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Overview of metapopulations

A “population of populations”
linked by migrating individuals.

Local populations are located at
disjoint habitat patches.

Local populations frequently go
extinct.

Empty habitat patches may be
colonised by migrating individuals
from occupied patches.

The aim is to understand regional
persistence/extinction.
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Hanski’s metapopulation model

Hanski’s1 incidence function metapopulation model has
become one of the most widely used models in
metapopulation ecology.

This model employs the Presence – Absence assumption.
Only the occupancy status of patches in the metapopulation
is modelled, not the size of the local populations.

Let X n
t = (X n

1,t , . . . ,X
n
n,t) denote the state of an n–patch

metapopulation at time t where

X n
i ,t =

{
1, if patch i is occupied at time t,
0, otherwise.

X n
t is a discrete–time Markov chain on {0, 1}n.

1Hanski, I. (1994). A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151-162.
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Hanski’s metapopulation model

Conditional on X n
t , the status of each patch at time t + 1 is

independent.

Patch i is described by its location zi , local extinction
probability 1− si , and a weight related to the patch size Ai .

Connectivity between patches is model by the function
D(z , z̃). It describes how easy it is to move from a patch at z̃
to a patch at z .

The transitional probabilities for Hanski’s model is given by

Pr
(
X n
i ,t+1 = 1 | X n

t

)
= siX

n
i ,t+

(
1− X n

i ,t

)
f

∑
j 6=i

Ab
j D(zi , zj)X n

j ,t

 ,

where f : [0,∞) 7→ [0, 1] and b > 0.
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Simplifying assumptions

Ai = n−1/b.

If b < 1 then the total area decreases as n→∞.

zi ∈ Ω a compact subset of Rd .

A mild assumption?

D(z , z̃) is symmetric and defines a uniformly bounded and
equicontinuous family of functions on Ω.

Typically, D(z , z̃) = exp(−α‖z − z̃‖) for some α > 0 and
norm ‖ · ‖.

f is increasing and twice differentiable.

Satisfied by many colonisation functions used in practice, e.g.
f (x) = 1− exp(−βx), β > 0.
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Random measures

Define the random measure σn on [0, 1]× Ω by∫
h(s, z)σn(ds, dz) := n−1

n∑
i=1

h(si , zi ),

where h ∈ C+([0, 1]× Ω).

The sequence of random measures {σn}∞n=1 converges in
distribution to σ if for all h ∈ C+([0, 1]× Ω)∫

h(s, z)σn(ds, dz)
d→
∫

h(s, z)σ(ds, dz).

We will assume that σn
d→ σ for some non-random measure σ.

This assumption holds if, for example, {(si , zi )}∞n=1 is an iid
sequence.
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Point processes

Define the random (counting) measure

µn,t(B) := #
{

(si , zi ) ∈ B : X n
i ,t = 1

}
for any bounded Borel set B.

Let V be the class of real-valued Borel functions h on Rd+1

with 1− h vanishing off some bounded set and satisfying
0 ≤ h(s, z) ≤ 1 for all (s, z) ∈ Rd+1.

The probability generating functional (p.g.fl.) of µn,t is

Gn,t [h] = E

(
n∏

i=1

(
X n
i ,th(si , zi ) + 1− X n

i ,t

))
.

Convergence of µn,t establish by proving convergence of the
p.g.fl.s
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Convergence

Theorem

Assume that µn,0
d→ µ0 with p.g.fl. G0 and for all α > 0

supn E
(

exp
(
α
∑n

i=1 X n
i ,0

))
<∞. Then µn,t

d→ µt where µt has

p.g.fl. given by

Gt+1[h] = Gt [G1 [h | (s, z)]] , for any h ∈ V,

and G1 [h | (s, z)] is given by

(1−s (1−h(s, z))) exp

(
−f ′(0)

∫
D(z̃ , z) (1−h(s̃, z̃))σ(ds̃, dz̃)

)
.
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Multiplicative population chains

The limiting process is (marginally)
a multiplicative population chain.

A patch occupied at time t and
located at z colonises unoccupied
patches according to a Poisson
process with intensity measure
f ′(0)D(·, z)σ at time t + 1.

A patch occupied at time t remains
occupied at time t + 1 with
probability s.

The collection of occupied patches
at time t + 1 is the superposition
of these point processes.
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Probability of extinction

What is the probability that the limiting process goes extinct
in finite time?

Moyal2 showed that this is determined by the smallest fixed
point h∗ of G1 [· | (s, z)], that is, the smallest solution to

h = G1 [h | (s, z)] , h ∈ V.

h∗(s, z) is the probability that the MPC goes extinct in finite
time from an initial population consisting of a single occupied
patch located at z with survival probability s.

The function h∗ = 1 for all (s, z) is always a solution. When
does a smaller solution exist?

2Moyal, J.E. (1962) Multiplicative population chains, Proc. R. Soc. Lond. A, 266, 518–526.
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Additional assumptions and notation

Our analysis requires some additional assumptions:

For some ε > 0, σ([1− ε, 1]×Ω) = 0 and for every z ∈ Ω and
every open neighbourhood Nz of z , σ([0, 1]× Nz) > 0.

D(z , z̃) > 0 for all z , z̃ ∈ Ω.

Some additional notation is also required:

Let A : C (Ω) 7→ C (Ω) be the bounded linear operator

Aφ(z) = f ′(0)

∫
D(z̃ , z)

(1− s̃)
φ(z̃)σ(ds̃, dz̃), φ ∈ C (Ω).

Let r(A) denote the spectral radius of A.
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Probability of extinction

Theorem

The limiting MPC goes extinct in finite time with probability one
iff r(A) ≤ 1. If r(A) > 1, the limiting MPC goes extinct in finite
time with probability

G0

(
(1− s)ψ∗(z)

1− sψ∗(z)

)
,

where ψ∗ is the smallest nonnegative solution to

ψ(z) = exp

(
−f ′(0)

∫
D(z̃ , z)

(
1− ψ(z̃)

1− s̃ψ(z̃)

)
σ(ds̃, dz̃)

)
.
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Summary and future work

We have shown that:

Under certain assumptions, Hanski’s incidence function
metapopulation model can be approximated by an MPC when
the number of patches is large.

Extinction in finite time is certain for the limiting process if
r(A) ≤ 1. Otherwise, extinction in finite time occurs with
probability less than one.

In our future work, we aim to:

Relax some of the assumptions.

Improve the convergence results.

The results given in this presentation will appear in the Journal of
Applied Probability.

Ross McVinish The behaviour of large metapopulations


