Reliable sequential testing for statistical model checking

Daniël Reijsbergen Pieter-Tjerk de Boer Werner Scheinhardt Boudewijn Haverkort

University of Twente, The Netherlands

ANZAP workshop, July 8–11, 2013 University of Queensland, Brisbane, Australia

Outline

Introduction

- Stochastic model checking
- Approaches so far
- 2 Framework
- 3 New techniques
 - Azuma
 - Darling
- 4 Comparison
- 5 Conclusions

Outline

1 Introduction

- Stochastic model checking
- Approaches so far

2 Framework

- 3 New techniques
 - Azuma
 - Darling
- 4 Comparison

5 Conclusions

Context

Consider

- Some transition system, and
- Some path-property, e.g. path ends in deadlock before termination.

Model checking gives answer to:

Do such paths exist?

 \rightarrow (Non-probabilistic) Model Checking

Context

Consider

- Some transition system, and
- Some path-property, e.g. path ends in deadlock before termination.

Model checking gives answer to:

Do such paths exist?

 \rightarrow (Non-probabilistic) Model Checking

■ Is probability p of such paths smaller/larger than some p_0 ? → Probabilistic Model Checking

E.g. is p = P(path ends in deadlock) < 0.05?

Concrete example

For instance:

- Transition system: DTMC
- Property (event): "reach state s₃ before returning to s₀"
- Is *P*(event) < 0.05 or > 0.05?

So is probability of reaching s_3 before s_0 smaller than 5%?

Introd	luoti	on
muuuu	iuci	

Traditional approach: numerical analysis But state spaces are huge...

Alternative approach: Stochastic Model Checking (SMC) Based on (discrete event) simulation:

- Run *n* independent random samples
- Count S= # runs that satisfies path-property
- Compare estimate $\hat{p} = S/n$ to p_0

Advantage: No need to store and compute large system \Rightarrow Currently implemented in UPPAAL and PRISM

Computer program:

- In *i*-th run, simulate the DTMC until
 - reach $s_3 \Rightarrow$ return $X_i = 1$; quit;
 - reach $s_0 \Rightarrow$ return $X_i = 0$; quit;
- Repeat this N times (how to choose N ??)
- Accept or reject

 $\begin{array}{l} H_{0}: p = p_{0} \\ H_{+1}: p > p_{0} \\ H_{-1}: p < p_{0} \\ \end{array}$ Such that $P(\text{accept } H_{+1} | H_{0}) < 0.05$, etc.

Used so far:

- Confidence intervals (Gauss)
- Sequential Probability Ratio Test (SPRT)
- Approximate Model Checking (Chernoff)
- Bayesian

All have (dis)advantages. In particular:

- Gauss: solid, but no outcome guaranteed
- SPRT: efficient: no need for many simulations, but validity of outcome depends on a-priori parameter δ

Gauss:

- Fixed sample size N
- Test statistic $S_N = \sum_{i=1}^N X_i$
- Based on Central Limit Theorem
- Optimize *N*, based on guess γ for $p p_0$

Sequential Probability Ratio Test:

- Sequential test
- Based on Wald (1945)

Test statistic
$$\frac{p_{+1}^{S_N}(1-p_{+1})^{N-S_N}}{p_{-1}^{S_N}(1-p_{-1})^{N-S_N}}$$

■ Indifference level δ: take

$$p_{+1} = p_0 + \delta$$
$$p_{-1} = p_0 - \delta$$

- Always draws conclusion
- Don't care what conclusion is when $p \in (p_0 \delta, p_0 + \delta)$

Outline

Introduction

- Stochastic model checking
- Approaches so far

2 Framework

- 3 New techniques
 - Azuma
 - Darling
- 4 Comparison

5 Conclusions

General framework

All methods:

- Perform N consecutive simulation runs, leading to i.i.d. sequence of X_i ~ Bernoulli(p)
- Classical test statistic $S_N = \sum_{i=1}^N X_i \sim \text{Binom}(N, p)$
- Need to identify in which direction S_N deviates from $p_0 N_{...}$

All methods:

- Perform N consecutive simulation runs, leading to i.i.d. sequence of X_i ~ Bernoulli(p)
- Classical test statistic $S_N = \sum_{i=1}^N X_i \sim \text{Binom}(N, p)$
- Need to identify in which direction S_N deviates from $p_0 N_{...}$
- In a statistically sound way, i.e. with guaranteed upper bounds on probability of wrong conclusion

Only difference between methods:

- when to stop, and
- what to conclude?

