The behaviour of large metapopulations

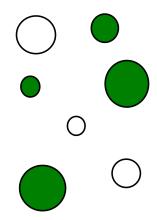
Ross McVinish

School of Mathematics and Physics University of Queensland

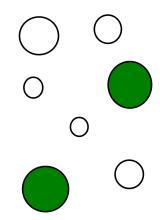
9 July 2013

Joint work with P.K. Pollett

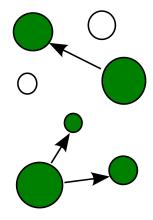
- A "population of populations" linked by migrating individuals.
- Local populations are located at disjoint habitat patches.
- Local populations frequently go extinct.
- Empty habitat patches may be colonised by migrating individuals from occupied patches.
- The aim is to understand regional persistence/extinction.



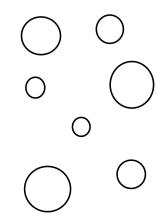
- A "population of populations" linked by migrating individuals.
- Local populations are located at disjoint habitat patches.
- Local populations frequently go extinct.
- Empty habitat patches may be colonised by migrating individuals from occupied patches.
- The aim is to understand regional persistence/extinction.



- A "population of populations" linked by migrating individuals.
- Local populations are located at disjoint habitat patches.
- Local populations frequently go extinct.
- Empty habitat patches may be colonised by migrating individuals from occupied patches.
- The aim is to understand regional persistence/extinction.



- A "population of populations" linked by migrating individuals.
- Local populations are located at disjoint habitat patches.
- Local populations frequently go extinct.
- Empty habitat patches may be colonised by migrating individuals from occupied patches.
- The aim is to understand regional persistence/extinction.



Hanski's metapopulation model

- Hanski's¹ incidence function metapopulation model has become one of the most widely used models in metapopulation ecology.
- This model employs the Presence Absence assumption. Only the occupancy status of patches in the metapopulation is modelled, not the size of the local populations.
- Let Xⁿ_t = (Xⁿ_{1,t},...,Xⁿ_{n,t}) denote the state of an *n*-patch metapopulation at time t where

 $X_{i,t}^{n} = \begin{cases} 1, & \text{if patch } i \text{ is occupied at time } t, \\ 0, & \text{otherwise.} \end{cases}$

• X_t^n is a discrete-time Markov chain on $\{0,1\}^n$.

¹Hanski, I. (1994). A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151-162.

Hanski's metapopulation model

- Conditional on X_t^n , the status of each patch at time t + 1 is independent.
- Patch *i* is described by its location *z_i*, local extinction probability 1 - *s_i*, and a weight related to the patch size *A_i*.
- Connectivity between patches is model by the function D(z, ž). It describes how easy it is to move from a patch at ž to a patch at z.
- The transitional probabilities for Hanski's model is given by

$$\Pr(X_{i,t+1}^{n} = 1 \mid X_{t}^{n}) = s_{i}X_{i,t}^{n} + (1 - X_{i,t}^{n}) f\left(\sum_{j \neq i} A_{j}^{b}D(z_{i}, z_{j})X_{j,t}^{n}\right),$$

where $f:[0,\infty)\mapsto [0,1]$ and b>0.

Simplifying assumptions

•
$$A_i = n^{-1/b}$$
.

- $z_i \in \Omega$ a compact subset of \mathbb{R}^d .
- D(z, ž) is symmetric and defines a uniformly bounded and equicontinuous family of functions on Ω.

If b < 1 then the total area decreases as $n \to \infty$.

• $z_i \in \Omega$ a compact subset of \mathbb{R}^d .

 D(z, ž) is symmetric and defines a uniformly bounded and equicontinuous family of functions on Ω.

If b < 1 then the total area decreases as $n \to \infty$.

• $z_i \in \Omega$ a compact subset of \mathbb{R}^d .

A mild assumption?

 D(z, ž) is symmetric and defines a uniformly bounded and equicontinuous family of functions on Ω.

If b < 1 then the total area decreases as $n \to \infty$.

• $z_i \in \Omega$ a compact subset of \mathbb{R}^d .

A mild assumption?

 D(z, ž) is symmetric and defines a uniformly bounded and equicontinuous family of functions on Ω.

