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Complex random networks

I Many complex systems (e.g. internet, biological networks,
communications and queueing networks) can be modelled by
Markov chains.

I Under suitable conditions there is a law of large numbers, i.e.
the random system can be approximated by a deterministic
process with simpler dynamics, derived from average drift.

I One may want to establish such a law of large numbers, with
quantitative concentration of measure estimates, in a
non-stationary (time-dependent) regime, or in equilibrium.
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Load-balancing

I The most basic load-balancing model is as follows. There are
n bins, and we throw n balls sequentially. At each step, the
current ball examines d (d ≥ 1) bins chosen uniformly at
random with replacement, and is placed in one with smallest
load. What is the maximum load of a bin at the end?

I When d = 1, then with high probability the maximum load of
a bin is of the order log n/ log log n. When d ≥ 2, then with
high probability the maximum load of a bin is
log log n/ log d + O(1) (Azar et al., 1994).
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Power of two choices

I This is called the power of two choices phenomenon, and has
important implications for performance of networks.

I It means that by allowing calls/tasks to choose the best
among an even very small number of alternatives we can
dramatically improve the performance of the network, while
still keeping routing costs (in terms of e.g. time taken to
examine different options) low.

I This idea has now been around for over 20 years, and studied
in the context of various models.
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Communication network model with alternative routing

I We have a fully connected communication graph Kn, with
vertex set Vn = {1, . . . , n} and edge set
En = {{u, v} : 1 ≤ u < v ≤ n}.

I Each link has a capacity of C = C (n) units (C ∈ Z+,
bounded or C →∞ with n).

I N =
(n

2

)
calls arrive over N time steps, one at a time.

I Every new call chooses its endpoints uniformly at random, so
that every edge {u, v} ∈ En is chosen with probability 1/N.
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Communication network model with alternative routing

I If the link joining u and v has spare capacity (i.e. is currently
carrying fewer than C (n) calls), then we route a newly arriving
call onto that link.

I Otherwise, we select d (d ≥ 1) intermediate nodes
w1, . . . ,wd ∈ Vn \ {u, v} uniformly at random with
replacement, and try to route the call along one of the
two-link paths {u,wi}, {v ,wi} (an alternative route) for some
i = 1, . . . , d .
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I How we choose among these d paths may depend in some
(possibly complicated) manner on their current loads only.
(We call such routing strategies General Dynamic Alternative
Routing algorithms or GDAR algorithms.)

I If none of the d chosen paths has spare capacity (i.e. if on
every one of them, at least one link has C (n) calls in
progress), then the new call is lost.

I Each successfully routed call occupies its path till the end of
the process.
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BDAR and FDAR

I Two particular types of GDAR’s have been studied before.

I The First Dynamic Alternative Routing algorithm always
chooses the first possible two-link route among the d chosen
(i.e. first on the list of choices), if there is one among the d
chosen where both links carry less than C (n) calls at the time
of the arrival.

I The Balanced Dynamic Alternative Routing algorithm chooses
an alternative route which minimises the larger of the current
loads on its two links, if possible. (Ties may be decided e.g.
at random, or by selecting the first best route on the list.)
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Dynamic version

I Calls arrive in a Poisson process at rate λN, where λ > 0 is a
constant, and N =

(n
2

)
.

I Each new call chooses its route as in the ‘static’ version.

I Accepted call durations are unit mean exponential random
variables, independent of one another and of the arrivals and
choices processes.

I Every call that is accepted into the system (on either a
one-link or a two-link path) occupies one unit of capacity on
each link of its route for its duration. When a call terminates,
one unit of capacity on each link of its route is freed.
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Difficulties with analysing the routing model

I Note that transitions may change the state of more than one
link (when the call is routed on an alternative route).

I Thus, in comparison with the basic load-balancing model
described earlier, this model has a lot less symmetry.

I For example, here the distribution of a pair of link loads may
depend on whether or not they have a node in common.
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Earlier results for the BDAR/FDAR routing model

The BDAR and FDAR algorithms (not under this name) were
studied by L. and Upfal (1999), who first observed the following:

I For BDAR with d ≥ 2, link capacity C (n) of the order
log log n/ log d is sufficient to ensure that, in equilibrium, all
calls arriving into the system during an interval (or all N calls
in the static version) are routed successfully whp (ie with
probability tending to 1 as n→∞).

I For FDAR, for any fixed d , link capacity has to be at least of
the order

√
log n/ log log n for this to be the case.
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Earlier results for the BDAR/FDAR routing model

I More precise versions of these results can be found in L.,
McDiarmid and Upfal (2003) for the static version, and L. and
McDiarmid (2013+) for the dynamic version.