General framework

Sample path of: S_N

 $Z_N = S_N - p_0 N$

 Z_N has positive drift ($p > p_0$) or negative drift ($p < p_0$)

When to stop and what to conclude?

- NC Non-critical: no conclusion yet, continue
 - \mathcal{U} Upper: stop, conclude $H_{+1}: p > p_0$
 - \mathcal{L} Lower: stop, conclude $H_{-1}: p < p_0$
 - \mathcal{I} Inconclusive: stop, no conclusion (keep $H_0: p = p_0$)
- Grey unreachable (slopes $1 p_0$ and $-p_0$)

When to stop and what to conclude?

Fixed sample size test

Sequential test

- Typical shape depends on type of test
- Specifics depend on parameters and confidence level

Framework

Fixed sample size test (Gauss)

Boundaries as a function of (predetermined) N behave $\sim \sqrt{N}$

_				
-r-	2 m	OW	VO	rle.
1 1 4		IC 9	٧U	1 N.

Sequential test (SRPT)

Boundaries almost constant

ramework

Werner Scheinhardt

Sequential test (Linear)

Linearly diverging boundaries better?

Fram	iework		

Werner Scheinhardt

Sequential test (Linear)

Linearly diverging boundaries better? No

Framework	
- raine reality	

Sequential test (new)

Boundaries 'in between' square root and linear

_						
	2	m	0	17	~ r	· / /
	a		CΥ	14	וט	n.

Outline

Introduction

- Stochastic model checking
- Approaches so far
- 2 Framework
- 3 New techniques
 - Azuma
 - Darling
- 4 Comparison

5 Conclusions

Boundaries of \mathcal{NC} should not be

- Too wide (like linear)
 - \rightarrow may never terminate
- Too narrow (like square root)
 - \rightarrow too easy to draw wrong conclusion when $|p_0|$ small

Propose:

• 'Azuma' ~
$$a(N+k)^b$$
, with $b \in (\frac{2}{3}, 1)$

• 'Darling' ~
$$a\sqrt{(N+k)\log(N+k)}$$

New sequential techniques

Azuma and Darling compared to earlier tests

00	nn		ae
		qu	103

Bound on $P(\text{accept } H_{+1}|H_0)$

 $= P(Z_N \text{ ends up in } \mathcal{U}|Z_N \text{ has drift } 0)$ Based on Generalized Azuma-Hoeffding inequality (writing *n* for *N*):

■
$$f_n = a(n+k)^b$$
, with $b \in (\frac{2}{3}, 1)$, $k, a > 0$

Let Z_n have drift 0, be stopped at $-f_n$

Let
$$W_n = e^{c_n(Z_n - f_n)}$$
 for some sequence c_n

Lemma

W_n is a supermartingale, i.e.

$$\mathbb{E}(W_n|W_{n-1},\ldots,W_1) \leq W_{n-1},$$

if we take $c_n = 8(3 - \frac{2}{b})\frac{d}{dn}f_n$

Azuma, bounding P(wrong conclusion)

Theorem

$$\mathbb{P}(\exists n \ge 0 : Z_n > f_n) \le e^{-8(3b-2)a^2k^{2b-1}}$$

Proof.

Define bounded stopping time

$$N(m) = \min\{n : |Z_n| \ge f_n \text{ or } n = m\}$$

for supermartingale $W_n = e^{c_n(Z_n - f_n)}$. Then

$$\mathbb{P}(Z_{N(m)} \ge f_{N(m)}) = \mathbb{P}(W_{N(m)} \ge 1) \\ \le \mathbb{E}(W_{N(m)}) \\ \le \mathbb{E}(W_0) = e^{-f(0)c(0)} \\ = e^{-8(3b-2)a^2k^{2b-1}}.$$

Azuma, bounding P(wrong conclusion)

