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Gene expression

Gene expression

{
DNA is transcribed into mRNA
mRNA is translated into protein

Tinsley, R. (2011) ‘MOTHER NATURE’, On Dit 79(6), 12-13.
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Hidden Markov model

A hidden Markov model (HMM) is a collection of RVs that form:

1 A Markov chain, S1,S2, . . . - ‘state sequence’

2 An additional sequence, X1,X2, . . . - ‘emission sequence’

10 CHAPTER 3. HIDDEN MARKOV MODELS

The state sequence is a Markov chain as S1:t−1 ⊥⊥ St+1 | St for t = 2, 3, . . . , T − 1 from (3.1). Sub-
sequent emission random variables are also conditionally independent of previous emission random
variables from (3.1), however given the state random variable at the intermediate time.

Moreover from (3.2), an emission random variable is conditionally independent of all other random
variables given the state random variable at the corresponding time. These outcomes conform to
the notion that the Markov chain state sequence is the process driving the dynamics of the emission
sequence.

We additionally consider a graphical representation of these properties in the form of a conditional
independence graph. We focus on the relationship between the conditional independence proper-
ties and the conditional independence graph as in later chapters we present such graphs in place of
statements of these properties. the other thing that the graph allows us to do is read statements
right away without having to use Corollary 1.2

Lemma 3.1. An equivalent definition of an HMM is the collection of random variables {X1:T , S1:T }
with conditional independence graph given by Figure 3.1.
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Figure 3.1: Conditional independence graph of an HMM.

Proof of Lemma 3.1. Note that the vertices in Figure 3.1 have been labeled by the corresponding
random variables rather than another index. Hence we will refer to paths and edges between
random variables as shorthand for paths and edges between vertices corresponding to random
variables. Lemma 3.1 is a consequence of the following two statements.

By Definition 1.8, for the collection {X1:T , S1:T } such that (3.1) and (3.2) holds, the conditional
independence graph is given by Figure 3.1. By Theorem 1.3, for the collection {X1:T , S1:T } with
conditional independence graph given by Figure 3.1, it follows that (3.1) and (3.2) hold.

The first statement can be verified by considering the construction of a conditional independence
graph by Definition 1.8. Recall that no edge is drawn between two random variables if they are
conditionally independent given the rest of the collection. By considering each possible pairing of
random variables, it can be seen that no edge is present between random variables in Figure 3.1
that are conditionally independent given the rest of the collection from (3.1) and (3.2).

To verify the second statement, firstly consider that in Figure 3.1 all paths from any random
variable in the set {X1:t−1, S1:t−1} to any random variable in the set {Xt+1:T , St+1:T } must pass
through St. Hence we have (3.1) for t = 2, 3, . . . , T − 1 by Theorem 1.3. We also see that any
path from Xt to any other random variable must pass through St and hence we have (3.2) for
t = 1, 2, . . . , T by Theorem 1.3.

3.2 Parameterisation

We now parameterise the HMM by considering the joint density of the emission and state se-
quences. We consider that the emission random variables Xt are univariate and continuous for
t = 1, 2, . . . , T and that the Markov chain state sequence S1:T is time-homogeneous with st where
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through St. Hence we have (3.1) for t = 2, 3, . . . , T − 1 by Theorem 1.3. We also see that any
path from Xt to any other random variable must pass through St and hence we have (3.2) for
t = 1, 2, . . . , T by Theorem 1.3.

3.2 Parameterisation

We now parameterise the HMM by considering the joint density of the emission and state se-
quences. We consider that the emission random variables Xt are univariate and continuous for
t = 1, 2, . . . , T and that the Markov chain state sequence S1:T is time-homogeneous with st where

p(x1:T , s1:T |λ) = as1

T∏

t=2

ast−1st

( T∏

t=1

f (xt |µst , σ2st )
)

where

λ = {a,A, µ1, σ21, µ2, σ22, . . . , µN , σ2N}.



HMM framework

Model Data

emission sequence expression profile
state sequence underlying behaviour of gene



L(t)-fold HMM
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Figure 4.1: Conditional independence graph of an L(t)-fold HMM.

variable at the corresponding time (4.4). Hence we still retain the notion that the state sequence
is driving the dynamics of the emission random variables.

We reach the same conclusion by considering the conditional independence graph of an L(t)-fold
HMM. In Figure 4.1, we can clearly see that the state sequence is a Markov chain and that each
individual emission random variable only has a single edge to the state random variable at the
corresponding time. As for an HMM, we find that the conditional independence properties (4.1),
(4.2) and (4.3), and the conditional independence graph are equivalent. That is, the collection of
random variables {X1:T , S1:T } is an L(t)-fold HMM if and only if the conditional independence
graph of the collection is given by Figure 4.1 (See the proof of Lemma 3.1).

It should be clear from both Definition 4.1 and Figure 4.1 that an L-fold HMM is equivalent to
an HMM if L(t) = 1 for t = 1, 2, . . . , T . In that case, properties (4.1) and (4.2) are exactly those

of Definition 3.1 and property (4.3) means nothing as X
(∼l)
t = X

(∅)
t . Not surprisingly then, an

L(t)-fold HMM is parameterised by the same set of quantities as an HMM.

4.2 Parameterisation

We consider the joint density the emission random variables and the state sequence to show that
the HMM parameters λ also parameterise an L(t)-fold HMM. We consider that there are N states
so that St = st where st ∈ {1, 2, . . . , N} for t = 1, 2, . . . , T and that the state sequence Markov

chain is time-homogeneous. We also consider that the emissions X
(l)
t are continuous random vari-

ables for t = 1, 2, . . . , T and l = 1, 2, . . . , L(t).

