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Products of random i.i.d. stochastic matrices

Let {X (n)}n≥1 be a sequence of random i.i.d. d × d stochastic
matrices. We consider the limit of the left products

X (n, 1) := X (n)X (n − 1) · · ·X (1)

as n→∞ for a certain class of random stochastic matrices X (1).

The right product is given by

X (1, n) := X (1)X (2) · · ·X (n)
d
= X (n, 1).

These products generate the left and right random walks

n 7→ X (n, 1) and n 7→ X (1, n),

respectively.



A theorem by Chamayou and Letac (1994)
In Chamayou and Letac (1994) (“CL94”), the authors study the
left products for random stochastic matrices X satisfying:

[I] The rows of X are independent.

[II] The rows of X are Dirichlet distributed.

[III] Letting (αi ,1, . . . , αi ,d) be the Dirichlet parameters of the ith

row of X , we have
∑d

j=1 αi ,j =
∑d

j=1 αj ,i for i = 1, . . . , d .

They show that the above conditions are sufficient to ensure that:

[A1] The products X (n, 1) converge a.s. to some random matrix X̂
as n→∞.

[A2] The limit X̂ has identical rows a.s.

[A3] The rows of X̂ are Dirichlet distributed.

This extends a result by Van Assche (1986) who proved it for
d = 2 and all αi ,j = p > 0. Volodin, Kotz and Johnson (1993) also
independently proved this for all αi ,j = p > 0, and any d ≥ 2.



A characterisation theorem

It turns out assertions [A1]–[A3] remain true under much broader
conditions.

Denote by Kd the class of all distributions of a random d × d
stochastic matrix X such that [A1]–[A3] hold.

We extend the result in CL94 by providing a charaterisation
theorem for the class Kd .



Some notation

We denote matrix row and column sums of A = (αi ,j)
r
i=1

c
j=1 by

pi• :=
∑c

j=1 pi ,j for i = 1, . . . , r

p•j :=
∑r

i=1 pi ,j for j = 1, . . . , c

For a vector (y1, . . . , yc), we denote the sum of its components by
y• :=

∑c
i=1 yi , and set R+ := (0,∞).



For a vector a = (a1, . . . , ad) ∈ Rd
+, we denote by

Da: the Dirichlet distribution with parameter vector a

Ga: the distribution Γa1 ⊗ · · · ⊗ Γad
, that is (Z1, . . . ,Zd) ∼ Ga

iff all Zi ∼ Γai , and Z1, . . . ,Zd are independent

In what follows, the matrix A = (αi ,j)
r
i=1

c
j=1 will be the set of

parameters for the following distributions:

DA: the law of the matrix X = (Xi ,j), with
X (i) := (Xi ,1, . . . ,Xi ,c) ∼ D(αi,1,...,αi,c ) and X (1), . . . ,X (r) are
independent.

GA: the law of the matrix Z = (Zi ,j), such that
Z (i) ∼ G(αi,1,...,αi,c ) and Z (1), . . . ,Z (r) are independent.



Chamayou and Letac’s first theorem and our extension

The following theorem is the first main result in CL94:

Theorem
If (Y,X ) ∼ D(α1•,...,αr•) ⊗ DA, then YX ∼ D(α•1,...,α•c ).

We extend this theorem as follows:

Theorem
Let t = (t1, . . . , tr ) ∈ Rr

+ and s = (s1, . . . , sc) ∈ Rc
+ with t• = s•.

Suppose X is an r × c non-negative random matrix independent of
both Y ∼ Dt and V ∼ Gt. Then

YX ∼ Ds iff VX ∼ Gs.



Two properties of the gamma and Dirichlet distributions

Let Z = (Z1, . . . ,Zd) ∼ Gt for some t ∈ Rd
+. Then(

Z1

Z•
, . . . ,

Zd

Z•

)
∼ Dt. (1)

The second property is

(Z1, . . . ,Zd)
d
=

(
Z1

Z•
, . . . ,

Zd

Z•

)
Z̃•, (2)

where (Z̃1, . . . , Z̃d) is an independent copy of Z.



Our theorem is indeed an extension

For (V,Z ) ∼ G(α1•,...,αr•) ⊗ GA, then property (1) implies that

X :=


Z1,1

Z1•
· · · Z1,c

Z1•
...

. . .
...

Zr,1

Zr•
· · · Zr,c

Zr•

 ∼ DA is independent of V.