Typically, $D(z, \tilde{z}) = \exp(-\alpha ||z - \tilde{z}||)$ for some $\alpha > 0$ and norm $|| \cdot ||$.

If b < 1 then the total area decreases as $n \to \infty$.

• $z_i \in \Omega$ a compact subset of \mathbb{R}^d .

A mild assumption?

 D(z, ž) is symmetric and defines a uniformly bounded and equicontinuous family of functions on Ω.

Typically, $D(z, \tilde{z}) = \exp(-\alpha ||z - \tilde{z}||)$ for some $\alpha > 0$ and norm $|| \cdot ||$.

• *f* is increasing and twice differentiable.

Satisfied by many colonisation functions used in practice, e.g. $f(x) = 1 - \exp(-\beta x), \ \beta > 0.$

• Define the random measure σ_n on $[0,1] imes \Omega$ by

$$\int h(s,z)\sigma_n(ds,dz) := n^{-1}\sum_{i=1}^n h(s_i,z_i),$$

where $h \in C^+([0,1] \times \Omega)$.

The sequence of random measures {σ_n}[∞]_{n=1} converges in distribution to σ if for all h ∈ C⁺([0, 1] × Ω)

$$\int h(s,z)\sigma_n(ds,dz) \stackrel{d}{\to} \int h(s,z)\sigma(ds,dz).$$

- We will assume that $\sigma_n \xrightarrow{d} \sigma$ for some non-random measure σ .
- This assumption holds if, for example, {(s_i, z_i)}[∞]_{n=1} is an iid sequence.

• Define the random (counting) measure

$$\mu_{n,t}(B) := \# \{ (s_i, z_i) \in B : X_{i,t}^n = 1 \}$$

for any bounded Borel set B.

- Let V be the class of real-valued Borel functions h on ℝ^{d+1} with 1 − h vanishing off some bounded set and satisfying 0 ≤ h(s, z) ≤ 1 for all (s, z) ∈ ℝ^{d+1}.
- The probability generating functional (p.g.fl.) of $\mu_{n,t}$ is

$$G_{n,t}[h] = \mathbb{E}\left(\prod_{i=1}^n \left(X_{i,t}^n h(s_i, z_i) + 1 - X_{i,t}^n\right)\right).$$

Convergence of μ_{n,t} establish by proving convergence of the p.g.fl.s

Theorem

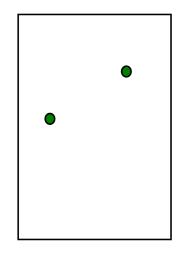
Assume that $\mu_{n,0} \xrightarrow{d} \mu_0$ with p.g.fl. G_0 and for all $\alpha > 0$ $\sup_n \mathbb{E}\left(\exp\left(\alpha \sum_{i=1}^n X_{i,0}^n\right)\right) < \infty$. Then $\mu_{n,t} \xrightarrow{d} \mu_t$ where μ_t has p.g.fl. given by

$$G_{t+1}[h] = G_t \left[G_1 \left[h \mid (s, z)
ight]
ight], \quad \textit{for any } h \in \mathcal{V},$$

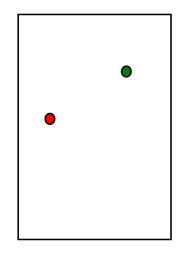
and $G_1[h | (s, z)]$ is given by

$$(1-s(1-h(s,z)))\exp\left(-f'(0)\int D(\tilde{z},z)(1-h(\tilde{s},\tilde{z}))\sigma(d\tilde{s},d\tilde{z})\right).$$

- The limiting process is (marginally) a multiplicative population chain.
- A patch occupied at time t and located at z colonises unoccupied patches according to a Poisson process with intensity measure f'(0)D(·, z)σ at time t + 1.
- A patch occupied at time t remains occupied at time t + 1 with probability s.
- The collection of occupied patches at time t + 1 is the superposition of these point processes.



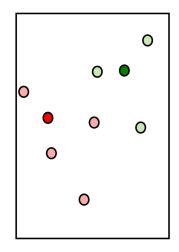
- The limiting process is (marginally) a multiplicative population chain.
- A patch occupied at time t and located at z colonises unoccupied patches according to a Poisson process with intensity measure f'(0)D(·, z)σ at time t + 1.
- A patch occupied at time t remains occupied at time t + 1 with probability s.
- The collection of occupied patches at time t + 1 is the superposition of these point processes.