Lemma 4.2 L(t)-fold HMM Density.

p(x1:T , s1:T ) = p(s1)

T�

t=2

p(st|st−1)

� T�

t=1

L(t)�

l=1

p(x
(l)
t |st)

�
. (4.5)

Proof of Lemma 4.2.

p(x1:T , s1:T ) = p(s1)

T�

t=2

p(st|st−1)

� T�

t=1

p(x
(1:L(t))
t |st)

�

= p(s1)

T�

t=2

p(st|st−1)

� T�

t=1

L(t)�

l=1

p(x
(l)
t |st)

�
.

The first line follows from the same arguments as in the Proof of Lemma 3.2 as the analogous
necessary conditional independence properties hold. The second line follows from (4.3).

Hence the following quantities are sufficient to parameterise an L-fold HMM:

p(x1:T , s1:T |λ) = as1

T∏

t=2

ast−1st

( T∏

t=1

L(t)∏

l=1

f (x
(l)
t |µst , σ2st )

)
.
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Figure 8.1: Conditional independence graph of an L(t)-fold HMM satisfying (8.1).

Consider an N = 3 state L(t)-fold HMM with conditional independence graph given in Figure

8.1, Markov parameters

a =

2
66664

0.3

0.4

0.3

3
77775

, A =

2
66664

0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6

3
77775

(8.2)

and emission distributions

X
(l)
t | {St = j} ⇠

8
>>>><
>>>>:

N(1, 0.2) if j = 1

N(2, 0.2) if j = 2

N(3, 0.2) if j = 3.

(8.3)

Simulated data from this model is plotted in Figure 8.2. In addition to the simulated emission

sequences, the corresponding simulated state sequence is also shown. Both simulated emission

sequences are aligned to the simulated state sequence. Although we always consider that the state

random variables take values in the first N natural numbers, in general these values do not have any

relationship to the corresponding emission distributions. The alignment in Figure 8.2 is especially

apparent as we have set µj = j for j = 1, 2, 3 and hence the observed values of all sequences are

quantitatively similar at each time point.

In Figure 8.3 we plot the concatenated length 17 simulated emission sequence with no gaps

in addition to the length 19 simulated emission sequence from Figure 8.2. The two sequences in

Figure 8.3 still share the same basic shape but now have di↵erent lengths and the timing of the

features are di↵erent. That is, the simulated emission sequences as plotted in Figure 8.3 are aligned

in time as plotted in Figure 8.2.

L(t) =

{
1 if t = G1 or G2

2 otherwise.

1 < G1 < G2 ≤ 19
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Parameter estimates

N = 5

Ĝ1 = 2, Ĝ2 = 11

Markov chain parameters: â, Â
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Diagnostics
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Figure 11.1: Aligned expression profiles from the Willunga (⇥+) and Clare (⇥+) vineyards. The
elements of the Viterbi paths (#) have been plotted at the estimated means µ̂j of the corresponding
emission distributions given by (10.2). Left to right, the pairs of aligned profiles correspond to
genes with probe identification 1608495_at and 1618303_at.

11.1 Ordering Based on Log-likelihood

We order the pairs of profiles based on the corresponding log-likelihood (8.5) calculated for the

estimated L(t)-fold HMM parameters �̂ given by (10.1) and (10.2). To illustrate this ordering,

selected pairs of profiles with rank ranging from 1 to 2062, the largest to smallest log-likelihood,

are plotted in Figure 11.2.

There is a clear gradation of how well the pairs of profiles are aligned, starting at the top left and

ending at the bottom right of Figure 11.2. The pair of profiles with rank 2062 plotted in the bottom

right have di↵erent shape and for this reason the alignment and common representation attained

are very poor. The low relative log-likelihood corresponding to this pair of aligned profiles is due to

the large di↵erence in observed expression levels at most time points. Since the expression levels at

each time point are modelled by emission random variables with the same conditional distribution,

pairs of observations become less likely as the distance between the observations increases.

The profiles in Figure 11.1 have rank, left to right, 2060 and 79 respectively. The rank of the

pair of profiles on the left conforms to the broad result already described. The high rank of the

pair of profiles on the right indicates that it has relatively high log-likelihood. This is the case since

the alignment of this pair agrees very well at most time points except at the initial spike feature.

The log-likelihood contribution from the time points where the alignment is poor are masked by

the alignment at all other time points and the particularly large log-likelihood contribution of the

small variance emission distribution corresponding to state 1, which can be inferred as so many
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Figure 11.2: Aligned expression profiles from the Willunga (⇥+) and Clare (⇥+) vineyards. The
elements of the Viterbi paths (#) have been plotted at the estimated means µ̂j of the corresponding
emission distributions given by (10.2). Left to right, top to bottom, the pairs of aligned profiles
correspond to genes with rank 1, 257, 515, 774, 1032, 1290, 1540, 1805 and 2062, and with probe
identification 1612160_at, 1618211_at, 1619165_at, 1619345_s_at, 1612450_at, 1611324_at,
1613803_at, 1607255_at and 1607015_at.
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Figure 11.6: Aligned expression profiles from the Willunga (⇥+) and Clare (⇥+) vineyards. The
elements of the Viterbi paths (#) have been plotted at the estimated means µ̂j of the corre-
sponding emission distributions given by (10.2). Left to right, top to bottom, the pairs of aligned
profiles correspond to genes with probe identification 1620183_at, 1613056_at, 1622791_at and
1615196_at.
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