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Introduction - motivation

The cafeteria opens for lunch at 12:30

Customers wish to avoid standing in the queue

The first customers catch the best seats

The quality of food deteriorates with time

Other examples: concert or flight with unmarked seats
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Introduction - ?/M/1 model

N customers

Single FCFS exponential server with rate µ

Service starts at time zero

Cost is a function of:

Waiting time
Tardiness
Number of previous arrivals

Customers choose when to arrive
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Introduction - ?/M/1 model - non-cooperative game

The arrival process is endogenous

A strategy profile is a set of arrival times for all customers

We focus on symmetric mixed strategies

A mixed strategy is a distribution F on arrival times

Nash equilibrium: no single customer can benefit by changing her own
strategy
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Introduction - literature

Vickrey (1969) (Fluid congested bottleneck model)

Glazer and Hassin (1983, 1987) (N ∼ Poisson)

Hassin and Kleiner (2011) (No early birds)

Jain, Juneja and Shimkin (2011) (Customer types, fluid)

Juneja and Shimkin (2012) (General N, tardiness)

Haviv (2013) (Tardiness, fluid)
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Two customer example

Two customer: N = {1, 2}

Server opens at time 0

Service times are iid ∼ exp(µ)

Server policy is FCFS

Customers choose their arrival times

Customers can queue before time zero
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Two customer game - tardiness cost

Juneja and Shimkin (2012)

The cost parameters:

α - cost per unit of waiting time

β - linear tardiness cost
(cost of βt when entering service at time t > 0)

The cost of arriving at time t, when the other plays F :

cF (t) = −αt1{t < 0}+ (α + β)
EQF (t)

µ
+ βt1{t > 0} (1)

where QF (t) is the number of customers in the system
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Two customer game - tardiness cost - equilibrium

Theorem (Juneja and Shimkin)

In the two customer game, the unique equilibrium arrival distribution F is
defined by the following density:

f (t) =


µ α
α+β , t ∈ [ta, 0)

−µ β
α+β −

µ2

α+β (βt + αta) , t ∈ [0, tb]

0 , o.w .

(2)

Where tb < 0 and 0 < ta <∞ define the support of F and satisfy:

−ta =
1

µ

√
β

α

(
2 +

β

α

)
(3)

tb =
1

µ

(√
1 +

2α

β
− 1

)
(4)

ANZAPW 2013 Liron Ravner July 8, 2013 9 / 31



Two customer game - tardiness cost - equilibrium

t

f (t)

-0.5 -0.29 0 0.55 1

1

2

Figure : Equilibrium arrival density (µ = 3, α = 6, β = 2)
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Two customer game - index cost

The cost parameters:

α - cost per unit of waiting time

γ - cost of arrival index
(the j’th arrival incurs a cost of γ(j − 1) )

The cost of arriving at time t, when the other plays F :

cF (t) = −αt1{t < 0}+
α

µ
EQ(t) + γEA(t) (5)

Q(t) - number of customers in the system at time t
A(t) - number of customer arrivals up until time t
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Two customer game - index cost - equilibrium analysis

Customers are indifferent between arrival times

F is an equilibrium if for every customer:

cF (t) = ce ,∀t ∈ τF
cF (t) ≥ ce ,∀t

where ce is some constant

τF is the corresponding support - ({t : f (t) > 0})

F will have no atoms - always better to arrive before an atom

We next present an equilibrium strategy
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Two customer game - index cost - equilibrium Analysis

No equilibrium with a finite arrival interval

Customers can guarantee a cost of γ by arriving sufficiently late

The cost in equilibrium is exactly γ

The equilibrium dynamics are given by d
dt cF (t) = 0 where:

cF (t) = −αt1{t < 0}+
α

µ
P(Q(t) = 1) + γF (t) (6)

Reminder:

cF (t) = −αt1{t < 0}+
α

µ
EQ(t) + γEA(t)
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Two customer game - index cost - equilibrium Analysis

Arrivals start at ta = − γ
α (c(ta) = −αta = γ)

The equilibrium condition for ta ≤ t < 0 is:

γ = −αt +
α

µ
F (t) + γF (t) (7)

And for t > 0 is:

γ =
α

µ
P(Q(t) = 1) + γF (t) (8)

Which can be solved using:

P(Q(t) = 1) = EQ(t) = F (t)− µ
∫ t

0
P(Q(s) = 1)ds
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Two customer game - index cost - equilibrium

Theorem

The following density defines a symmetric equilibrium arrival distribution:

f (t) =


α

γ+α
µ

, t ∈
[
− γ

α , 0
)

µ(
1+ α

γµ

)
(1+ γµ

α )
e
− µ

1+ α
γµ

t
, t ∈ [0,∞)

0 , o.w .