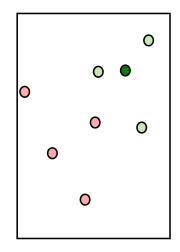
- The limiting process is (marginally) a multiplicative population chain.
- A patch occupied at time t and located at z colonises unoccupied patches according to a Poisson process with intensity measure f'(0)D(·, z)σ at time t + 1.
- A patch occupied at time t remains occupied at time t + 1 with probability s.
- The collection of occupied patches at time t + 1 is the superposition of these point processes.



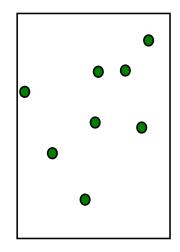
- The limiting process is (marginally) a multiplicative population chain.
- A patch occupied at time t and located at z colonises unoccupied patches according to a Poisson process with intensity measure f'(0)D(·, z)σ at time t + 1.
- A patch occupied at time t remains occupied at time t + 1 with probability s.
- The collection of occupied patches at time t + 1 is the superposition of these point processes.



- The limiting process is (marginally) a multiplicative population chain.
- A patch occupied at time t and located at z colonises unoccupied patches according to a Poisson process with intensity measure f'(0)D(·, z)σ at time t + 1.
- A patch occupied at time t remains occupied at time t + 1 with probability s.
- The collection of occupied patches at time t + 1 is the superposition of these point processes.



- The limiting process is (marginally) a multiplicative population chain.
- A patch occupied at time t and located at z colonises unoccupied patches according to a Poisson process with intensity measure f'(0)D(·, z)σ at time t + 1.
- A patch occupied at time t remains occupied at time t + 1 with probability s.
- The collection of occupied patches at time t + 1 is the superposition of these point processes.



- What is the probability that the limiting process goes extinct in finite time?
- Moyal² showed that this is determined by the smallest fixed point h^* of $G_1[\cdot | (s, z)]$, that is, the smallest solution to

 $h = G_1[h \mid (s,z)], \quad h \in \mathcal{V}.$

- h*(s, z) is the probability that the MPC goes extinct in finite time from an initial population consisting of a single occupied patch located at z with survival probability s.
- The function $h^* = 1$ for all (s, z) is always a solution. When does a smaller solution exist?

²Moyal, J.E. (1962) Multiplicative population chains, Proc. R. Soc. Lond. A, 266, 518-526.

Additional assumptions and notation

Our analysis requires some additional assumptions:

For some ε > 0, σ([1 − ε, 1] × Ω) = 0 and for every z ∈ Ω and every open neighbourhood N_z of z, σ([0, 1] × N_z) > 0.

•
$$D(z, \tilde{z}) > 0$$
 for all $z, \tilde{z} \in \Omega$.

Some additional notation is also required:

• Let $\mathcal{A}: C(\Omega) \mapsto C(\Omega)$ be the bounded linear operator

$$\mathcal{A}\phi(z)=f'(0)\int rac{D(ilde{z},z)}{(1- ilde{s})}\phi(ilde{z})\sigma(d ilde{s},d ilde{z}),\quad \phi\in C(\Omega).$$

• Let $r(\mathcal{A})$ denote the spectral radius of \mathcal{A} .

Theorem

The limiting MPC goes extinct in finite time with probability one iff $r(A) \leq 1$. If r(A) > 1, the limiting MPC goes extinct in finite time with probability

$$G_0\left(\frac{(1-s)\psi^*(z)}{1-s\psi^*(z)}\right),\,$$

where ψ^* is the smallest nonnegative solution to

$$\psi(z) = \exp\left(-f'(0)\int D(\tilde{z},z)\left(rac{1-\psi(\tilde{z})}{1-\tilde{s}\psi(\tilde{z})}
ight)\sigma(d\tilde{s},d\tilde{z})
ight).$$

We have shown that:

- Under certain assumptions, Hanski's incidence function metapopulation model can be approximated by an MPC when the number of patches is large.
- Extinction in finite time is certain for the limiting process if $r(A) \leq 1$. Otherwise, extinction in finite time occurs with probability less than one.

In our future work, we aim to:

- Relax some of the assumptions.
- Improve the convergence results.

The results given in this presentation will appear in the *Journal of Applied Probability*.