I Also, the version with d = 1 and constant capacity C was
studied from a very different perspective by Gibbens, Hunt
and Kelly (1990), Crametz and Hunt (1991) and Graham and
Meléard (1993).
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With the exception of the work of Gibbens, Hunt and Kelly (1990),
Crametz and Hunt (1991) and Graham and Meléard (1993), the
papers mentioned above in fact do not analyse the model as
described, but a (slightly easier) version, where the capacity of
each link {u, v} is split into three parts.

One part of each link (C1(n) units) is reserved solely for direct
calls, and the others for calls on two-link paths, with one end u
and with one end v respectively (2C2(n) units).
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I Equivalently, for every pair {u, v} of distinct nodes, there is a
direct link, also denoted by {u, v} with capacity C1(n). Also,
there are two indirect links, denoted by uv and vu, each with
capacity C2 = C2(n).

I The indirect link uv may be used when for some w a call
{u,w} finds its direct link saturated, and we seek an
alternative route via node v . Similarly, vu may be used for
alternative routes for calls {v ,w} via u.

I Additionally, L. and McDiarmid (2013+) do not use direct
one-link paths at all, but instead demand that each call be
routed along a path consisting of a pair of indirect links.
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FDAR algorithm

I We take λ > 0, d fixed. Also, C = C (n) ∼ α ln n
ln ln n as n→∞.

I ‘Burn-in’ period t0: if the distribution of the initial state X0 is
stochastically dominated by the stationary distribution π, let
t0 = 0, and otherwise let t0 = t0(n) = 5 ln n.

I Let t1 ≥ t0, and consider intervals [t1, t1 + nK ].
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I α is K -good if, whatever version of GDAR we use, for each
t1 ≥ t0, the mean number of calls lost during the interval
[t1, t1 + nK ] is o(1); and α is K -bad if, when we use FDAR,
for each t1 ≥ 0, the mean number of calls lost during the
interval [t1, t1 + nK ] is nΩ(1). (Observe that α cannot be both
K -good and K -bad.)

I Theorem (L. and McDiarmid (2013+))

If α > 2/d then α is K -good for some K > 0, and if α ≤ 2/d then
α is K -bad for each K > 0.
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Theorem (L. and McDiarmid (2013+))

Let α > 2/d and let K > 0.

(a) If 2/d < α ≤ 1 (and so d ≥ 3) then α is K -good for
dα− K > 2, and α is K -bad for dα− K < 2.

(b) If α ≥ 1 (as must be the case when d is 1 or 2) then α is
K -good for α− K > 3− d, and α is K -bad for α− K < 3− d.
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BDAR algorithm

Theorem (L. and McDiarmid (2013+))

Let λ > 0 be fixed and let d ≥ 2 be a fixed integer. Let K > 0 be
a constant. Then there exist constants κ = κ(λ, d) and
c = c(λ, d ,K ) > 0 such that the following holds.
(a) Suppose that C (n) ≥ ln ln n/ln d + c and we use the BDAR
algorithm. Let t0 = 0 if X0 is stochastically dominated by π, and
let t0 = κ ln n otherwise. Then the expected number of failing calls
during [t1, t1 + nK ] is o(1) for each t1 ≥ t0.
(b) If C (n) ≤ ln ln n/ln d − c and we use any GDAR algorithm,
then whp at least nK+2−o(1) calls are lost during the interval
[t1, t1 + nK ] for each t1 ≥ 0.
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I Just like for other models of large networks, we would like
more precise information about the distribution of link loads,
in a transient regime and in equilibrium.

I We would also like to analyse the ‘original’ model, without
splitting link capacities, in the case d = 1.

I In the case d ≥ 2, the model without splitting link capacities
does not exhibit the power of two choices phenomenon.
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Other earlier work

In the case d = 1 and capacity C constant, a law of large numbers
for this model is conjectured by Gibbens, Hunt and Kelly (1990)
and shown by Crametz and Hunt (1991). (See also Graham and
Meléard (1993).)

More precisely, under suitable initial conditions, for each constant
time t > 0 and each k ∈ {0, . . . ,C}, the proportion of links in the
network that have load k at time t is close to a deterministic
function ξt(k), where (ξt) solves a (C + 1)-dimensional differential
equation.
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I All previous results have been non-quantitative, and restricted
only to the special case of the model with d = 1 and capacity
C constant.

I Also, Graham and Meléard’s results work only for special kinds
of initial conditions. In particular, they assume that initially all
nodes are exactly exchangeable.

