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The basic queueing model (M/M/1)

single server

first come first served (FCFS)

Poisson arrival rate λ

exponential service rate µ > λ (mean of 1
µ
)

value of service R

cost per unit of wait C
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Some facts

mean service time 1/µ
utilization level ρ = λ/µ < 1
mean time in the system

W =
1

µ(1− ρ)
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1
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mean service time 1/µ
utilization level ρ = λ/µ < 1
mean time in the system

W =
1

µ(1− ρ)

mean time in the system for a stand-by customer

1

µ(1− ρ)2

equals the total added time to the society due to the marginal arrival

Example: assume λ = 0.9 and 1/µ = 1
⇒ ρ = 0.9
⇒ mean time in the system 10
⇒ mean socially added time 100 (for 1 unit of service!)
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Some facts

mean service time 1/µ
utilization level ρ = λ/µ < 1
mean time in the system

W =
1

µ(1− ρ)

mean time in the system for a stand-by customer

1

µ(1− ρ)2

equals the total added time to the society due to the marginal arrival

Example: assume λ = 0.9 and 1/µ = 1
⇒ ρ = 0.9
⇒ mean time in the system 10
⇒ mean socially added time 100 (for 1 unit of service!)

You care for the 10, not for the 100. This is why queues are too long.
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To queue or not to queue Edleson and Hildebrand, ‘75

assume

R − C

µ
> 0 and R − C

µ(1− ρ)
< 0

if nobody joins, one better joins. If all join, one better do not join.
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To queue or not to queue Edleson and Hildebrand, ‘75

assume

R − C

µ
> 0 and R − C

µ(1− ρ)
< 0

if nobody joins, one better joins. If all join, one better do not join.

(Nash) equilibrium: join with probability pe where

R − C

µ(1− peρ)
= 0

In equilibrium, all are indifferent between joining or not.

social optimization: join with probability ps where

ps = arg max
0<p<pe

pλ(R − C

µ(1− pρ)
)

R − C

µ(1− psρ)2
= 0

In social optimization, the society is indifferent whether the marginal
customer joins or not. 10 / 57



Some facts

The equilibrium arrival rate: λe = µ− C
R
.

The socially optimal arrival rate: λs = µ−
√

Cµ

R
.

Either rate is not a function of the potential rate.

λs < λe ⇒ long queues

The consumer surplus is zero in equilibrium.
It is (

√
Rµ−

√
C )2 in social optimization.
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Regulating by an entry fee (Pigouvian tax)

socially optimal entry fee T :

R − T − C

µ(1− psρ)
= 0

⇓

T = R − CW = R −
√

CR

µ
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Regulating by an entry fee (Pigouvian tax)

socially optimal entry fee T :

R − T − C

µ(1− psρ)
= 0

⇓

T = R − CW = R −
√

CR

µ

T =
C

µ(1− psρ)2
− C

µ(1− psρ)

T = externalities the marginal joiner inflicts under the socially optimal
scenario
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p

Waiting cost
individual costmarginal social cost

R

peps

R − T
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Regulating by increasing waiting costs

the same effect is achieved with an added holding fee h:

R − C + h

µ(1− psρ)
= 0

⇓
h =

√

RCµ− C
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Regulating contracts

A contract: if you join, pay f (X ) for some unknown random variable X.

If E(f (X )) coincides with the externalities under social optimal joining
rate, this scheme leads to regulation.

f (X ) = the expected externalities given X .
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Regulating contracts

A contract: if you join, pay f (X ) for some unknown random variable X.

If E(f (X )) coincides with the externalities under social optimal joining
rate, this scheme leads to regulation.

f (X ) = the expected externalities given X .

Possible random variables:

time in the system

queue length upon arrival

queue length upon departure

service time
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Expected Externalities

W = time in the system (service inclusive)

C
λsW

µ(1− psρ)
= C

(

√

Rµ

C
− 1

)

W
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Expected Externalities

W = time in the system (service inclusive)

C
λsW

µ(1− psρ)
= C

(

√

Rµ

C
− 1

)

W

La = number in the system upon arrival (inclusive)

C
La

µ(1− psρ)
− C

La

µ
= C

(
√

R

Cµ
− 1

µ

)

La
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Expected Externalities

W = time in the system (service inclusive)

C
λsW

µ(1− psρ)
= C

(

√

Rµ

C
− 1

)

W

La = number in the system upon arrival (inclusive)

C
La

µ(1− psρ)
− C

La

µ
= C

(
√

R

Cµ
− 1

µ

)

La

Ld = number in the system upon departure (exclusive)

C

µ(1− psρ)
Ld =

√

CR

µ
Ld
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Expected Externalities

W = time in the system (service inclusive)

C
λsW

µ(1− psρ)
= C

(

√

Rµ

C
− 1

)

W

La = number in the system upon arrival (inclusive)

C
La

µ(1− psρ)
− C

La

µ
= C

(
√

R

Cµ
− 1

µ

)

La

Ld = number in the system upon departure (exclusive)

C

µ(1− psρ)
Ld =

√

CR

µ
Ld

S = service time

C
λs

2(1− psρ)
S2 + C

(psρ)
2

(1− psρ)2
S
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Quadratic fees Kelly, ’91

W = waiting time
Charge aW 2 + bW .

