mij .   

If δ j ≡ βkmkjk≠ j∑  (j  = 1,…, m) then    

gi•= 1+ γ + πkαkmikk≠i∑ − πkαkδkk=1

m∑ .

By expressing gij  in terms  of hij  we can find an 

expression for the elements of any g-inverse of I −P. 
In particular, from H =G(I −Π ), gij = hij +  gi•π j .

This leads to the  following KEY result



  

  
    

 
   

KEY THEOREM 

  

Let G = [gij ] = G(α, β, γ) be any g-inverse of I −P. 

Then the gij  can be expressed in terms of the parameters

 {α j }, {β j }, γ, the stationary probabilities {π j }, and the mean

 first passage times {mij }, of the Markov chain as 

gij =
1+ γ +δ j −mij + πkαkmik − πkαkδkk=1

m∑k≠i∑⎛
⎝
⎜

⎞
⎠
⎟π j , i ≠ j,

1+ γ +δ j + πkαkmjkk≠ j∑ − πkαkδkk=1

m∑⎛
⎝
⎜

⎞
⎠
⎟π j , i = j.

⎧

⎨
⎪⎪

⎩
⎪
⎪

                                         where δ j ≡ βkmkjk≠ j∑  (j  = 1,…, m).



  

  
    

 
   

New interconnections 

  

For all G = G(α ,β,γ )  one condition g-inverses of I −P,

with δ j = βkmkjk≠ j∑ ,

                      gij =
π j (δ j + gi• −mij ), i ≠ j,

π j (δ j + gj•), i = j.

⎧
⎨
⎪

⎩⎪

leading to the alternative expression

                     δ j =
gjj

π j
− gj•.



  

  
    

 
   

  
δ j ≡ βkmkjk≠ j∑  (j  = 1,…, m).Special cases 1: 

   

G =G(e,β,γ) ∈ A{1, 5a}

       gij =
π j (δ j +1+ γ −mij ), i ≠ j,

π j (δ j +1+ γ), i = j.

⎧
⎨
⎪

⎩⎪

G =G(e,β,−1) ∈ A{1, 2, 5a}

       gij =
π j (δ j −mij ), i ≠ j,

π jδ j , i = j.

⎧
⎨
⎪

⎩⎪



  

  
    

 
   

  
η j ≡ ( mkj ) m,  

k≠ j∑  (j  = 1,…, m).Special cases 2: 

   

G = G(e, e m,γ) ∈ A{1, 4, 5a}

       gij =
π j (1+ γ +η j −mij ), i ≠ j,

π j (1+ γ +η j ), i = j.

⎧
⎨
⎪

⎩⎪

G = G(e,  e m,−1) ∈ A{1, 2, 4, 5a} (unique g-inverse)

       gij =
π j (η j −mij ), i ≠ j,

π jη j , i = j.

⎧
⎨
⎪

⎩⎪



  

  
    

 
   

  
τ j ≡ πkmkjk=1

m∑ = πkmkjk≠ j∑ +1.Special cases 3: 

   

G = G(e,π ,γ )∈A{1, 5}

       gij =
π j (τ j + γ −mij ), i ≠ j,

π j (τ j + γ ), i = j.

⎧
⎨
⎪

⎩⎪

Z = G(e,π ,0)∈A{1, 5} with γ  = 0 (unique, fundamental matrix)

       gij =
π j (τ j −mij ), i ≠ j,

π jτ j , i = j.

⎧
⎨
⎪

⎩⎪

A# = G(e,π ,−1)∈A{1, 2, 5} (unique, group inverse)

       gij =
π j (τ j −1−mij ), i ≠ j,

π j (τ j −1), i = j.   (Ben-Ari, Neumann (2012))

⎧
⎨
⎪

⎩⎪



  

  
 

   Since      mjj
(2) +mjj = 2mjj π imiji=1

m∑ ,

                 τ j = π imij =
mjj

(2) +mjj

2mjj
i=1

m∑ = 1
2
+
mjj

(2)

2mjj

=
1+ π jmjj

(2)

2
.

[In Hunter (2008) expressions for τ j  in terms of elements

of g-inverses of I −P  are given.]
         

    

  Note re τ j



  

  
    

 
   

  
where η j ≡ ( mkj ) m,  

k≠ j∑  (j  = 1,…, m).

Special case 4: 

   

G = G(π πTπ ,e m,−1)∈A{1, 2, 3, 4} (Moore-Penrose)
gij =

η j −mij + (1 πk
2∑ ) πk

2mik − (1 πk
2∑ ) πk

2ηk
k=1

m

∑
k≠i
∑

⎛

⎝
⎜

⎞

⎠
⎟ π j , i ≠ j,

η j + (1 πk
2∑ ) πk

2mik
k≠ j
∑ − (1 πk

2∑ ) πk
2ηk

k=1

m

∑
⎛

⎝
⎜

⎞

⎠
⎟ π j , i = j.

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪



  

 8. G-inverses in terms of stationary probs, 
first and second moments of passage times. 
 

  
    If G = [gij ] =G(e, π , γ ) ∈A{1, 5}

       gij =

π j γ +
π jmjj

(2) +1

2
−mij

⎛

⎝
⎜

⎞

⎠
⎟ , i ≠ j,

 π j γ +
π jmjj

(2) +1

2

⎛

⎝
⎜

⎞

⎠
⎟ , i = j.

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Special cases: Z = G(e, π , 0) and A# =G(e, π , −1).

Result for A#  given by Ben-Ari and Neumann (2012) - using 
analytic continuation, Laurent expansions and Taylor series
expansions of generating functions.

         
    



  

 9. Kemeny’s constant. 
 

  

         
    

   

  K  = π jmijj=1

m∑  = π jmijj≠i∑ +1.

The interesting observation is that this sum 
is in fact a constant, independent of i. 

This is in contrast to τ j  = π imiji=1

m∑  = π imiji≠ j∑ +1.

which varies with  j
If G = [gij ] is any generalised inverse of I – P,

             K =1+ (gjjj=1

m∑ − gj•π j ). 

If G =G(e, β, γ) ∈ A{1, 5a},  K = tr (G) – γ.  
In particular, K = tr (Z) = tr (A# )+1.       



  

  
    

 
   

  
 

Simplification properties 

  

For all G = G(α ,β,γ ), one condition g-inveres of I −P,

let δ j = βkmkjk≠ j∑ .  

Then         πkδkk=1

m∑ = K −1,

where K  = π jj=1

m∑ mij  is Kemeny's constant 

(constant for all j  = 1, 2, ..., m.) 
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