I Before our work, there have been no laws of large numbers
results in equilibrium, and no results on the speed of
convergence to equilibrium.
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Questions

I Is the total number of links with load k (k = 0, 1, . . . ,C (n))
at a given time well-concentrated around its expectation?

I Given a node v , is the number of links with one end v and
load k at a given time well-concentrated around its
expectation?

I In a ‘transient’ situation (when the process starts from a fixed
state), are these expectations close to the solution of a
differential equation, for a reasonable length of time?

I In equilibrium, are these expectations close to a fixed point of
the same differential equation?
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We are able to give some answers to these questions.

Our approach is based on couplings and concentration of measure
inequalities, and has applications in other settings.
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Our work

I We analyse the behaviour of the dynamic model with node set
Vn = {1, . . . , n}, as defined above, where calls are routed
according to any GDAR algorithm. (To be definite, we
consider the BDAR algorithm, but our methods extend.)

I Xt({u, v},w) denotes the number of calls between u and v in
progress at time t which are routed via w , i.e. routed along
the path consisting of links {u,w} and {v ,w}.

I Also, Xt({u, v}, 0) is the number of calls between u and v at
time t routed directly.
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I Xt = (Xt({u, v},w),Xt({u, v}, 0) : {u, v} ∈ En,w ∈
Vn \ {u, v}) is the load vector at time t, and takes values in
S = {0, . . . ,C (n)}N(n−1), where N =

(n
2

)
.

I Given a load vector x and a pair u, v of nodes, let x({u, v})
denote the load of link {u, v}.

I Given a load vector x , node v and k ∈ {0, . . . ,C}, let fv ,k(x)
be the number of links {v ,w} (w 6= v) in x such that
x({v ,w}) = k .

I Assume we use the BDAR algorithm with d choices, where
d ≥ 1 is fixed or may depend on n.

Malwina Luczak A fixed point approximation for a routing model in equilibrium



Present work
High level proof strategy

Concentration inequalities
Analysis of coupling

Differential equation

For a vector ξ = (ξ(k) : k = 0, . . . ,C ), let ξ(≤ j) =
∑j

k=0 ξ(k).

(Think of ξ(k) as the proportion of links with k calls.)

For 0 < k < C , let

Fk(ξ) = λξ(k − 1)− λξ(k)

+ λgk−1(ξ)− λgk(ξ)

− kξ(k) + (k + 1)ξ(k + 1),

where functions gj are given below.
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gj(ξ) = 2ξ(C )ξ(j)ξ(≤ j)
d∑

r=1

(1− ξ(≤ j)2)r−1

× (1− ξ(≤ j − 1)2)d−r

+ 2ξ(C )ξ(j)
C∑

i=j+1

ξ(i)
d∑

r=1

(1− ξ(≤ i)2)r−1

× (1− ξ(≤ i − 1)2)d−r .
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d = 1

gj(ξ) = 2ξ(C )(1− ξ(C ))ξ(j)
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Let also

F0(ξ) = −λξ(0)− λg0(ξ) + ξ(1);

FC (ξ) = λξ(C − 1) + λgC−1(ξ)− Cξ(C ).

For any initial state ξ0 ≥ 0 such that
∑

k ξ0(k) = 1, the differential
equation

dξt(k)

dt
= Fk(ξt), k = 0, 1, . . . ,C

has a unique solution, and
∑

k ξt(k) = 1 for all t.
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Given a pair of nodes u, v and an integer j ∈ {0, . . . ,C}, let
Ijuv : S → {0, 1} be defined by Ijuv (x) = 1 if x({u, v}) = j and
Ijuv (x) = 0 otherwise.

Thus Ijuv is the indicator of the set of load vectors x where the
load of link {u, v} is j .

Note that Ijuv = Ijvu and that we adopt the convention that Ijvv is
identically 0 for each v and j .
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Let functions ϕ1, ϕ2, ϕ3 : S → R be defined by

ϕ1(x) = max
u,v :u 6=v

max
j ,k

∣∣∣ 1

n − 2

∑
w∈Vn

Ijvw (x)Ikuw (x)

− 1

(n − 2)2

∑
w 6=u,v

Ijvw (x)
∑

w ′ 6=u,v

Ikuw ′(x)
∣∣∣;

ϕ2(x) = max
u,v :u 6=v

max
j

1

n − 1
|fu,j(x)− fv ,j(x)|

= max
u,v :u 6=v

max
j

1

n − 1
|
∑
w 6=u

Ijuw −
∑
w 6=v

Ijvw |.
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ϕ3(x) = max
u,v :u 6=v

1

n − 2

∑
w 6=u,v

x({u, v},w);

Let ϕ = max{ϕ1, ϕ2, ϕ3}.
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Interpretation of the ϕ-functions

Functions ϕ1, ϕ2, ϕ3 measure how ‘uniform’ the state of the
process is.