(9)

The expected cost for each customer in this equilibrium is γ.
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Two customer game - index cost - equilibrium

t

f (t)

-1 -0.33 0 1 2

1

2

Figure : Equilibrium arrival density (µ = 3, α = 6, γ = 1)

ANZAPW 2013 Liron Ravner July 8, 2013 16 / 31



Two customer game - index cost - no early birds

Customers are not allowed to queue before time zero

There will be an atom at time zero
Otherwise, arriving at zero is a best response

Denote the probability of arriving at zero by p0

p0 = 1 is an equilibrium if:

1

2

(
α

µ
+ γ

)
≤ γ

⇔ α

µ
≤ γ

(10)

Otherwise, p0 satisfies:

p0

2

(
α

µ
+ γ

)
= γ

⇔ p0 =
2γ

γ + α
µ

(11)
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Two customer game - index cost - no early birds

The cost of arriving shortly after time zero is:

c(t) = p0

(
γ + e−µt α

µ

)
(12)

This is a decreasing function initiating at 2γ

There is an interval (0, te) with no arrivals

c(te) = γ

After te the dynamics are as before
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Two customer game - index cost - no early birds

Theorem

For the two customer game with no early birds the symmetric equilibrium
arrival distribution is given by:

1. If α
µ ≤ γ then p0 = 1, i.e. both customers arrive at time zero and are

admitted into service in random order. The expected cost for each

customer is 1
2

(
α
µ + γ

)
.

2. If α
µ > γ then p0 = γ

γ+α
µ

and: f (t) = (1− p0)µ2p0e−
µ
2
p0t1{t ≥ te},

te = − 1
µ log

(
1
2

(
1− γµ

α

))
. The expected cost is γ for each customer.

Remark: The cost is lower (weakly) when early arrivals are not allowed
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Two customer game - index cost - no early birds -
equilibrium

t

f (t)

0 0.5 1 2 3
0

0.5

p0 = 0.55

Figure : Equilibrium arrival density (µ = 2, α = 6, γ = 1)
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Two customer game - index cost - finite closing time

Arrivals are not allowed after time T

The dynamics are as before with F (T ) = 1

The cost is higher than γ:

c(T ) = γ +
α

µ
P(Q(T ) = 1) (13)
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Two customer game - index Cost - finite closing time

Theorem

The equilibrium arrival distribution for the two customer game with closing
time T is defined by the following density:

f (t) =



α
γ+α

µ
, t ∈

− γ
α

(
1− e

− µT
1+ α

γµ

1+ γµ
α

)−1

, 0


µ(

1+ α
γµ

)1+ γµ
α

−e
− µT

1+ α
γµ

e
− µt

1+ α
γµ , t ∈ [0,T ]

0 , o.w .

(14)

And the equilibrium cost of every customer is γ

(
1− e

− µT
1+ α

γµ

1+ γµ
α

)−1

.
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Two customer game - index cost - finite closing time -
Equilibrium

t

f (t)

-1 -0.38 0 1

1

1.5

Figure : Equilibrium arrival density (µ = 3, α = 6, γ = 2, T = 1)
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Two customer game - index cost -
finite closing time and no early birds

Theorem

The equilibrium arrival distribution for the two customer game with
arrivals allowed only in the interval [0,T ], is given by:

(1) If α
µ (1− 2e−µT ) ≤ γ then p0 = 1, i.e. both customers arrive at time

zero and are admitted into service in random order. The expected

cost for each customer is 1
2

(
α
µ + γ

)
.

(2) If α
µ (1− 2e−µT ) > γ then p0 = 2

1+ α
γµ

−
(

α
γµ

−1
)
e
− µ

1+ α
γµ

(T−te )
and:

f (t) =
p0µ

2

α
γµ − 1
α
γµ + 1

e
− µ

1+ α
γµ

(t−te)
1{t ∈ [te ,T ]} (15)

The expected cost is p0
2

(
γ + α

µ

)
for each customer.
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Two customer game - index cost - finite closing time and
no early birds - equilibrium

t

f (t)

0 0.55 1
0

0.5

p0 = 0.83

Figure : Equilibrium arrival density (µ = 2, α = 6, γ = 1, T = 1)
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General model

N + 1 > 2 customers

Both index and tardiness costs:

cF (t)∗ = −αt1{t < 0}+
α + β

µ
EQ(t) +βt1{t ≥ 0}+ γEA(t) (16)

*Cost of arriving at t when all other customers play F
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General model - equilibrium

Equilibrium arrival distribution F with support [ta, tb]

Before time zero, t ∈ [ta, 0):

f (t) =
αµ

N(α + β + γµ)
(17)

After time zero , t ∈ (0, tb]:

f (t) =
µ(α + β) (1−P(Q(t) = 0))− βµ

N(α + β + γµ)
(18)

F (tb) = 1 and f (tb) = 0

Numerical analysis is required
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General model - equilibrium cost - numerical analysis
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Figure : Equilibrium arrival density (µ = 20, α = 0.1, β = 0)
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General model - equilibrium cost - numerical analysis
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Figure : Equilibrium arrival density (µ = 20, α = 0.1, β = 0.1)
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Concluding remarks

We have shown the equilibrium properties for linear index costs and
various arrival constraints.
What next?

Non-linear cost functions

Social optimization

Non-homogeneous customers
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Questions?

Thank You!
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