Now

VX =
r∑

k=1

(
Zk,1

Zk•
, . . . ,

Zk,c

Zk•

)
Vk

d
=

r∑
k=1

(Zk,1, . . . ,Zk,c) = (Z•1, . . . ,Z•c) ∼ G(α•1,...,α•c ).

It follows from our theorem that for a random vector Y satisfying
(Y,X ) ∼ D(α1•,...,αr•) ⊗ DA, one has YX ∼ D(α•1,...,α•c ).



A theorem by Pitman

The proof our extension to the first main theorem in CL94 is based
on an extension of the following remarkable observation from
Pitman (1937).

Let Z = (Z1, . . . ,Zd) ∼ Gt, and f : Rd → R be a scale
independent function, i.e., for any a 6= 0,

f (ax1, . . . , axd) ≡ f (x1, . . . , xd).

Then f (Z) is independent of Z•.



An extension of Pitman’s theorem

Lemma
Let (Ω,F ,P) be a probability space, (E , E) a measurable space,
and X : Ω→ E a random element. Suppose H : Rr × E → [0,∞)
is jointly measurable and, for any a 6= 0 and ω ∈ Ω,

H(ay1, . . . , ayr ,X (ω)) = H(y1, . . . , yr ,X (ω))

for all (y1, . . . , yr ) ∈ Rr . If V = (V1, . . . ,Vr ) ∼ Gt, t ∈ Rr
+, is

independent of X , then V• is independent of H(V,X ).

To prove this lemma we show that the joint Laplace transform
φ(s, u) = Ee−sV•−uH(V,X ) can be expressed as the product of two
functions, one depending on s, and the other on u.



A proof of our first theorem

For the forward implication, let VX ∼ Gs for V ∼ Gt independent
of X .

The previous lemma implies that for the function
H(v1, . . . , vr ,X ) = (H1(v1, . . . , vr ,X ), . . . , Hc(v1, . . . , vr ,X ))
defined by

Hj(v1, . . . , vr ,X ) :=
r∑

i=1

viXi ,j

v•
, 1 ≤ j ≤ c ,

the random vector H(V1, . . . ,Vr ,X ) ≡
(

V1
V•
, . . . , Vr

V•

)
X is

independent of V•.



Therefore

VX =

(
V1

V•
, . . . ,

Vr

V•

)
XV•

d
=

(
V1

V•
, . . . ,

Vr

V•

)
X Ṽ•,

where (Ṽ1, . . . , Ṽr ) ∼ Gt is independent of (V,X ).

Since VX ∼ Gs, for Z := (Z1, . . . ,Zc) ∼ Gs, one has

VX
d
= Z

d
=

(
Z1

Z•
, . . . ,

Zc

Z•

)
Z̃•,

(Z̃1, . . . , Z̃c) being an independent copy of Z.



Taking logarithms on the components of the vectors above(
ln

(∑r
i=1 ViXi ,1

V•

)
, . . . , ln

(∑r
i=1 ViXi ,c

V•

))
+ ln(Ṽ•)(1, . . . , 1)

d
=

(
ln

(
Z1

Z•

)
, . . . , ln

(
Zc

Z•

))
+ ln(Z̃•)(1, . . . , 1),

Since t• = s•, one has Ṽ•
d
= Z̃•, and so letting ψ, ϕ and χ denote

the characteristic functions of the first, second (and fourth), and
third terms above, respectively, we have

ψ(u1, . . . , uc)ϕ(u1, . . . , uc) = χ(u1, . . . , uc)ϕ(u1, . . . , uc).



We conclude that ψ ≡ χ (since ϕ(u1, . . . , uc) 6= 0), and therefore(
V1

V•
, . . . ,

Vr

V•

)
X =

(∑r
i=1 ViXi ,1

V•
, . . . ,

∑r
i=1 ViXi ,c

V•

)
d
=

(
Z1

Z•
, . . . ,

Zc

Z•

)
∼ Ds

Since the left hand side above has the form YX for Y ∼ Dt

independent of X , we have YX ∼ Ds as required.

One can obtain the backward implication by reversing these steps.



Chamayou and Letac’s transient random walk

The following theorem is the second main result in CL94.

Theorem
If r = c = d, X ∼ DA, and

(α1•, . . . , αd•) = (α•1, . . . , α•d),

then L(X ) ∈ Kd , and X̂ (1) ∼ D(α1•,...,αd•). Furthermore, if Y is a
random vector in the d-dimensional simplex that is independent of

X , then YX
d
= Y iff Y

d
= X̂ (1).