I If ϕ1 is small, the loads on links around any two nodes are
nearly independent.

I If ϕ2 is small, any two nodes have similar distributions of
loads on the links incident to them.

I If ϕ3 is small, there are few indirectly routed calls between any
pair of vertices, so the indirectly routed calls are distributed
reasonably evenly throughout the network.
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Main non-equilibrium result (Luczak 2013+)

For constants λ, d and t0, there exist constants c1, c2 and c3 such
that the following holds.
Let ξ0 ∈ RC+1 satisfy ξ0(j) ≥ 0 for all j and

∑C
j=0 ξ0(j) = 1, and

let (ξt) be the unique solution to the differential equation

dξt
dt

= F (ξt)

on [0, t0], subject to initial condition ξ0.
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Assume that initially there are at most 2λ
(n

2

)
calls in the system.

Let A be the event that, for each t ≤ t0, each j ∈ {0, . . . ,C}, and
each v ∈ Vn,

|fv ,j(Xt)− nξt(j)| ≤ c1λd2C 3t0

(√
n log n + nϕ(X0)

+ max
u,j
|fu,j(X0)− nξ0(j)|

)
ec2λd2C3t0 .

Then, for n large enough, P(A) ≤ e− log2 n/c3C .
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For the special case d = 1 we obtain sharper bounds, replacing the
term C 3 in the exponent with C .

Malwina Luczak A fixed point approximation for a routing model in equilibrium



Present work
High level proof strategy

Concentration inequalities
Analysis of coupling

Suppose that, for each n, X0 = x0 a.s. for some deterministic load
vector x0 such that, for some constant c, ϕ(x0) ≤ c log n√

n
and

maxv ,j |(n − 1)−1fv ,j(x0)− ξ0(j)| ≤ c log n√
n

. Suppose also that, as

n→∞, λ and t0 are bounded away from 0, and that
λd2C 3t0 = o(log n) and dλt0 = o(log log n). Then the theorem
implies that, for ε > 0, if Aε is the event that, for each v ∈ Vn,
each k ∈ {0, . . . ,C}, and each t ∈ [0, t0],

|fv ,k(Xt)− (n − 1)ξt(k)| ≤ n1/2+ε,

then P(Aε)→ 0 as n→∞.
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In the case of λ and C constant, and d = 1, our theorem is a more
refined, quantitative, version of the law of large numbers
in Crametz and Hunt.

Also, our result in this case is related to those in Graham and
Meléard, but we do not need to assume that initially all the nodes
are exactly exchangeable. Instead, our law of large numbers result
holds for a large class of deterministic initial states, and holds
simultaneously for all nodes.

The remaining cases of our theorem are completely new.
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Our theorem holds also in the case where there is capacity division
and direct links are not used (i.e., each arriving call is allocated to
the best among d indirect routes), with a suitably modified
function F in the differential equation.
Indeed, for 0 < k < C , we take instead

Fk(ξ) = λgk−1(ξ)− λgk(ξ)− kξ(k) + (k + 1)ξ(k + 1),

where the functions gk(ξ) are amended by dropping the factor
ξ(C ); F0(ξ) and FC (ξ) are modified in the same way.
This is important as the model with capacity division does exhibit
the power of two choices phenomenon, while the model without
capacity division does not.
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Initial conditions

What initial conditions allow us to have ϕ(X0) ≤ cn−1/2 log n for
some constant c > 0, for n large enough?

For example, X0 = 0 works. This is also true, whp, for a state
obtained by throwing bc

(n
2

)
c calls into the network at time 0 using

the BDAR algorithm, though some work is required to prove this.
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Remarks

I The law of large numbers for the BDAR algorithm proved here
is valid for the model without direct links in the parameter
range considered in L. and McDiarmid (2013+), i.e., with
constant λ and d , and C = C (n) = O(log log n) for d ≥ 2,
and C = C (n) = O(log n/ log log n) for d = 1.

