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Context

Consider
Some transition system, and
Some path-property, e.g. path ends in deadlock before
termination.

Model checking gives answer to:
Do such paths exist?

→ (Non-probabilistic) Model Checking

Is probability p of such paths smaller/larger than some p0?
→ Probabilistic Model Checking

E.g. is p = P(path ends in deadlock) < 0.05?
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Concrete example

For instance:
Transition system: DTMC
Property (event): “reach state s3 before returning to s0”
Is P(event) < 0.05 or > 0.05?

So is probability of reaching s3 before s0 smaller than 5%?

s0start s1

s2 s3
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How to do it?

Traditional approach: numerical analysis
But state spaces are huge...

Alternative approach: Stochastic Model Checking (SMC)
Based on (discrete event) simulation:

Run n independent random samples
Count S= # runs that satisfies path-property
Compare estimate p̂ = S/n to p0

Advantage: No need to store and compute large system
⇒ Currently implemented in UPPAAL and PRISM
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Concrete example (cont’d)

Computer program:
In i-th run, simulate the DTMC until

reach s3 ⇒ return Xi = 1; quit;
reach s0 ⇒ return Xi = 0; quit;

Repeat this N times (how to choose N ??)
Accept or reject

H0 : p = p0
H+1 : p > p0
H−1 : p < p0

Such that P(accept H+1|H0) < 0.05, etc.
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Approaches in literature

Used so far:
Confidence intervals (Gauss)
Sequential Probability Ratio Test (SPRT)
Approximate Model Checking (Chernoff)
Bayesian

All have (dis)advantages. In particular:
Gauss: solid, but no outcome guaranteed
SPRT: efficient: no need for many simulations,
but validity of outcome depends on a-priori parameter δ
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Gaus

Gauss:
Fixed sample size N
Test statistic SN =

∑N
i=1 Xi

Based on Central Limit Theorem
Optimize N, based on guess γ for p − p0
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SPRT

Sequential Probability Ratio Test:
Sequential test
Based on Wald (1945)

Test statistic
p

SN
+1 (1−p+1)

N−SN

p
SN
−1(1−p−1)

N−SN

Indifference level δ: take
p+1 = p0 + δ
p−1 = p0 − δ

Always draws conclusion
Don’t care what conclusion is when p ∈ (p0 − δ, p0 + δ)
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General framework

All methods:
Perform N consecutive simulation runs, leading to i.i.d.
sequence of Xi ∼ Bernoulli(p)
Classical test statistic SN =

∑N
i=1 Xi ∼ Binom(N,p)

Need to identify in which direction SN deviates from p0N...

... in a statistically sound way, i.e. with guaranteed upper
bounds on probability of wrong conclusion

Only difference between methods:
when to stop, and
what to conclude?
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General framework

Sample path of: SN ZN = SN − p0N

ZN has positive drift (p > p0)
or negative drift (p < p0)
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General framework

When to stop and what to conclude?

NC Non-critical: no conclusion yet, continue
U Upper: stop, conclude H+1 : p > p0
L Lower: stop, conclude H−1 : p < p0
I Inconclusive: stop, no conclusion (keep H0 : p = p0)

Grey unreachable (slopes 1− p0 and −p0)
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General framework

When to stop and what to conclude?

Fixed sample size test Sequential test

Typical shape depends on type of test
Specifics depend on parameters and confidence level
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Fixed sample size test (Gauss)

Boundaries as a function of (predetermined) N behave ∼
√

N
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Sequential test (SRPT)

Boundaries almost constant
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Sequential test (Linear)

Linearly diverging boundaries better?

No
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Sequential test (new)

Boundaries ‘in between’ square root and linear
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New sequential techniques

Boundaries of NC should not be
Too wide (like linear)

→ may never terminate
Too narrow (like square root)

→ too easy to draw wrong conclusion when |p0| small

Propose:
‘Azuma’ ∼ a(N + k)b, with b ∈ (2

3 ,1)

‘Darling’ ∼ a
√
(N + k) log(N + k)
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New sequential techniques
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Azuma, bounding P(wrong conclusion)

Bound on P(accept H+1|H0)
= P(ZN ends up in U|ZN has drift 0)

Based on Generalized Azuma-Hoeffding inequality
(writing n for N):

fn = a(n + k)b, with b ∈ (2
3 ,1), k ,a > 0

Let Zn have drift 0, be stopped at −fn
Let Wn = ecn(Zn−fn) for some sequence cn

Lemma

Wn is a supermartingale, i.e.

E(Wn|Wn−1, . . . ,W1) ≤Wn−1,

if we take cn = 8(3− 2
b )

d
dn fn
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Azuma, bounding P(wrong conclusion)

Theorem

P(∃n ≥ 0 : Zn > fn) ≤ e−8(3b−2)a2k2b−1

Proof.

Define bounded stopping time

N(m) = min{n : |Zn| ≥ fn or n = m}

for supermartingale Wn = ecn(Zn−fn). Then

P(ZN(m) ≥ fN(m)) = P(WN(m) ≥ 1)
≤ E(WN(m))

≤ E(W0) = e−f (0)c(0)

= e−8(3b−2)a2k2b−1
,

Now let m→∞.
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Azuma, bounding P(wrong conclusion)

Corollary

Azuma test with boundaries +a(N + k)b and −a(N + k)b

satisfies

P(Accept H+1 | ¬H+1) ≤ α
P(Accept H−1 | ¬H−1) ≤ α

and

P(Reject H+1 | H+1) ≤ β
P(Reject H−1 | H−1) ≤ β

with α = β = e−8(3b−2)a2k2b−1
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Darling

Boundary of NC is fn = a
√
(n + k) log(n + k)

Darling and Robbins (1968) on iterated logarithm:

If ε > 0 exists such that

∞∑
n=1

e−f 2
n /(n+1) ≤ ε

then P(wrong conclusion) ≤ 2
√

2ε.
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Optimize parameters

Azuma: k(a, α, b) =
(

log(α
2 )

8a2(2−3b)

) 1
2b−1

Darling: k(a, α) =
(
α(a−1)

2
√

2

)− 1
a−1 − 1

Then, minimize ( approximate) expected hitting time over
a, i.e. solve

fn = |p − p0|n,

using guess γ for |p − p0|
Azuma: take b = 3

4
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Shape of NC
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Experimental results

p = 0.19, p0 = 0.20, bold: γ = |p − p0| (guess correct)
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Conclusions

Existing tests have shortcomings:
Gauss: depends on N, possibly no conclusion
SRPT: depends on indifference level δ

New tests do not have these shortcomings
... at the expense of longer simulation times

Future Work:

Improve bounds.
Generalize results: importance sampling??
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Thanks mates!
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