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Multifractal measures

Given a measure µ the local dimension at x is

dµ(x) = lim
r→0

log µ(B(x, r))
log r

(when the limit exists)

The multifractal or Hausdorff spectrum of µ at α is

Dµ(α) = dimH({x : dµ(x) = α})

where dimH indicates the Hausdorff dimension.
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Cascade measures on trees
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We index the nodes of the tree Υ using the sibling
number at each generation.

The length of a node i = i1 . . . in is |i| = n.
If |i| > n, i|n is the curtailment of i after n terms.

Denote by Υn the n-th generation of the tree.
We will identify i ∈ Υn with the subset of ∂Υ descended
from it.
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Measure on the tree boundary
We have weight ρi(j) on the edge from i to ij,
all i.i.d. with mean 1/m where m is the mean family size
The weight at node i is the product of the edge weights
down its line of descent, and is denoted ρi.

The weights define a measure on the tree boundary.
For |i| < ∞

µ(i) = ρiWi, with mean (1/m)|i|

(The Wi are needed to ensure conservation of mass, but
we can ignore them for now.)

d(i, j) = m−n where m is the mean family size, and n is the
generation of the last common ancestor. Thus for i ∈ ∂Υ

dµ(i) = lim
n→∞

log ρi|n

n log 1/m
.
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SLLN gives

dµ(i) =
E log ρ
log 1/m

almost surely

For the other points, noting that |Υn| ≈ mn, we define

g(α) = lim
n→∞

log |{i ∈ Υn : µ(i) ≈ m−nα}|

log mn

That is, the number of level n sets of size m−nα grows like
mng(α).

Thus in the limit, the set points with local dimension α
should have dimension g(α).

(The intuition here is actually that of the Minkowski
dimension, which gives us an upper bound on the
Hausdorff dimension.)
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Multifractal formalism

For i chosen at random from ∂Υ we define

1 + γ(q) = lim
n→∞

logEµ(i|n)q

n log 1/m
=

logEρq

log 1/m

= lim
n→∞

log m−n ∑

i∈Υn
µ(i)q

n log 1/m

= 1 + lim
n→∞

log
∑

i∈Υn
µ(i)q

n log 1/m

That is, for i ∈ ∂Υ

Eµ(i|n)q ≈ m−n(1+γ(q))

1 + γ(·) is called a partition function.
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Consider

m−nγ(q) ≈
∑

i∈Υn

µ(i)q

=
∑

α

∑

µ(i)≈m−nα

µ(i)q

=
∑

α

mng(α)m−nαq

=
∑

α

m−n(αq−g(α))

≈ m−n infα(αq−g(α))

That is γ = g∗, the Legendre transform of g.
If γ is nice (convex, twice differentiable), then applying the
transform again

g = γ∗
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Multifractal processes

For a stochastic process X the local Hölder exponent is

hX(t) = lim inf
ǫ→0

log sup|s−t|<ǫ |X(s)− X(t)|

log ǫ

and the multifractal spectrum is

DX(α) = dimH({t : hX(t) = α})

The most popular way to construct a multifractal process
is to take a monofractal process and apply a multifractal
time-change.
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Example: time-changed Brownian motion
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The crossing tree of a continuous process
Sample path decomposition using a nested spatial grid
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EBP processes

A continuous process X is called an Embedded
Branching Process (EBP) process if the crossing tree is
a Bienaymé-Galton-Watson process.

We construct a multifractal process by taking an EBP,
constructing a multiplicative cascade on the crossing tree,
then using this to give a multifractal time change

We have that the measure of node i on the crossing tree
is the duration of the crossing.
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Canonical EBP

We can construct a class of EBP with constant modulus
of continuity

sup
|t−s|<δ

|X(t)− X(s)| ≈ |t − s|H | log |t − s||1−H

where H = log 2/ log m and m is the average family size of
the crossing tree.

Such an X is monofractal:

hX(t) = H for all t
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Given a canonical EBP X, we construct a cascade
measure on its crossing tree, map this to R

+ and then
integrate to get a non-decreasing process M.

Our time-change process is Y = X ◦M−1.

Let Tn
k be the k-th time X makes a size 2n crossing, and

T n
k the k-th time Y makes a size 2n crossing, then by

construction

Y(T n
k ) = X(Tn

k )

T n
k = M(Tn

k )
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The multifractal spectrum of M is

DM(α) = γ∗(α)

where

γ(q) =
logEρq

log 1/m
− 1

The multifractal spectrum of M−1 is

DM−1(α) = αγ∗(1/α)

The multifractal spectrum of Y is

DY(α) = DM−1(α/H) =
α

H
γ∗

(

H
α

)
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A process X is self-similar if

X(at)
fdd
= aHX(t)

The partition function for such a function (analogous to
the partition function for a measure) is given by
EX(t)q = ct1+γ(q).

Here we have

EX(t)q = E(tHX(1))q = ctHq

so the partition function is

γ(q) = Hq − 1

It follows that X is monofractal with dimension H.
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For a multifractal Y the analogous scaling relation is

Y(at)
fdd
= M(a)Y(t) where M(ab)

d
= M1(a)M2(a)

By construction, for a canonical EBP we have discrete
self-similarity

X(mnt)
fdd
= 2nX(t)

and similarly for a multitype EBP

Y(ρ1···1t)
fdd
= 2−nY(t)
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