I Our methods apply to any GDAR algorithm, and indeed any
of the variants discussed above. Obviously, the exact form of
the function F in the limiting differential equation will be
different for different versions of the model.
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Long-term behaviour

We have seen that the process follows the differential equation
over a bounded time interval. In some cases, we can show more.
Even in the case d = 1, the differential equation

dξt
dt

= F (ξt),

may have more than one fixed point, i.e., more than one solution
to F (ξ) = 0. This was observed by Gibbens, Hunt and Kelly: for
large enough C , there is a range of λ where there are two stable
fixed points. In such a situation, we would not expect to see rapid
mixing, or strong concentration of measure in equilibrium.
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Rapid mixing

However, if the arrival rate is either sufficiently small or sufficiently
large, then the equation has a unique fixed point, and we might
expect that the equilibrium of the process is strongly concentrated
around this fixed point.

Brightwell and L. consider the cases where λ ≤ m1/d , and where
λ ≥ m2C 2d log(C 2d)), for suitable constants m1, m2. We prove
that, in either of these two regimes, the corresponding sequence of
Markov chains is rapidly mixing, and that, for each node v and
each j ∈ {0, . . . ,C}, fv ,j is well concentrated around the fixed
point. This establishes a strong form of the ‘Erlang fixed point
approximation’ proposed by Gibbens, Hunt and Kelly, in these
regimes.
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Main result for equilibrium (Brightwell and Luczak 2013+)

There are constants m1, m2 such that, if either λ < m1/d , or
λ ≥ m2C 2d log(C 2d), then the following hold for sufficiently
large n. Here, π denotes the equilibrium distribution of the chain.

I The Markov chain X is rapidly mixing, in time O(log n).

I There are constants c1, c2 > 0, depending on d , C and λ,
such that, for each node v , each j ∈ {0, . . . ,C}, each t, and
any a > 0,

Pπ (|fv ,j(Xt)− Eπ fv ,j(Xt)| > 2a) ≤ 3 exp

(
− a2

c1n + c2a

)
.
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I There is a unique solution η∗ to the equation F (η) = 0.

I For all nodes v , all j ∈ {0, . . . ,C}, and all t,∣∣∣ 1

n − 1
Eπ fv ,j(Xt)− η∗(j)

∣∣∣ ≤ 160d2(C + 1)4 log n√
n
.

I Let A be the event that
|fv ,j(Xt)− (n − 1)η∗(j)| ≤ 200d2(C + 1)4√n log n, for all

nodes v and all j ∈ {0, . . . ,C}. Then Pπ(A) ≤ 3Cn2e−δ log2 n

for some constant δ = δ(d ,C , λ).
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Comments

I Our results hold for λ ≤ 1/(8d + 4), when there are rather
few calls in the system in equilibrium, so the vast majority of
the arriving calls are routed directly.

I In our other regime, with λ ≥ m2C 2d log(C 2d), most links are
fully loaded in equilibrium, so most arriving calls are rejected,
and extremely few calls are routed indirectly.

I We hope to be able to improve both bounds in future; ideally
it should be possible to prove similar results whenever the
approximating differential equation has a unique fixed point,
but we are far away from that at the moment.
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I Our results certainly extend to some other versions of the
routing model. One remaining challenge is to cover cases
where λ is fixed and C tends to infinity.

I We would also like to prove results about the “bistable” case.
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Transient behaviour – concentration of measure

I We derive new concentration of measure inequalities for
discrete-time Markov chains based on a version of the
bounded differences inequality.

I We analyse a simple coupling of copies of the process to
enable us to apply these inequalities. We show that the
distance between two coupled copies of the process does not
increase too much over a fixed time interval.

I Hence we establish concentration of measure over a fixed time
interval for various ‘nice’ functions of the process, including
functions fv ,k(x) among others.
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Transient behaviour – coupling

The coupling we analyse is as follows.

I For arrivals, calls arrive in both copies of the chain at the
same times: calls choose the same endpoints, and the same
set of intermediate nodes to consider.

I For departures, calls are paired up as far as possible, so that a
call present in both copies of the chain departs at the same
time.

I Departures never increase the distance between the copies,
and sometimes decrease it; arrivals may increase the distance.
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I Let A be the generator operator of the Markov process X . By
standard theory of Markov chains, for each t ≥ 0,

d E[fv ,k(Xt)]

dt
= E[Afv ,k(Xt)].

I We use our concentration of measure estimates, as well as the
fact that all the nodes are exchangeable, to approximate the
expected drift of the functions fv ,k(Xt), i.e., the E[Afv ,k(Xt)],
in terms of polynomial functions of E[fv ,j(Xt)] for the
various j .
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Let ζvt be the vector with components
ζt(v , j) = (n − 1)−1 E[fv ,j(Xt)]. Let ϕ̃ = max(ϕ1, ϕ2).

