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The basic queueing model (M/M/1)
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Poisson arrival rate A

exponential service rate ;1 > A\ (mean of %)
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cost per unit of wait C



@ mean service time 1/u
o utilization level p = \/pu <1
@ mean time in the system
1

AT =)



@ mean service time 1/u
utilization level p = A/pu < 1
@ mean time in the system

(]

B 1
INZE)
@ mean time in the system for a stand-by customer
1
(1~ p)?
equals the total added time to the society due to the marginal arrival

w



@ mean service time 1/u
utilization level p = A/pu < 1
@ mean time in the system

(]

1

AT =)

@ mean time in the system for a stand-by customer
1
u(1 - p)?
equals the total added time to the society due to the marginal arrival

Example: assume A =09 and 1/pu =1
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@ mean service time 1/u
utilization level p = A/pu < 1
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@ mean time in the system for a stand-by customer
1
u(1 - p)?
equals the total added time to the society due to the marginal arrival

Example: assume A =09 and 1/pu =1

=p=09

= mean time in the system 10

= mean socially added time 100 (for 1 unit of service!)

You care for the 10, not for the 100. This is why queues are too long.
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TO queue OI’ nOt tO queue Edleson and Hildebrand, ‘75
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if nobody joins, one better joins. If all join, one better do not join.



To queue or NOt tO QUEUE Edieson and Hildebrand, ‘75

assume

R—%>O and R—L<O

m(1—p)
if nobody joins, one better joins. If all join, one better do not join.
(Nash) equilibrium: join with probability p. where
C

(1 = pep)
In equilibrium, all are indifferent between joining or not.

=0



To queue or NOt tO QUEUE Edieson and Hildebrand, ‘75

assume

R—%>O and R—L<O

m(1—p)
if nobody joins, one better joins. If all join, one better do not join.
(Nash) equilibrium: join with probability p. where
C
(1= pep)
In equilibrium, all are indifferent between joining or not.

=0

social optimization: join with probability ps where
C

=arg max pA\(R— —
ps = arg  max, P (1 — pp)

)



To queue or NOt tO QUEUE Edieson and Hildebrand, ‘75

assume

R—%>O and R—L<O

m(1—p)
if nobody joins, one better joins. If all join, one better do not join.
(Nash) equilibrium: join with probability p. where
C

(1 = pep)
In equilibrium, all are indifferent between joining or not.

=0

social optimization: join with probability ps where
C

=arg max pA\(R— —
ps = arg  max, P (1 — pp)

)

C

R———=0
(L = psp)?
In social optimization, the society is indifferent whether the marginal
customer joins or not. 10/57



@ The equilibrium arrival rate: \¢ = — %.

@ The socially optimal arrival rate: s = p — %.
@ Either rate is not a function of the potential rate.
°

As < Ae = long queues

@ The consumer surplus is zero in equilibrium.
It is (v/Rp — v/ C)? in social optimization.
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Regulating by an entry fee (Pigouvian tax)

socially optimal entry fee T:
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Regulating by an entry fee (Pigouvian tax)

socially optimal entry fee T:

R—T - ¢ =0
(1 = psp)
!
T—rR-cw=r— |
W

C C

T = —
(1= psp)?  p(1l— psp)

T = externalities the marginal joiner inflicts under the socially optimal
scenario
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Waiting cost

marginal social cost individual cost
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Regulating by increasing waiting costs

the same effect is achieved with an added holding fee h:

__C+h _
(1 = psp)

I
h=+RCu—C
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Regulating contracts

A contract: if you join, pay f(X) for some unknown random variable X.

If E(f(X)) coincides with the externalities under social optimal joining
rate, this scheme leads to regulation.

f(X) = the expected externalities given X.
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Regulating contracts

A contract: if you join, pay f(X) for some unknown random variable X.

If E(f(X)) coincides with the externalities under social optimal joining
rate, this scheme leads to regulation.

f(X) = the expected externalities given X.
Possible random variables:

@ time in the system

@ queue length upon arrival

@ queue length upon departure

@ service time
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Expected Externalities

W = time in the system (service inclusive)
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Expected Externalities

W = time in the system (service inclusive)

AW Ru
C—=2"  _—Cy/L-1]|W
(1 — psp) ( C >

L, = number in the system upon arrival (inclusive)

L L IR 1
c— cl_cf,/)E -2t
w(l—psp)  p < Cu u) ?