Any a, b with aE(W 2) + bE(W ) = T will do

For example, a = Cµ/2 and b = −1
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Quadratic fees Kelly, ’91

W = waiting time
Charge aW 2 + bW .

Any a, b with aE(W 2) + bE(W ) = T will do

For example, a = Cµ/2 and b = −1

These a and b are free of R!

This is the unique function f (W ) with E(f (W )) = T which is free of R

A similar scheme with La
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Some facts

customers internalize the externalities they inflict on others
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Some facts

customers internalize the externalities they inflict on others

all the consumer surplus goes to the central planner

(
√

Rµ−
√
C )2
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Some facts

customers internalize the externalities they inflict on others

all the consumer surplus goes to the central planner

(
√

Rµ−
√
C )2

customers are ending up with nothing as they possess no private
information
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Waiting cost
C

µ(1−pρ

(1)

C+h
µ(1−pρ)

(3)

C

µ(1−pρ)2

(2)

R

peps

R − T

(1) individual cost
(2) marginal social cost
(3) holding cost

27 / 57



Regulating by pessimism

pe equilibrium joining probability

ps socially optimal joining probability
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Regulating by pessimism

pe equilibrium joining probability

ps socially optimal joining probability

Interestingly,
1

µ(1− peρ)
=

1

µ(1− psρ)2

and hence,

R − C

µ(1− psρ)2
= 0

Under a socially optimal joining probability, a stand-by customer is
indifferent between joining or not. So is the society: He inflicts no
externalities. But society does not mind order of service
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Regulating by pessimism

pe equilibrium joining probability

ps socially optimal joining probability

Interestingly,
1

µ(1− peρ)
=

1

µ(1− psρ)2

and hence,

R − C

µ(1− psρ)2
= 0

Under a socially optimal joining probability, a stand-by customer is
indifferent between joining or not. So is the society: He inflicts no
externalities. But society does not mind order of service

If all think they are stand-by customers, then ps is an equilibrium.
Problem: contradicts standard assumptions in games and economics: all
being last cannot be common knowledge....
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When customers know their demand

M/G/1, g(x) density of service time

customers know their demand and decide whether to join or not
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When customers know their demand

M/G/1, g(x) density of service time

customers know their demand and decide whether to join or not

Wx(y)= mean time for a y job, when x is the threshold
Lx= mean number in the system

assumption: some threshold strategy is a best response
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When customers know their demand

M/G/1, g(x) density of service time

customers know their demand and decide whether to join or not

Wx(y)= mean time for a y job, when x is the threshold
Lx= mean number in the system

assumption: some threshold strategy is a best response

equilibrium threshold: R − CWxe (xe) = 0
xe is a best response against xe .
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socially optimal threshold:

xs = argmax
x

{λG (x)R − CLx}
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socially optimal threshold:

xs = argmax
x

{λG (x)R − CLx}

introduce fees making an xs customer indifferent between joining or not
against all using threshold xs

flat entry fee T :
R − T − CWxs (xs) = 0

linear holding fee h:
R − (C + h)Wxs (xs) = 0

linear service fee w :
R − CWxs (xs)− wxs = 0
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socially optimal threshold:

xs = argmax
x

{λG (x)R − CLx}

introduce fees making an xs customer indifferent between joining or not
against all using threshold xs

flat entry fee T :
R − T − CWxs (xs) = 0

linear holding fee h:
R − (C + h)Wxs (xs) = 0

linear service fee w :
R − CWxs (xs)− wxs = 0

hWxs (xs) = wxs = T
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the externalities that an xs customer inflicts on a y customer:

C

g(xs)

d

dx
Wxs (y), 0 ≤ y ≤ xs

it is socially optimal if externalities are being internalized
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the externalities that an xs customer inflicts on a y customer:

C

g(xs)

d

dx
Wxs (y), 0 ≤ y ≤ xs

it is socially optimal if externalities are being internalized

total externalities=socially optimal entry fee:

T =
C

g(xs)

∫ xs

y=0

d

dx
Wxs (y)g(y) dy .
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the externalities that an xs customer inflicts on a y customer:

C

g(xs)

d

dx
Wxs (y), 0 ≤ y ≤ xs

it is socially optimal if externalities are being internalized

total externalities=socially optimal entry fee:

T =
C

g(xs)

∫ xs

y=0

d

dx
Wxs (y)g(y) dy .

in case of no externalities:

xs = xe

T = h = w = 0
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Comparing schemes

Level of Regulation (LoR): mean payment divided by mean waiting cost.

axiom: The lower the LoR the better
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Comparing schemes

Level of Regulation (LoR): mean payment divided by mean waiting cost.

axiom: The lower the LoR the better

all customers pay most under the holding fee scheme

a y -customer, 0 ≤ y ≤ xs , prefers holding fees to service fees iff

Wxs (y)/y ≤ Wxs (xs)/xs
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Examples

First come first served (FCFS)

Processor sharing (PS)

Non-preemptive priority to short jobs (SJF)

static preemptive priority to short jobs (PSJF)
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FCFS

all pay more under flat entry fee

holding fee: affine function between (0,Wxs (0)) and (xs ,T ).

service fee: linear function between (0, 0) and (xs ,T ).

⇒ All prefer service fees on holding fees.
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Preemptive SJF Hassin and Haviv, ’03

It is socially optimal that:

only short jobs join

short jobs receive priority
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Preemptive SJF Hassin and Haviv, ’03

It is socially optimal that:

only short jobs join

short jobs receive priority

Static preemptive priority is given to short jobs (PSJF)
Customers, knowing their service times, decide whether to join or not

Equilibrium behavior: Join if and only if service is shorter than or equal
to xs

an xs customer inflicts no externalities: His/her and the society’s interests
coincide
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PS Haviv ’89

all pay more under flat entry fee

denote ρ(x) = λ
∫ x

t=0 tg(x) dt

Wxs (y) =
y

1− ρ(xs)
, linear

⇓
holding fees and service fees coincide (in mean)

C
xs

(1− ρ(xs)2)
= R

h =
T (1− ρ(xs))

xs
, w =

T

xs
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SJF (M/M/1)

Non-preemptive shortest job first

1 if ρ ≤ (1 + 9e−2.5) ⇒ all prefer service fees on holding fees

2 otherwise, for small and large value of y , service fees are preferred.
For mid values of y , holding fees.

M/G/1: an odd number of intervals where the preferences alternate.
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Regulating by auctioning priorities Hassin, ’85

One who pays x overtakes (preemptively) all those who pay y , y < x .

Decision problem: To join or not to join. If join, how much to pay?
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Regulating by auctioning priorities Hassin, ’85

One who pays x overtakes (preemptively) all those who pay y , y < x .

Decision problem: To join or not to join. If join, how much to pay?

Equilibrium: join with probability ps (as socially optimal!)

Q: And how much to pay?
A: Mix with density along [0, a] where

a =
C

µ(1− psρ)2
− C

µ

and distribution function F (x),

R − x − C

µ(1− ps(1− F (x))ρ)2
= 0, 0 ≤ x ≤ a
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Regulating by auctioning priorities Hassin, ’85

One who pays x overtakes (preemptively) all those who pay y , y < x .

Decision problem: To join or not to join. If join, how much to pay?

Equilibrium: join with probability ps (as socially optimal!)

Q: And how much to pay?
A: Mix with density along [0, a] where

a =
C

µ(1− psρ)2
− C

µ

and distribution function F (x),

R − x − C

µ(1− ps(1− F (x))ρ)2
= 0, 0 ≤ x ≤ a

Proof: The interests of the one who enters and pays nothing (and is
always last and inflicts no externalities), and that of society’s coincide

Each pays the externalities he/she inflicts (Pigouvian tax) 51 / 57



Observable queues Naor, ’69

Equilibrium: Join if and only if the number upon arrival is smaller than ne .

ne = max
n

{R − C (n + 1)

µ
≥ 0}
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{R − C (n + 1)

µ
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Multiple equilibria but a unique threshold-based equilibrium
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Observable queues Naor, ’69

Equilibrium: Join if and only if the number upon arrival is smaller than ne .

ne = max
n

{R − C (n + 1)

µ
≥ 0}

Multiple equilibria but a unique threshold-based equilibrium

Socially optimal strategy: Join if and only if upon arrival the number in
system is smaller than ns

ns ≤ ne (and equality iff ne = 1) ⇒ long queues

A right entry toll coincide the new ne and the old ns
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Regulating by not-FCFS Hassin, ’85

Change the entrance policy to not-FCFS: An arrival is placed anywhere
(with preemption) but the last position
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Regulating by not-FCFS Hassin, ’85

Change the entrance policy to not-FCFS: An arrival is placed anywhere
(with preemption) but the last position

The individual decision problem: to renege if queue ahead is too long

Equilibrium: Renege when at position ns + 1

Explanation: The one at the back does not inflict any externalities. His
utility coincides with the society’s
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THANK YOU
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