We have, for all v ∈ Vn and j ∈ {0, . . . ,C},∣∣∣E[gv ,j(Xt)]− (n − 1)gj(ζ
v
t )
∣∣∣ ≤ 12d2(C + 1)3nE[ϕ̃(Xt)]

+ 20d2(C + 1)
√

n log n.

All the other terms in the expression for Afv ,k(Xt) are linear.

Hence the above inequality provides us with a bound on
|E[Afv ,k(Xt)]− Fk(ζt)|, in terms of E[ϕ̃(Xt)].
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I We thus obtain an approximate differential equation satisfied
by (n − 1)−1 E[fv ,k(Xt)].

I We use concentration of measure estimates again to argue
that (n − 1)−1fv ,k(Xt) stays close to the k-th component of
the solution uniformly over an interval.
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Equilibrium behaviour

I For sufficiently small arrival rate λ, we show that the coupling
used above is actually contractive: the distance decreases in
expectation over time. The same is true if λ is sufficiently
large, provided the chain remains in a “good set” of states.

I We then show that, in either of these two regimes, the chain
exhibits rapid mixing.
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I We use our concentration of measure inequalities, as well as
the fact that the coupling is contractive, to establish strong
concentration of measure, with uniform bounds over all time,
for the process starting from a fixed state.

I We deduce strong concentration of measure for “nice”
functions of the process Xt in equilibrium.
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I Recall that π denotes the equilibrium distribution of our chain.

I In equilibrium, we have

0 =
d Eπ[fv ,k(Xt)]

dt
= Eπ[Afv ,k(Xt)].

I As in the transient case, we bound |Eπ[Afv ,k(Xt)]− Fk(ζ)| in
terms of ϕ̃, where ζ(j) = 1

n−1 Eπ fv ,j(Xt).

I We show that, in equilibrium, the expectations of ϕ1(Xt) and
ϕ2(Xt) are small.
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I We show that, in either of the two regimes we consider, with
the arrival rate either sufficiently small or sufficiently large, the
equation F (ξ) = 0 has a unique solution, and that any
“approximate solution” to the equation lies close to the actual
solution.

I We deduce that, in either of our two regimes, each fv ,k(Xt) is
strongly concentrated around the kth component of the
unique solution to F (ξ) = 0.
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Concentration of measure inequalities

In order to analyse this process, it was necessary to develop new
concentration of measure inequalities. We shall state and discuss
two such inequalities. The first sets the scene, but, as we shall
discuss, it does not suit our intended application.
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First inequality

Theorem (L., 2013+)

Let P be the transition matrix of a discrete-time Markov chain
with discrete state space S. Let f : S → R be a function. Let
(αi : i ∈ Z+) be a sequence of positive constants such that for all
i ∈ Z,

sup
x ,y∈S :P(x ,y)>0

|EδxP i (f )− EδyP i (f )| ≤ αi .

Then for all u > 0, x0 ∈ S, and t > 0,

Pδx0
(|f (Xt)− Eδx0

[f (Xt)]| ≥ u) ≤ 2e−u
2/2(

∑t−1
i=0 α

2
i ).
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More generally, let S0 be a non-empty subset of S , and let
(αi : i ∈ Z) be a sequence of positive constants such that, for all
i ∈ Z,

sup
x ,y∈S0:P(x ,y)>0

|EδxP i (f )− EδyP i (f )| ≤ αi .

Let

S0
0 = {x ∈ S0 : y ∈ S0 whenever P(x , y) > 0}.

Then for all x0 ∈ S0
0 , u > 0 and t > 0,

Pδx0

(
{|f (Xt)− Eδx0

[f (Xt)]| ≥ u} ∩ {Xs ∈ S0
0 : 0 ≤ s ≤ t}

)
≤ 2e−u

2/2(
∑t−1

i=0 α
2
i ).

Malwina Luczak A fixed point approximation for a routing model in equilibrium



Present work
High level proof strategy

Concentration inequalities
Analysis of coupling

I In a typical application that I have in mind, there would be a
sequence of such Markov chains, indexed by n.

I We would be interested in functions with expectation of order
about n, and would run the chain for about n steps.

I Also, we could take αi = α
(n)
i = (α(n))

i
, where

α(n) ≤ 1 + c/n and c > 0.
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I We would then obtain a concentration of measure inequality
of the form

Pδx0
(|f (Xt)− Eδx0

[f (Xt)]| ≥ u) ≤ 2e−u
2/c1n, t ≤ c2n.

I Unfortunately, for our model, we would be in trouble: we want
to run the process for c2n2 steps, and we want concentration
for functions of order n.