Corollary

Azuma test with boundaries $+a(N+k)^{b}$ and $-a(N+k)^{b}$ satisfies

$$\mathbb{P}(Accept H_{+1} \mid \neg H_{+1}) \leq \alpha$$

$$\mathbb{P}(Accept H_{-1} \mid \neg H_{-1}) \leq \alpha$$

and

$$\mathbb{P}(\text{Reject } H_{+1} \mid H_{+1}) \leq \beta$$
$$\mathbb{P}(\text{Reject } H_{-1} \mid H_{-1}) \leq \beta$$

with
$$\alpha = \beta = e^{-8(3b-2)a^2k^{2b-1}}$$

- Boundary of \mathcal{NC} is $f_n = a\sqrt{(n+k)\log(n+k)}$
- Darling and Robbins (1968) on iterated logarithm:
- If $\epsilon > 0$ exists such that

$$\sum_{n=1}^{\infty} e^{-f_n^2/(n+1)} \le \epsilon$$

then P(wrong conclusion) $\leq 2\sqrt{2}\epsilon$.

Optimize parameters

Azuma:
$$k(a, \alpha, b) = \left(\frac{\log\left(\frac{\alpha}{2}\right)}{8a^2(2-3b)}\right)^{\frac{1}{2b-1}}$$

Darling: $k(a, \alpha) = \left(\frac{\alpha(a-1)}{2\sqrt{2}}\right)^{-\frac{1}{a-1}} - 1$

Then, minimize (approximate) expected hitting time over a, i.e. solve

$$f_n=|p-p_0|n,$$

using guess γ for $|p - p_0|$

Azuma: take $b = \frac{3}{4}$

Outline

Introduction

- Stochastic model checking
- Approaches so far
- 2 Framework
- 3 New techniques
 - Azuma
 - Darling

4 Comparison

5 Conclusions

Shape of \mathcal{NC}

Azuma and Darling compared to earlier tests

-		
(Comr	narie	nn
COUL	Jans	

Experimental results

Test	γ (or δ)	probability of correct conclusion	probability of no conclusion	average number of samples
	0.1	0.036 ± 0.012	0.953 ± 0.013	$1.64 \cdot 10^2$
Gauss	0.01	0.946 ± 0.014	0.054 ± 0.014	$2.04 \cdot 10^4$
	0.001	1.0 ± 0.0	0.0 ± 0.0	$2.39 \cdot 10^{6}$
	0.1	0.489 ± 0.031	0	$(3.70 \pm 0.17) \cdot 10^1$
SPRT	0.01	$\textbf{0.949} \pm \textbf{0.014}$	0	$(2.19\pm 0.10){\cdot}10^3$
	0.001	1.0 ± 0.0	0	$(2.39 \pm 0.03) \cdot 10^4$
	0.1	0.007 ± 0.005	0.993 ± 0.005	$6.67 \cdot 10^2$
Chernoff	0.01	1.0 ± 0.0	0.0 ± 0.0	$6.67 \cdot 10^4$
	0.001	1.0 ± 0.0	0.0 ± 0.0	$6.67 \cdot 10^{6}$
Bayes	uniform	0.599 ± 0.030	0	$(5.64 \pm 0.56) \cdot 10^2$
	0.1	1.0 ± 0.0	0	$(1.41 \pm 0.01) \cdot 10^6$
Azuma	0.01	1.0 ± 0.0	0	$(4.79 \pm 0.10) {\cdot} 10^4$
	0.001	1.0 ± 0.0	0	$(2.24 \pm 0.01) \cdot 10^5$
	0.1	1.0 ± 0.0	0	$(2.04 \pm 0.02) \cdot 10^5$
Darling	0.01	1.0 ± 0.0	0	$(1.78 \pm 0.02) \cdot 10^5$
	0.001	1.0 ± 0.0	0	$(2.10 \pm 0.02) \cdot 10^5$

 $p = 0.19, p_0 = 0.20,$ **bold:** $\gamma = |p - p_0|$ (guess correct)

Outline

Introduction

- Stochastic model checking
- Approaches so far
- 2 Framework
- 3 New techniques
 - Azuma
 - Darling
- 4 Comparison

5 Conclusions

Conclusions

Existing tests have shortcomings:

- Gauss: depends on *N*, possibly no conclusion
- SRPT: depends on indifference level δ
- New tests do not have these shortcomings
- ... at the expense of longer simulation times

Future Work:

- Improve bounds.
- Generalize results: importance sampling??

Thanks mates!