Ly = number in the system upon departure (exclusive)

S = service time

2(1 — psp) (1 — psp)? 21/57



Quadratic fees ey, ‘o

W = waiting time
Charge aW? + bW.

Any a, b with aE(W?) + bE(W) = T will do

For example, a= Cp/2 and b= —1
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Quadratic fees ey, ‘o

W = waiting time
Charge aW? + bW.

Any a, b with aE(W?) + bE(W) = T will do
For example, a= Cp/2 and b= —1
These a and b are free of R!

This is the unique function (W) with E(f(W)) = T which is free of R

A similar scheme with L,
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@ customers internalize the externalities they inflict on others

24 /57



@ customers internalize the externalities they inflict on others

@ all the consumer surplus goes to the central planner

(vVRu—VC)?
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@ customers internalize the externalities they inflict on others

@ all the consumer surplus goes to the central planner

(vVRu—VC)?

@ customers are ending up with nothing as they possess no private
information
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Waiting cost
R
R—T

(1) individual cost
(2) marginal social cost
(3) holding cost
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Regulating by pessimism

@ pe equilibrium joining probability
@ ps socially optimal joining probability
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Regulating by pessimism

@ pe equilibrium joining probability
@ ps socially optimal joining probability
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and hence, c
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Under a socially optimal joining probability, a stand-by customer is
indifferent between joining or not. So is the society: He inflicts no
externalities. But society does not mind order of service

29 /57



Regulating by pessimism

@ pe equilibrium joining probability
@ ps socially optimal joining probability

. 1 1
Interestingly, =

(1 —pep) (1 psp)?

and hence, c
=0

R—— — —
(1 — psp)?

Under a socially optimal joining probability, a stand-by customer is
indifferent between joining or not. So is the society: He inflicts no
externalities. But society does not mind order of service

If all think they are stand-by customers, then ps is an equilibrium.
Problem: contradicts standard assumptions in games and economics: all

being last cannot be common knowledge....
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When customers know their demand

M/G/1, g(x) density of service time

customers know their demand and decide whether to join or not
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M/G/1, g(x) density of service time

customers know their demand and decide whether to join or not

Wi (y)= mean time for a y job, when x is the threshold
L= mean number in the system

assumption: some threshold strategy is a best response
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When customers know their demand

M/G/1, g(x) density of service time

customers know their demand and decide whether to join or not

Wi (y)= mean time for a y job, when x is the threshold
L= mean number in the system

assumption: some threshold strategy is a best response

equilibrium threshold: R — CW,_(x.) =0
Xe 1S @ best response against x..
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socially optimal threshold:

xs = argmax{\G(x)R — CL,}
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socially optimal threshold:
xs = argmax{\G(x)R — CL,}
X
introduce fees making an xs customer indifferent between joining or not
against all using threshold x
flat entry fee T:

R—T— CW(x)=0

linear holding fee h:
R—(C+ h)Wy(xs)=0

linear service fee w:
R — CWy (xs) —wxs =0
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socially optimal threshold:

xs = argmax{\G(x)R — CL,}

introduce fees making an xs customer indifferent between joining or not
against all using threshold x

flat entry fee T:
R—T—CWy(xs)=0

linear holding fee h:
R—(C+ h)Wy(xs)=0

linear service fee w:
R — CWy (xs) —wxs =0

hWi

s

(xs) =wxs =T
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the externalities that an x5 customer inflicts on a y customer:

c d

—— - Wk(y), 0<y <
g(Xs) dX s(y) .y XS

it is socially optimal if externalities are being internalized
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the externalities that an x5 customer inflicts on a y customer:

c d

—— - Wk(y), 0<y <
g(Xs) dX s(y) .y XS

it is socially optimal if externalities are being internalized

total externalities=socially optimal entry fee:

xs)/ )g(y) dy.
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the externalities that an x5 customer inflicts on a y customer:

c d

—— - Wk(y), 0<y <
g(Xs) dX s(y) .y XS

it is socially optimal if externalities are being internalized

total externalities=socially optimal entry fee:

200) / )g(y) dy.

in case of no externalities:
@ X5 = X

@ T=h=w=0
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Comparing schemes

Level of Regulation (LoR): mean payment divided by mean waiting cost.

axiom: The lower the LoR the better
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Comparing schemes

Level of Regulation (LoR): mean payment divided by mean waiting cost.

axiom: The lower the LoR the better
all customers pay most under the holding fee scheme

a y-customer, 0 < y < xg, prefers holding fees to service fees iff

WXs(Y)/y < Wxs(Xs)/XS
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First come first served (FCFS)

Processor sharing (PS)

Non-preemptive priority to short jobs (SJF)
static preemptive priority to short jobs (PSJF)
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FCFS

all pay more under flat entry fee
holding fee: affine function between (0, W, (0)) and (xs, T).
service fee: linear function between (0,0) and (xs, T).

= All prefer service fees on holding fees.
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Preem ptlve SJ F Hassin and Haviv, '03

It is socially optimal that:
@ only short jobs join

@ short jobs receive priority
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Preem ptlve SJ F Hassin and Haviv, '03

It is socially optimal that:
@ only short jobs join

@ short jobs receive priority

Static preemptive priority is given to short jobs (PSJF)
Customers, knowing their service times, decide whether to join or not

Equilibrium behavior: Join if and only if service is shorter than or equal
to Xs

an xs customer inflicts no externalities: His/her and the society’s interests
coincide
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all pay more under flat entry fee

denote p(x) = X [;_, tg(x) dt
y .
Wi.(y) = ———, linear
¥ 1 —p(xs)
I

holding fees and service fees coincide (in mean)

‘T =
yTa-p) T
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SJF (M/M/1)

Non-preemptive shortest job first

@ if p < (1 +9e25) = all prefer service fees on holding fees

© otherwise, for small and large value of y, service fees are preferred.
For mid values of y, holding fees.

M/G/1: an odd number of intervals where the preferences alternate.
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Regulating by auctioning priorities Hasin, s

One who pays x overtakes (preemptively) all those who pay y, y < x.

Decision problem: To join or not to join. If join, how much to pay?
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Regulating by auctioning priorities Hasin, s

One who pays x overtakes (preemptively) all those who pay y, y < x.

Decision problem: To join or not to join. If join, how much to pay?
Equilibrium: join with probability ps (as socially optimal!)
Q: And how much to pay?
A: Mix with density along [0, a] where
B C C

w1 —psp)?  p
and distribution function F(x),

C
(L = ps(1 = F(x))p)?

a

R —x

=0, 0<x<a
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Regulating by auctioning priorities Hasin, s

One who pays x overtakes (preemptively) all those who pay y, y < x.
Decision problem: To join or not to join. If join, how much to pay?
Equilibrium: join with probability ps (as socially optimal!)
Q: And how much to pay?
A: Mix with density along [0, a] where
B C C

w1 —psp)?  p
and distribution function F(x),

C
(L = ps(1 = F(x))p)?

Proof: The interests of the one who enters and pays nothing (and is
always last and inflicts no externalities), and that of society's coincide

a

R—x =0, 0<x<a

Each pays the externalities he/she inflicts (Pigouvian tax) 51/57



Observable queues o, s

Equilibrium: Join if and only if the number upon arrival is smaller than n..

C(n+1)

ne = max{R — > 0}
n
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Observable queues o, s

Equilibrium: Join if and only if the number upon arrival is smaller than n..

C(n+1)

ne = max{R — > 0}
n

Multiple equilibria but a unique threshold-based equilibrium

Socially optimal strategy: Join if and only if upon arrival the number in
system is smaller than ng

ns < ne (and equality iff ne = 1) = long queues

A right entry toll coincide the new ne and the old ng
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Regulating by not-FCFS rsin, s

Change the entrance policy to not-FCFS: An arrival is placed anywhere
(with preemption) but the last position
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Regulating by not-FCFS rsin, s

Change the entrance policy to not-FCFS: An arrival is placed anywhere
(with preemption) but the last position

The individual decision problem: to renege if queue ahead is too long
Equilibrium: Renege when at position ng + 1

Explanation: The one at the back does not inflict any externalities. His
utility coincides with the society's
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