I We have a more sophisticated version of the inequality, useful
when a good uniform bound on
supx ,y∈S :P(x ,y)>0 |EδxP i (f )− EδyP i (f )| fails to hold.
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Second inequality

Theorem
Let f : S → R be a function. Suppose the set S0 and numbers
αx ,i (y) (x , y ∈ S0) are such that, for all i ∈ Z+ and all x , y ∈ S0,

|EδxP i (f )− EδyP i (f )| ≤ αx ,i (y).

Let
S0

0 = {x ∈ S0 : y ∈ S0 whenever P(x , y) > 0}.
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Assume that, for some sequence (αi : i ∈ Z+) of positive
constants,

sup
x∈S0

0

(Pa2
x ,i )(x) ≤ α2

i .

Let t > 0, and let β = 2
∑t−1

i=0 α
2
i . Suppose also that α̂ is such that

sup
0≤i≤t−1

sup
x ,y∈S0

0 ,P(x ,y)>0

αx ,i (y) ≤ α̂.

Finally, let At = {ω : Xs(ω) ∈ S0
0 : 0 ≤ s ≤ t}.

Then, for all u > 0,

Pδx0

({
|f (Xt)− Eδx0

[f (Xt)]| ≥ u
}
∩ At

)
≤ 2e−u

2/(2β(1+(2α̂u/3β)).
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We next state a result from McDiarmid (1998), illustrating the
“bounded differences” approach.
Our first concentration inequality can be derived from this result in
a relatively straightforward way. Our second concentration
inequality is derived from a different result in the same article. The
inequalities we state above are particularly suited to applications,
as we hope to illustrate here.

Malwina Luczak A fixed point approximation for a routing model in equilibrium



Present work
High level proof strategy

Concentration inequalities
Analysis of coupling

Let (Ω̃, F̃ , P̃) be a probability space, with Ω̃ finite. Let G̃ ⊆ F̃ be a
σ-field of subsets of Ω̃. Then there exist disjoint sets G̃1, . . . , G̃m

such that Ω̃ = ∪mr=1G̃r and every set in G̃ can be written as a

union of some of the sets G̃r .
Given a bounded random variable Z on (Ω̃, F̃ , P̃), the conditional
supremum sup(Z | G̃) of Z in G̃ is given by

sup(Z | G̃)(ω̃) = min
Ã∈G̃:ω̃∈Ã

max
ω̃′∈Ã

Z (ω̃′) = max
ω̃′∈G̃r

Z (ω̃′),

where ω̃ ∈ G̃r . Thus sup(Z | G̃) takes the value at ω̃ equal to the
maximum value of Z over the event G̃r in G̃ containing ω̃.
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The conditional range ran(Z ) of Z in G̃ is the G̃-measurable
function ran(Z | G̃) = sup(Z | G̃) + sup(−Z | G̃), that is, for
ω̃ ∈ G̃r ,

ran(Z | G̃)(ω̃) = max
ω̃1,ω̃2∈G̃r

|Z (ω̃1)− Z (ω̃2)|.

Let t ∈ N, let {∅, Ω̃} = F̃0 ⊆ F̃1 ⊆ . . . ⊆ F̃t be a filtration in F̃ ,
and let Z0, . . . ,Zt be the martingale defined by Zi = Ẽ(Z |F̃i ) for
each i = 0, . . . , t. For each i , let rani denote ran(Zi |F̃i−1);
For each j , let R2

j be the random variable
∑j

i=1 ran2
i , and set

r̂ 2
j = sup

ω̃∈Ω̃

R2
j (ω̃).
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Theorem (McDiarmid (1998))

Let Z be a bounded random variable on a finite probability space
(Ω̃, F̃ , P̃) with Ẽ(Z ) = m. Let {∅, Ω̃} = F̃0 ⊆ F̃1 ⊆ . . . ⊆ F̃t be a
filtration in F̃ , and assume that Z is F̃t-measurable. Then for any
a ≥ 0,

P̃(|Z −m| ≥ a) ≤ 2e−2a2/r̂2
t .
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A natural way to verify the hypotheses of our concentration
inequalities is to construct couplings between copies of the Markov
chain starting from different states, and show that they grow closer
together in expectation, with regard to a suitable notion of
distance.

(In the transient regime, we only have to show that the chains do
not grow too much further apart over a fixed time interval.)

We illustrate this in our application, in the case where the arrival
rate λ is small.
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We work with a discretised version (X̂t) of our continuous time
chain. In this chain, the next event is an arrival with probability
λ

λ+C , and a “potential departure” with probability C
λ+C .

