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Intervals and interval arithmetic

We use the notation

X =
[
X ,X

]
to represent an interval

Interval arithmetic allows us to perform arithmetic operations

on intervals and can be represented as follows

X � Y = {x � y : x ∈ X , y ∈ Y }

where X and Y represent intervals and � is the arithmetic

operator
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Intervals and interval arithmetic

Let X = [−1, 1]. Then we have

X 2 = {x2 : x ∈ [−1, 1]} = [0, 1]

whilst

X · X = {x1 · x2 : x1 ∈ [−1, 1], x2 ∈ [−1, 1]} = [−1, 1].

So here, we have the idea of ‘one-sample’ and ‘re-sample’.
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Computation with interval arithmetic

Computational software, e.g. INTLAB

Performs arithmetic operations on interval vectors and matrices

Solves systems of linear equations with intervals
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Why might interval arithmetic be useful?

Point estimate of parameters with sensitivity analysis

Can we avoid the need for sensitivity analysis?

Is it possible to directly incorporate the uncertainty of

parameter values into our model?

Intervals can be used to bound our parameter values,

[x − error , x + error ]
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Markov chains + intervals = ?

Consider a discrete time Markov chain with n + 1 states,

{0, . . . , n}, and state 0 an absorbing state

Interval transition probability matrix

P =



[1, 1] [0, 0] · · · [0, 0][
P10,P10

]
... Ps[

Pn0,Pn0

]



Mingmei Teo ANZAPW 2013



Background
Markov Decision Processes

Questions

Intervals
Markov chains
Problem

Conditions on the interval transition probability matrix

Bounds are valid probabilities,

0 ≤ P ij ≤ P ij ≤ 1

Row sums must satisfy the following,∑
j

P ij ≤ 1 ≤
∑
j

P ij
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Time homogeneity

Standard Markov chains:

One-step transition probability matrix, P, constant over time

Interval Markov chains:

Time inhomogeneous interval matrix

Time homogeneous interval matrix

One-sample (Time homogeneous Markov chain)

Re-sample (Time inhomogeneous Markov chain)
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Hitting times and mean hitting times

Ni is the random variable describing the number of steps

required to hit state 0 conditional on starting in state i

νi = E [Ni ] is expected number of steps needed to hit state 0

conditional on starting in state i
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Hitting times problem

We want to calculate an interval hitting times vector, [ν,ν], for

our interval Markov chain. That is, we want to solve

[ν,ν] = (I − Ps)−11

where I is the identity matrix, 1 is vector of ones, Ps is sub-matrix
of the interval matrix P and ν and ν represent the lower and upper
bounds of the hitting times vector.
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Can we solve the system of equations directly?

Can we just use INTLAB and interval arithmetic to solve the

system of equations?

INTLAB uses an iterative method to solve the system of

equations

Problem: ensuring the same realisation of the interval matrix is

chosen at each iteration

Problem: ensuring
∑
j

Pij = 1
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Hitting times interval

We seek to calculate the interval hitting times vector of an interval

Markov chain by minimising and maximising the hitting times

vector,

ν = (I − Ps)−1 1,

where

Ps =


P11 · · · P1n

...
. . .

...

P1n · · · Pnn


is a realisation of the interval Ps matrix with the row sums
condition obeyed.
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Maximisation case

We wanted to solve the following maximisation problem for

k = 1, . . . , n.

max νk =
[
(I − Ps)−1 1

]
k

subject to

n∑
j=0

Pij = 1, for i = 1, . . . , n,

P ij ≤Pij ≤ P ij , for i = 1, . . . , n; j = 0, . . . , n.
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New formulation of the problem

max νk =
[
(I − Ps)−1 1

]
k

subject to

n∑
j=1

Pij = 1− P i0, for i = 1, . . . , n,

P ij ≤ Pij ≤ P ij , for i , j = 1, . . . , n.
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Feasible region of maximisation problem

Constraints are row-based

Let Fi be the feasible region of row i , for i = 1, . . . , n

Represents the possible vectors for the i th row of the Ps matrix

Fi is defined by bounds and linear constraints which form a

convex hull
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What can we do with this?

Numerical experience suggests the optimal solution occurs at

a vertex of the feasible region

Look to prove this conjecture using Markov decision processes

(MDPs)

We want to be able to represent our maximisation problem as

an MDP and exploit existing MDP theory
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What are Markov decision processes?

A way to model decision making processes to optimise a

pre-defined objective in a stochastic environment

Described by decision times, states, actions, rewards and

transition probabilities

Optimised by decision rules and policies
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Mapping

Lemma

Our maximisation problem is a Markov decision process restricted

to only consider Markovian decision rules and stationary policies.

Prove this by representing our maximisation problem as an

MDP
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Proof: states, decision times and rewards

States

Both representations involve the same underlying Markov chain

Decision times

Every time step of the underlying Markov chain

Infinite-horizon MDP as we allow the process to continue until

absorption

Reward = 1

Each step increases the time to absorption by one
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Proof: actions

Recall, Fi is the feasible region of row i

We choose to let each vertex in Fi correspond to an action of

the MDP when in state i

To recover the full feasible region, need convex combinations

of vertices ⇒ convex combinations of actions
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Proof: transition probabilities

Let P
(a)
i be the associated probability distribution vector for

an action a

When an action a is chosen in state i , the corresponding P
(a)
i

is inserted into the i th row of the matrix, Ps

Considering all states i = 1, . . . , n, we get the Ps matrix
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Proof: Markovian decision rules and stationary policy

Markovian decision rules

Maximisation problem involves choosing the transition

probabilities of a Markov chain

Stationary policy

We have a time homogeneous (one-sample) interval Markov

chain

Means optimal Ps matrix remains constant over time

Hence the choice of decision rule is independent of time
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Optimal at vertex

Theorem

There exists an optimal solution of the maximisation problem

where row i of the optimal matrix, P∗s , represents a vertex of Fi for

all i = 1, . . . , n.

Need to show there is no extra benefit from having randomised

decision rules as opposed to deterministic decision rules
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Why do we care about randomised and deterministic?

Randomised decision rules ⇒ convex combination of actions

⇒ non-vertex of Fi

Deterministic decision rules ⇒ single action ⇒ vertex of Fi

Want deterministic decision rules!
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Proposition (Proposition 6.2.1. of Puterman1)

For all v ∈ V ,

sup
d∈DMD

{rd + Pdv} = sup
d∈DMR

{rd + Pdv}.

This proposition from Puterman1 gives us that there is

nothing to be gained from randomised decision rules

So there exists an optimal is obtained for deterministic

decision rules

1
M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming
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Conclusions

Proven that an optimal solution occurs at a vertex of the

feasible region

This theorem provides us with a useful analytic property which

we can exploit when obtaining the optimal solution through

numerical methods
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What else?

Determine if interval analysis can be used to investigate model

sensitivity

Vary width of intervals for parameters and see effect on mean

hitting times intervals
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Consider the following interval transition probability matrix,

P =



[1, 1] [0, 0] [0, 0] [0, 0]

[0.3, 0.35] [0, 1] [0, 0] [0, 0.1]

[0.2, 0.3] [0, 1] [0, 1] [0, 1]

[0.1, 0.2] [0, 1] [0, 0.3] [0, 0]


.

Mingmei Teo ANZAPW 2013



Background
Markov Decision Processes

Questions

Counter-example for an analytic solution

Our proposed analytic solution:

Ps =


0.6 0 0.1

0 0 0.8

0.6 0.3 0

 .
Optimal solution obtained numerically from MATLAB:

P∗s =


0.6 0 0.1

0 0.8 0

0.6 0.3 0

 .
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