An characterisation theorem for L(X ) ∈ Kd

The following theorem is an extension of the second main theorem
in CL94.

Theorem

(i) L(X ) ∈ Kd iff

[C1] there exists a t ∈ Rd
+ such that, for a random vector

V ∼ Gt independent of X , one has VX
d
= V; and

[C2] for an i.i.d. sequence {X (n)}n≥1 with X (1)
d
= X ,

∃m <∞ such that P(X (m, 1) is positive) > 0.

(ii) If L(X ) ∈ Kd , then X̂ (1) ∼ Dt, where the vector t is the same
as in [C1], and if Y is a random vector in the d-dimensional

simplex that is independent of X , then YX
d
= Y iff Y

d
= X̂ (1).



Random exchange models

Suppose we have d <∞ bins holding amounts qk(n),
k = 1, . . . , d , of a homogeneous commodity at times
n = 0, 1, 2, . . . , respectively.

The dynamics of the model are as follows: at time n ≥ 1, the
vector

q(n − 1) := (q1(n − 1), . . . , qd(n − 1))

changes to
q(n) := q(n − 1)X (n).

Then
q(n) = q(0)X (1, n), n ≥ 1,

is a Markov chain, with stationary distribution L(X̂ (1)) (where we
assume w.l.o.g. that

∑d
k=1 qk(0) = 1).



Example 1

We now extend the definition of Da to include vectors containing
zeros as follows. The components of Y ∼ Da that correspond to
zero components of a are identically zero, whereas the subvector of
Y consisting of the components Yj of that random vector that
correspond to aj > 0 form a usual Dirichlet distributed vector. We
define Ga, DA and GA in a similar way.

Let A = (αi ,j)
d
i=1

d
j=1 be non-negative (i.e. one can have αi ,j = 0)

with αi• = α•i > 0, for i = 1, . . . , d . If X ∼ DA and X satisfies
[C2], then L(X ) ∈ Kd with X̂ (1) ∼ D(α1•,...,αd•). Therefore
D(α1•,...,αd•) is the stationary distribution of Markov chain
{q(n)}n≥1.

In particular, we have obtained the stationary distribution for the
following simple model: at time n ≥ 1, a uniform proportion of the
commodity previously held in bin k, k = 1, 2, . . . , d , is shifted to
the (neighbouring) bin k + 1 (mod d).



Example 1

In this case vector q(n) is defined as above with

X :=


U1 1− U1 0 · · · 0

0 U2 1− U2
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 Ud−1 1− Ud−1

1− Ud 0 · · · 0 Ud

 ,

where the Uk , k = 1, . . . , d , are i.i.d. uniformly distributed random
variables on (0, 1).

Observing that X defined above satisfies [C2] for m = d − 1, we
conclude that X̂ (1) ∼ D(2,...,2), and so D(2,...,2) is the stationary
distribution of Markov chain {q(n)}n≥1.



Example 2

In this example, we consider a random stochastic matrix X with all
rows dependent. The behaviour of this model is controlled by the
decisions of a “leader” as follows:

At time n ≥ 1, the “leader” shifts a uniform proportion of the
commodity held in bin 1 to bin 2. If the proportion shifted is
greater than 1/2, then no other shifts occur in the system at time
n. However, if the proportion shifted is less than or equal to 1/2,
then the commodity previously held in bin k , k = 2, 3, . . . , d ,
d ≥ 2, is shifted to the (neighbouring) bin k + 1 (mod d).



Example 2
In this case, the vector q(n) is defined as above with

X :=


U 1− U 0 · · · 0

0 I 1− I
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 I 1− I

1− I 0 · · · 0 I

 ,

where U ∼ U(0, 1), and I := 1{U>1/2}, 1A being the indicator
function for event A.

We can show that L(X ) ∈ Kd with X̂ (1) ∼ D(2,...,2) using our
extension of the second main theorem in CL94.

It is not hard to directly verify that X satisfies [C2] for
m = 2d − 2. To show [C1] holds, we let V ∼ G(2,...,2) be
independent of X , and show that the characteristic function of VX
is the same as that of V.



Other applications

The second main theorem in CL94 has been used to compute the
limiting distribution of random nested tetrahedra in Letac and
Scarsini (1998), and to compute the stationary distribution of a
donkey walk in the plane in Letac (2002).

Our extension of the second main theorem in CL94 provides
natural extensions of these results.
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