Conditioned on the event being an arrival, the arriving call is
routed as in the BDAR algorithm.

The calls in progress are numbered with distinct numbers from
{1, . . . ,C

(n
2

)
}. Conditioned on the event being a departure, a

uniform random number from this set is chosen, and if there is a
call with that number, it departs.
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Given two copies (X̂t) and (Ŷt) of our chain, we couple them in a
natural way. Departures and arrivals coincide for the two chains.

If the event is to be an arrival, the same endpoints are chosen in
both chains, and the same list of intermediate nodes.

If the event is to be a departure, then calls are numbered so that,
as far as possible, calls on the same route in both chains are given
the same number, so that they depart together.
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We assume that our two coupled copies (X̂t) and (Ŷt) differ by
one call at time t, present in X̂t but not in Ŷt .

We first consider the natural `1-distance between two states,

‖x − y‖1 =
∑
u,v

|x({u, v}, 0)− y({u, v}, 0)|

+
∑
{u,v},w

|x({u, v},w)− y({u, v},w)|
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We look at the change in expected distance between the two
copies after one step of the discrete chain.

Departures are straightforward to analyse: all calls are paired
except the one extra call in X̂t . The departure of this extra call
decreases the distance from 1 to 0. The departure of any other pair
of calls, one in X̂t and one in Ŷt , does not change the distance.
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Most of the time, an arrival does not change the distance.
However, if one of the links whose load is inspected carries the
extra call, then the arriving call may be routed differently in the
two chains, so the distance could go up, by at most 2.

The conditional probability of such a “bad arrival” is at most
2λ(2d+1)/(n2)

λ+C , since only 2d + 1 links are inspected for possible
routing of the arrival call, and there are at most 2 links carrying
the extra call.
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So the change in the expected distance between the chains on one
step of the coupled processes is at most

1(n
2

)
(λ+ C )

(
− 1 + 4λ(2d + 1)

)
,

which is negative if λ < 1/(8d + 4).

This is enough to establish that, in this regime, the chain is rapidly
mixing, in O(n2 log n) steps of the discrete chain, corresponding to
time O(log n) in the continuous chain.

But we need more to apply our concentration inequality.
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For each node v , we consider the “local distance”

‖x − y‖v =
∑
u

|x({u, v}, 0)− y({u, v}, 0)|

+
∑
u,w

|x({u,w}, v)− y({u,w}, v)|

+
∑
u,w

|x({v ,w}, u)− y({v ,w}, u)|.

We show that

E(‖X̂t+1 − Ŷt+1‖v | X̂t , Ŷt) ≤

(
1− 1− (8d + 4)λ

(λ+ C )
(n

2

) )
‖X̂t − Ŷt‖v

+
λ

λ+ C

12d2(n
2

)
(n − 2)

‖X̂t − Ŷt‖1.
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A simple induction argument leads to

E(‖X̂t − Ŷt‖v | X̂0, Ŷ0)

≤

(
1− 1− (8d + 4)λ

(λ+ C )
(n

2

) )t (
‖X̂0 − Ŷ0‖v +

50d2λt

(λ+ C )n3
‖X̂0 − Ŷ0‖1

)
.
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Now, for a function f satisfying |f (x)− f (y)| ≤ ‖x − y‖v , we can
take

αx ,i (y) =
(

1− 1− (8d + 4)λ

(λ+ C )
(n

2

) )i(
‖x − y‖v +

50d2λi

(λ+ C )n3
‖x − y‖1

)
.

The key is that, for any x and any i ≥ 0, if y is chosen with
probability P(x , y), then it is very likely that ‖x − y‖v = 0, and
thus αx ,i (y) is relatively small.
Hence we can provide good bounds on Pα2

x ,i , and use the full
power of our second inequality.
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High arrival rate

I If the arrival rate λ is high, we first show that the process
rapidly enters a set of states where most links are fully loaded.

I We also define a tailored distance function, and show that,
under the coupling, the distance between the two states
decreases in expectation, provided the processes both stay in
the good set.
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One fixed point?

As observed by Gibbens, Hunt and Kelly (1990), the differential
equation above does not always have a unique fixed point, even in
the case d = 1. The found a value of C , around 200, and a small
range of λ, with λ of similar magnitude to C , where there are two
attractive fixed points of the differential equation.

Our results are very unlikely to hold as they stand in a regime
where the differential equation has more than one attractive fixed
point.

The ranges we treat, where λ is either sufficiently small or
sufficiently large, are far away from the range discovered by
Gibbens, Hunt and Kelly. In our range, it is quite easy to prove
that there is a unique fixed point.
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